Abstract
Details of the processes that generate biological diversity have long been of interest to evolutionary biologists. A common theme in nature is diversification via divergent selection with gene flow. Empirical studies on this topic find variable genetic differentiation throughout the genome, that genetic differentiation is non-randomly distributed, and that loci of adaptive significance are often found clustered together within “genomic islands of divergence”. Theoretical models based on new mutations show how these genomic islands can arise and grow as a result of a complex interaction of various evolutionary and genic processes. In the current study, I ask if such genomic islands can alternatively arise from divergent selection from standing genetic variation and I tested this using a simple two locus model of selection. There are numerous ways in which standing genetic variation can be partitioned (e.g., between alleles, between loci, and between populations) and I tested which of these scenarios can give rise to an island pattern compared to no genomic differentiation or complete genomic differentiation. I found that divergent selection, even without reciprocal gene exchange between populations, following a bout of admixture can relatively quickly produce an island pattern. Moreover, I found two pathways in which islands can form from divergence from standing variation: 1) through the build up of islands and 2) through the breakdown of larger, genome-wide differentiation. Lastly, similar to new mutation theory, I found that the frequency of recombination is an important determinant of island formation from standing genetic variation such that mating behavior of a species (e.g., facultative or obligate sexual) can impact the likelihood of island formation.