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Abstract:		33 

The	 role	 of	 the	 human	 microbiome	 in	 health	 and	 disease	 is	 increasingly	appreciated.	 We	34 

studied	 the	 composition	 of	 microbial	 communities	 present	 in	 blood	 across	 192	 individuals,	35 

including	healthy	controls	and	patients	with	three	disorders	affecting	the	brain:	schizophrenia,	36 

amyotrophic	 lateral	 sclerosis	 and	 bipolar	 disorder.	 By	 using	 high	 quality	 unmapped	 RNA	37 

sequencing	reads	as	candidate	microbial	reads,	we	performed	profiling	of	microbial	transcripts	38 

detected	in	whole	blood.		We	were	able	to	detect	a	wide	range	of	bacterial	and	archaeal	phyla	39 

in	blood.	 Interestingly,	we	observed	an	 increased	microbial	diversity	 in	schizophrenia	patients	40 

compared	 to	 the	 three	 other	 groups.	 We	 replicated	 this	 finding	 in	 an	 independent	41 

schizophrenia	 case-control	 cohort.	 This	 increased	 diversity	 is	 inversely	 correlated	 with	42 

estimated	 cell	 abundance	 of	 a	 subpopulation	 of	 CD8+	 memory	 T	 cells	 in	 healthy	 controls,	43 

supporting	a	link	between	microbial	products	found	in	blood,	immunity	and	schizophrenia.		44 

	 	45 
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Introduction	46 

Microbial	 communities	 in	 and	 on	 the	 human	 body	 represent	 a	 complex	 mixture	 of	47 

eukaryotes,	 bacteria,	 archaea	 and	 viruses.	 In	 recent	 years,	 mounting	 evidence	 has	48 

demonstrated	the	involvement	of	the	microbiome	in	human	health	and	disease.		In	particular,	49 

through	the	‘microbiota-gut-brain-axis’	(1,	2),	the	microbiome	has	been	implicated	in	complex	50 

psychiatric	disorders,	 including	schizophrenia	and	major	depressive	disorder(3-8),	possibly	via	51 

an	impact	on	intestinal	permeability(9).	52 

High-throughput	 sequencing	offers	a	powerful	 culture-independent	approach	 to	 study	53 

the	 underlying	 diversity	 of	 microbial	 communities	 in	 their	 natural	 habitats	 across	 different	54 

human	 tissues	 (10)	 and	 diseases	 (3,	 11-15).	 The	majority	 of	 current	microbiome	 studies	 use	55 

fecal	 samples	 and	 target	 16S	 ribosomal	 RNA	 gene	 sequencing	 (16).	 	With	 the	 availability	 of	56 

comprehensive	 compendia	 of	 reference	 microbial	 genomes	 and	 phylogenetic	 marker	 genes	57 

(17),	 it	 has	 become	 feasible	 to	 use	 non-targeted	 sequencing	 data	 to	 identify	 the	 microbial	58 

species	across	different	human	tissues	and	diseases	in	a	relatively	inexpensive	and	easy	way.			59 

Other	than	in	cases	of	sepsis,	we	currently	 lack	a	comprehensive	understanding	of	the	60 

human	microbiome	 in	 blood,	 as	 blood	 has	 been	 generally	 considered	 a	 sterile	 environment	61 

lacking	proliferating	microbes	 (18).	However,	over	 the	past	 few	decades,	 this	assumption	has	62 

been	 challenged	 (19,	 20),	 and	 the	 presence	 of	 a	 microbiome	 in	 the	 blood	 has	 received	63 

increasing	attention	(21-23).	64 

	 	 To	explore	potential	connections	between	the	microbiome	and	diseases	of	the	brain,	we	65 

performed	 a	 comprehensive	 analysis	 of	 microbial	 products	 detected	 in	 blood	 in	 almost	 two	66 
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hundred	 individuals,	 including	 patients	 with	 schizophrenia,	 bipolar	 disorder	 and	 sporadic	67 

amyotrophic	 lateral	 sclerosis.	 These	 three	 disease	 groups	 represent	 complex	 polygenic	 traits	68 

that	affect	the	central	nervous	system	with	largely	unknown	etiology.	Moreover,	roles	for	the	69 

microbiome	in	all	the	diseases	have	been	previously	hypothesized	(5,	24-26).	We	used	available	70 

high	quality	RNA	sequencing	(RNA-Seq)	reads	from	whole	blood	that	fail	to	map	to	the	human	71 

genome	as	 candidate	microbial	 reads	 for	microbial	 classification.	 	We	observed	 an	 increased	72 

diversity	of	microbial	communities	 in	schizophrenia	patients,	and	we	replicated	this	 finding	 in	73 

an	 independent	 dataset.	 Careful	 analyses,	 including	 the	 use	 of	 positive	 and	 negative	 control	74 

datasets,	 suggest	 that	 these	 detected	 phyla	 represent	 true	 microbial	 communities	 in	 whole	75 

blood	and	are	not	present	in	samples	due	to	contaminants.	With	the	increasing	number	of	RNA-76 

Seq	data	 sets,	 our	 approach	may	have	great	potential	 for	 application	across	different	 tissues	77 

and	disease	types.		78 

	79 

	 	80 
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Materials	and	Methods	81 

A	brief	description	of	Materials	and	Methods	follows	below;	see	Supplementary	Methods	for	82 

the	full	details.		83 

Sample	Description	84 

The	discovery	sample	consists	of	unaffected	controls	(Controls,	n=49)	and	patients	with	three	85 

brain-related	disorders:	schizophrenia	(SCZ,	n=48),	amyotrophic	lateral	sclerosis	(ALS,	n=47)	and	86 

bipolar	disorder	(BPD,	n=48).	The	replication	sample	includes	Controls	(n=88)	and	SCZ	samples	87 

(n=91).	 Sample	 recruitment	 of	 the	 cohorts	 is	 described	 in	 the	 Supplementary	 Methods.	 All	88 

study	methods	were	approved	by	the	institutional	review	board	of	the	University	of	California	89 

at	 Los	 Angeles,	 San	 Francisco	 or	 the	 Medical	 Research	 Ethics	 Committee	 of	 the	 University	90 

Medical	Center	Utrecht	at	The	Netherlands.	All	participants	provided	written	informed	consent.	91 

	92 

Sample	sequencing		93 

For	 the	 discovery	 sample,	 RNA-Seq	 libraries	 were	 prepared	 using	 Illumina’s	 TruSeq	 RNA	 v2	94 

protocol,	 including	 ribo-depletion	 protocol	 (Ribo-Zero	Gold).	 In	 total,	we	 obtained	 6.8	 billion	95 

2x100bp	paired-end	 reads	 for	 the	primary	 study	 (35.3M	±	6.0	paired-end	 reads	per	 sample).	96 

The	 replication	 sample	was	 processed	 at	 the	 same	 core	 facility	 using	 the	 same	 standardized	97 

procedures	 as	 the	 discovery	 sample.	 However,	 the	 RNA-Seq	 libraries	 were	 prepared	 with	98 

poly(A)	 enrichment,	 a	 procedure	 more	 selective	 than	 the	 total	 RNA	 that	 was	 used	 for	 the	99 

discovery	sample.	A	total	of	3.8	billion	reads	were	obtained	(26.3M	±	12.0).		100 
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Sequence	Analysis	101 

We	separated	human	and	non-human	reads,	and	use	the	latter	as	candidate	microbial	reads	for	102 

taxonomic	 profiling	 of	 microbial	 communities.	 To	 identify	 potentially	 microbial	 reads,	 we	103 

developed	 the	 following	pipeline.	First,	we	 filtered	 read	pairs	and	singleton	 reads	mapped	 to	104 

the	 human	 genome	 or	 transcriptome.	 	 Because	 total	 number	 of	 reads	 may	 affect	 microbial	105 

profiling,	we	performed	normalization	by	sub-sampling	to	100,000	reads	for	each	sample.	Next,	106 

we	 filtered	 out	 low-quality	 and	 low-complexity	 reads	 using	 FASTX	 and	 SEQCLEAN	 (see	 urls).	107 

Finally,	 the	 remaining	 reads	 were	 realigned	 to	 the	 human	 references	 using	 the	 Megablast	108 

aligner	(27)	in	order	to	exclude	any	potentially	human	reads.	The	remaining	reads	were	used	as	109 

candidate	microbial	reads	in	subsequent	analyses.	Figure	1	displays	an	overview	of	our	pipeline.		110 

Taxonomic	profiling		111 

To	access	the	assembly	and	richness	of	the	microbiomial	RNA	in	blood,	we	used	phylogenetic	112 

marker	genes	 to	assign	 the	 candidate	microbial	 reads	 to	 the	bacterial	 and	archaeal	 taxa.	We	113 

used	PhyloSift	 (v	1.0.1	with	default	parameters)	 to	perform	 taxonomic	profiling	of	 the	whole	114 

blood	samples	(17).	PhyloSift	makes	use	of	a	set	of	protein	coding	genes	found	to	be	relatively	115 

universal	(i.e.,	present	in	nearly	all	bacterial	and	archaeal	taxa)	and	have	low	variation	in	copy	116 

number	 between	 taxa.	 Homologs	 of	 these	 genes	 in	 new	 sequence	 data	 (e.g.,	 the	117 

transcriptomes	used	here)	 are	 identified	 and	 then	placed	 into	 a	 phylogenetic	 and	 taxonomic	118 

context	by	comparison	to	references	from	sequenced	genomes.	For	our	replication	study,	we	119 

used	MetaPhlAn	 for	microbial	 profiling	 v.1.7.7(28).	MetaPhlAn	was	 run	 in	 2	 stages;	 the	 first	120 

stage	identifies	the	candidate	microbial	reads	(i.e.,	reads	hitting	a	marker)	and	the	second	stage	121 
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profiles	 meta-genomes	 in	 terms	 of	 relative	 abundances.	 We	 used	 MetaPhlAn,	 rather	 than	122 

PhyloSift,	due	to	differences	in	library	preparation	(polyA	enrichment	versus	Ribo-Zero);	there	123 

were	an	 insufficient	number	of	 reads	matching	 the	database	of	 the	marker	genes	curated	by	124 

PhyloSift	for	adequate	microbial	profiling	of	the	replication	sample.		125 

	126 

Estimating	Microbial	diversity	127 

Microbial	 diversity,	 or	 alpha	 diversity,	within	 each	 sample	was	 determined	 using	 the	 inverse	128 

Simpson	index.	This	index	simultaneously	assesses	both	richness	(corresponding	to	the	number	129 

of	distinct	taxa)	and	relative	abundance	of	the	microbial	communities	within	each	sample	(29).	130 

In	particular,	it	enables	effective	differentiation	between	the	microbial	communities	shaped	by	131 

the	dominant	 taxa	and	 the	 communities	with	many	 taxa	with	even	abundances	 (30)	(asbio	R	132 

package).	To	measure	sample-to-sample	dissimilarities	between	microbial	communities,	we	use	133 

Bray-Curtis	 beta	 diversity	 index,	 which	 accounts	 for	 both	 changes	 in	 the	 abundances	 of	 the	134 

shared	taxa	and	for	taxa	uniquely	present	in	one	of	the	samples	(vegan	R	package).	Higher	beta	135 

diversity	indicates	higher	level	of	dissimilarity	between	microbial	communities,	providing	a	link	136 

between	 diversity	 at	 local	 scales	 (alpha	 diversity)	 and	 the	 diversity	 corresponding	 to	 total	137 

microbial	richness	of	the	subject	group	(gamma	diversity	(31)).		138 

	139 

Statistical	analysis	of	microbiome	diversity	140 

To	 test	 for	 differences	 in	 alpha	 diversity	 between	 disease	 groups,	 we	 fit	 an	 analysis	 of	141 

covariance	 (ANCOVA)	 model	 using	 normalized	 values	 of	 alpha,	 including	 sex	 and	 age,	 and	142 
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technical	 covariates	 (RNA	 INtegrity	 value	 (RIN),	 batch,	 flow	 cell	 lane	 and	RNA	 concentration)	143 

into	the	model.	Bonferroni	correction	for	multiple	testing	was	used.	To	determine	the	relative	144 

effect	size	of	alpha	diversity	on	schizophrenia	status,	we	fit	a	logistic	regression	model	including	145 

the	same	covariates	and	measure	reduction	 in	R2	comparing	the	 full	 logistic	 regression	model	146 

versus	 a	 reduced	 model	 with	 alpha	 removed.	 Analysis	 of	 beta	 diversity	 was	 performed	147 

analogously	(see	Supplementary	Methods).		148 

Reference-free	microbiome	analysis		149 

We	 complement	 the	 reference-based	 taxonomic	 analysis	 with	 a	 reference	 independent	150 

analysis.	 We	 use	 EMDeBruijn	 (https://github.com/dkoslicki/EMDeBruijn),	 a	 reference-free	151 

approach	capable	of	quantifying	differences	in	microbiome	composition	between	the	samples.	152 

EMDeBruijn	compresses	the	k-mer	counts	of	two	given	samples	onto	de	Bruijn	graphs	and	then	153 

measures	the	minimal	cost	of	transforming	one	of	these	graphs	into	the	other.		To	determine	154 

overlap	 between	 the	 results	 from	 PhyloSift	 and	 EMdeBruin,	 we	 correlated	 principal	155 

components	of	EMdeBruin	and	PhyloSift	by	Spearman	rank	correlation,	including	all	samples.	156 

	157 

Estimation	of	cell	proportions	in	whole	blood	158 

We	assessed	DNA	methylation	data	from	65	controls	taken	from	our	replication	sample,	and	we	159 

compared	methylation-derived	blood	cell	proportions	estimated	using	Houseman’s	estimation	160 

method	(32,	33)	to	alpha	diversity	after	adjusting	for	age,	gender,	RIN	and	all	technical	161 

parameters.	We	tested	whether	alpha	diversity	levels	are	associated	with	cell	type	abundance	162 

estimates.	More	details	on	the	method,	quality	control	pipeline	of	the	methylation	data	and	163 

statistical	analysis	can	be	found	in	Supplementary	Methods.		164 
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Results		165 

Studying	microbial	RNA	in	blood	166 

To	 study	 the	 composition	 of	 microbial	 RNA	 in	 blood,	 we	 determined	 the	 microbial	 meta-167 

transcriptome	present	 in	 the	blood	of	unaffected	 controls	 (Controls,	 n=49)	 and	patients	with	168 

three	 brain-related	 disorders:	 schizophrenia	 (SCZ,	 n=48),	 amyotrophic	 lateral	 sclerosis	 (ALS,	169 

n=47)	and	bipolar	disorder	(BPD,	n=48)	(Figure	1,	Table	1).		170 

[Figure	1	about	here]	171 

[Table	1	about	here]	172 

	173 

Using	our	filtering	pipeline,	an	average	of	33,546	of	100,000	unmapped	reads	are	identified	as	174 

high	quality,	unique	non-host	reads	and	were	used	as	candidate	microbial	reads	in	our	analyses.	175 

From	 these,	 PhyloSift	was	 able	 to	 assign	 an	 average	of	 1,235	 reads	 (1.24%	±	 0.41%,	mean	 ±	176 

standard	 deviation)	 to	 the	 bacterial	 and	 archaeal	 gene	 families.	 A	 total	 of	 1,880	 taxa	 were	177 

assigned,	with	23	 taxa	 at	 the	phylum	 level	 (Figure	2).	Most	of	 the	 taxa	we	observed	derived	178 

from	bacteria	(relative	genomic	abundance	89.8%	±	7.4%),	and	a	smaller	portion	derived	from	179 

archaea	(relative	genomic	abundance	12.28%	±6.4%).		180 

[Figure	2	about	here]	181 

In	 total,	we	 observed	 23	 distinct	microbial	 phyla	with	 on	 average	 4.1	 ±	 2.0	 phyla	 per	182 

individual.	 The	 large	majority	 of	 taxa	observed	 in	our	 sample	 is	 not	universally	 present	 in	 all	183 

individuals;	 the	single	exception	 is	Proteobacteria,	which	dominates	all	 samples	with	73.4%	±	184 

18.3%	 relative	 abundance	 (Figure	 2	 dark	 green	 color).	 Several	 bacterial	 phyla	 show	 a	 broad	185 
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prevalence	 across	 individuals	 and	 disorders	 (present	 in	 1/4	 of	 the	 samples	 of	 each	 subject	186 

group).	 Those	 phyla	 include	 Proteobacteria,	 Firmicutes	 and	 Cyanobacteria,	 with	 relative	187 

abundance	73.4%	±	18.3%,	14.9	±10.9%,	and	11.0%	±	8.9%	(Table	S2).	This	is	in	line	with	recent	188 

published	 work	 on	 the	 blood	 microbiome	 using	 16S	 targeted	 metagenomic	 sequencing	189 

reporting	 relative	 abundance	 of	 80.4-87.4%	 and	 3.0-6.4%	 for	 Proteobacteria	 and	 Firmicutes,	190 

respectively	 (23).	 	 	 The	 other	 two	 phyla	 identified	 in	 this	 study	 (Actinobacteria	 and	191 

Bacteroidetes)	 were	 also	 detected	 in	 our	 sample	 in	 more	 than	 25	 individuals.	 	 Although	192 

Proteobacteria	 and	 Firmicutes,	 are	 commonly	 associated	 with	 the	 human	 microbiome	 (34),	193 

some	 members	 of	 these	 phyla	 might	 be	 associated	 with	 reagent	 and	 environmental	194 

contaminants	(35,	36).		195 

To	 validate	 our	 pipeline	 and	 investigate	 the	 possibility	 of	 contamination	 introduced	196 

during	RNA	 isolation,	 library	 preparation	 and	 sequencing	 steps,	we	performed	both	 negative	197 

and	positive	control	experiments	(see	Supplementary	Results	and	Methods	for	details).	In	brief:	198 

no	 microbiome	 sequences	 were	 detected	 in	 transcriptome	 data	 in	 lymphopblast	 cell	 lines	199 

(negative	control),	and	we	only	detected	the	Chlamydiae	phylum	in	RNA-Seq	from	cells	infected	200 

with	 Chlamydiae	 (positive	 control).	 We	 examined	 experimental	 procedures	 and	 technical	201 

parameters	 on	 microbial	 composition,	 and	 we	 observed	 no	 link	 between	 the	 presence	 of	202 

microbial	communities	and	possible	confounders.		203 

	 To	compare	the	inferred	microbial	composition	found	in	blood	with	that	in	other	body	204 

sites,	we	used	taxonomic	composition	of	499	meta-genomic	samples	from	Human	Microbiome	205 

Project	(HMP)	obtained	by	MetaPhlAn	or	five	major	body	habitats	(gut,	oral,	airways,	and	skin)	206 

(10).	Of	the	23	phyla	discovered	in	our	sample,	15	were	also	found	in	HMP	samples,	of	which	13	207 
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are	confirmed	by	at	least	ten	samples.	Our	data	suggest	that	the	predominant	phyla	detected	in	208 

blood	are	most	closely	related	to	the	known	oral	and	gut	microbiome	(Table	S2).	Comparing	the	209 

microbial	composition	of	whole	blood	with	the	microbiome	detected	in	atherosclerotic	plaques	210 

(37),	we	 observe	 that	 the	 four	 phyla	 that	 together	make	 up	 for	 >97%	 of	 the	microbiome	 in	211 

plaques	 are	 also	 identified	 in	 our	 sample	 (Firmicutes,	 Bacteroidetes,	 Proteobacteria,	212 

Actinobacteria).		213 

	 Finally,	 it	 should	 be	 noted	 that	 the	 sequencing	 technology	 does	 not	 allow	 for	214 

identification	 of	 the	 origin	 of	 microbial	 RNA.	 That	 is,	 we	 can	 not	 distinguish	 whether	 the	215 

observed	 microbial	 signatures	 in	 blood	 are	 originate	 from	 bacterial	 communities	 actually	216 

present	in	the	blood,	or	whether	the	RNA	crossed	into	the	blood	stream	from	elsewhere.		217 

	218 

Increased	microbial	diversity	in	schizophrenia	samples	219 

To	evaluate	potential	differences	in	microbial	profiles	of	individuals	with	the	different	disorders	220 

(SCZ,	 BPD,	 ALS)	 and	 unaffected	 controls,	 we	 explored	 the	 composition	 and	 richness	 of	 the	221 

microbial	communities	across	the	groups.		222 

We	observed	increased	alpha	diversity	 in	schizophrenia	samples	compared	to	all	other	223 

groups	 (ANCOVA	 P	 <	 0.005	 for	 all	 groups,	 Figure	 3a,	 Table	 2	 and	 Table	 S5,	 Bonferroni	224 

correction).	 These	 differences	 are	 corrected	 for	 covariates	 and	 are	 independent	 of	 potential	225 

confounders,	such	as	experimenter	and	RNA	extraction	run	(Figure	S1	and	S2),	and	they	are	not	226 

the	consequence	of	a	different	number	of	reads	being	detected	as	microbial	 in	schizophrenia	227 

samples	 (see	 Supplementary	 Results).	 No	 significant	 differences	were	 observed	 between	 the	228 
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three	remaining	groups	(BPD,	ALS,	Controls).	 In	our	sample,	alpha	diversity	was	found	to	be	a	229 

significant	predictor	of	schizophrenia	status	and	explained	5.0%	of	the	variation	as	measured	by	230 

reduction	 in	 Nagelkerke’s	 R2	 from	 logistic	 regression.	 We	 observe	 no	 correlation	 between	231 

polygenic	risk	scores	(39)	and	alpha	diversity	in	our	schizophrenia	sample	(n=	32,	Kendall’s	tau=	232 

0.008,	 P	 =	 0.96,	 Supplementary	 Methods).	 We	 also	 did	 not	 observe	 differences	 in	 alpha	233 

diversity	 between	 sexes	 or	 across	 ages,	 nor	 are	 our	 results	 driven	 by	 the	 relatively	 younger	234 

schizophrenia	cohort	 (Supplementary	Results).	Alpha	diversity	at	other	main	 taxonomic	 ranks	235 

yields	a	similar	pattern	of	increased	diversity	in	schizophrenia	(Figure	S3).		236 

The	increased	diversity	observed	in	schizophrenia	patients	may	be	due	to	specific	phyla	237 

characteristic	to	schizophrenia,	or	due	to	a	more	general	increased	microbial	diversity	in	people	238 

affected	by	the	disease.	To	investigate	this,	we	compared	diversity	across	individuals	within	the	239 

schizophrenia	group	to	control	samples.	 	We	compared	beta	diversity	across	pairs	of	samples	240 

with	schizophrenia	and	controls,	resulting	in	three	subject	groups:	SCZ_Controls,	SCZ_SCZ	and	241 

Controls_Controls.	 The	 lowest	 diversity	was	 observed	 in	 the	 Controls_Controls	 group	 (0.43	 ±	242 

0.21),	followed	by	SCZ_SCZ	(0.50	±	0.14),	and	the	highest	beta	diversity	values	were	observed	243 

for	SCZ_Controls	 (0.51	±	0.17)	 (P<	0.05	 for	each	comparison,	by	ANCOVA	after	 correcting	 for	244 

three	tests).	This	result	was	confirmed	by	permanova	(P<0.001)	based	on	1,000	permutations.	245 

Thus,	 the	 observed	 increased	 alpha	 diversity	 in	 schizophrenia	 is	 not	 caused	 by	 a	 particular	246 

microbial	profile,	but	most	 likely	 represents	a	non-specific	overall	 increased	microbial	burden	247 

(see	also	Figure	S4	and	Supplementary	Results).		248 

		 In	 addition	 to	measuring	 individual	microbial	 diversity	 (alpha),	 and	 diversity	 between	249 

individuals	 (beta),	we	measured	 the	 total	 richness	of	 the	microbiome	by	 the	 total	number	of	250 
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distinct	 taxa	of	 the	microbiome	community	observed	within	an	entire	 subject	 group	 (gamma	251 

diversity	 (40)).	 We	 observed	 that	 all	 23	 distinct	 phyla	 are	 observed	 in	 schizophrenia:	252 

gamma(SCZ)=23	compared	to	gamma(Controls)=20,	gamma(ALS)=16	and	gamma(BPD)=18.		253 

	 We	 complemented	 reference-based	 methods	 (PhyloSift	 and	 MetaPhlAn)	 with	254 

EMDeBruijn,	 a	 reference-independent	 method.	 EMDeBruin	 distances	 measured	 between	255 

samples	 correlated	 significantly	 with	 beta	 diversity	 (Spearman	 rank	 P	 <	 2.2e-16,	 rho	 =	 0.37,	256 

including	 SCZ	 and	 Controls).	 Also,	 EMDeBruijn	 PCs	 correlated	 with	 principal	 components	257 

obtained	from	edge	PCA	based	on	the	PhyloSift	 taxonomic	classification	(correlation	between	258 

EMDeBruijn	PC1,	and	PhyloSift	PC1	is	P	=	1.824e-09;	Spearman	rank	correlation	is	rho	=	-0.42;	259 

see	also	Figure	S5).	After	 correcting	covariates,	 the	 first	 three	EMDeBruijn	PCs	are	 significant	260 

predictors	of	schizophrenia	status,	and	jointly	explained	7.1%	of	the	variance	(P<	0.05	for	each	261 

PC).	262 

[Figure	3	about	here]	263 

[Table	2	about	here]	264 

Group	differences	of	individual	phyla		265 

In	 addition	 to	 a	 global	 difference	 between	 schizophrenia	 and	 the	 other	 groups,	 we	 also	266 

investigated	 whether	 there	 are	 particular	 individual	 phyla	 contributing	 to	 the	 differences	267 

between	 schizophrenia	 and	 other	 groups.	 There	 are	 two	 phyla	 detected	 more	 often	 in	268 

schizophrenia	 cases	 versus	 all	 the	 other	 groups:	 Plactomycetes,	 observed	 in	 20	 SCZ	 cases	269 

compared	 to	 3(ALS)	 2(BPD)	 5(Controls)	 (P=	 0.0002	 Fisher’s	 exact	 for	 four	 groups,	 Bonferroni	270 
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corrected	 for	 23	 tests	P=0.0057)	 and	Thermotogae,	observed	 in	20	 SCZ	 cases	 compared	 to	6	271 

ALS,	 3	 BPD	 and	 6	 Controls	 (P=	 0.0006	 Fisher’s	 exact,	 corrected	 P=0.014).	 No	 outliers	 were	272 

observed	for	the	other	groups	(see	Table	S7).		273 

	274 

Replication	275 

We	performed	a	replication	experiment	in	an	independent	case-control	sample:	schizophrenia	276 

(SCZ	n=91)	and	healthy	controls	(Controls	n=88)	(See	Table	S1.D).	MetaPhlAn	was	able	to	assign	277 

5,174	 reads	 (0.089%	±	0.039%,	mean	±	 standard	deviation)	on	average	 to	 the	bacterial	 gene	278 

families.	279 

	 Schizophrenia	samples	showed	increased	alpha	diversity	on	genus	level	(2.73	±	0.77	for	280 

cases,	 versus	 2.32	 ±	 0.57	 for	 controls,	 corrected	 P	 =	 0.003	 Figure	 3b)	 and	 explained	 2.5%	of	281 

variance	 as	 measured	 by	 reduction	 in	 Nagelkerke	 R2,	 thus	 replicating	 our	 main	 finding	 of	282 

increased	diversity	in	schizophrenia.	While	our	original	analysis	was	performed	on	the	phylum	283 

level,	in	our	discovery	sample	we	observe	a	similar	increase	of	diversity	at	the	genus	level	(see	284 

Figure	 S3).	 Similar	 to	 our	 discovery	 cohort,	 we	 observed	 no	 significant	 correlation	 between	285 

alpha	diversity	and	age	or	differences	across	gender.	Beta	diversity	and	EMDeBruijn	analyses	286 

also	 show	 similar,	 though	 not	 identical,	 patterns	 of	 nonspecific	 increased	 diversity	 in	287 

schizophrenia	samples	(Supplementary	Results).		288 

	 		289 

Cell	type	composition	and	diversity	290 
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We	hypothesized	that	differences	in	microbial	diversity	may	be	linked	to	whole	blood	cell	type	291 

composition.	Our	analysis	shows	that	the	proportion	of	one	cell	type,	CD8+	CD28-	CD45RA-	cells,	292 

is	significantly	negatively	correlated	with	alpha	diversity	after	correction	for	all	other	cell-count	293 

estimates	as	estimated	from	whole	blood	DNA	methylation	data	(correlation	=	-0.41,	P=7.3e-4,	294 

n=	65	Controls	from	the	Replication	study,	Figure	S6,	Table	S6).	These	cells	are	T	cells	that	lack	295 

CD8+	 naïve	 cell	markers	 CD28	 and	 CD45RA	 and	 are	 thought	 to	 represent	 a	 subpopulation	 of	296 

CD8+	memory	T	cells	(41,	42).	We	observed	that	low	alpha	diversity	correlates	with	high	levels	297 

of	cell	abundance	of	this	population	of	T	cells.	298 

	299 

	300 

Discussion	301 

We	used	high	throughput	RNA	sequencing	from	whole	blood	to	perform	microbiome	profiling	302 

and	identified	an	increased	diversity	in	schizophrenia	patients.		303 

While	other	studies	of	human	microbiome	using	RNA-Seq	have	been	conducted	(43,	44),	304 

this	 is	 the	 first	 assessing	 the	microbiome	 from	whole	 blood	 by	 using	 unmapped	 non-human	305 

reads.	Despite	the	fact	that	transcripts	are	present	at	much	lower	fractions	than	human	reads,	306 

we	were	able	to	detect	microbial	transcripts	from	bacteria	and	archaea	in	almost	all	samples.	307 

The	microbes	found	in	blood	are	thought	to	be	originating	from	the	gut	as	well	as	oral	cavities	308 

(45,	46),	which	 is	 in	 line	with	our	 finding	 that	 the	microbial	profiles	 found	 in	our	 study	most	309 

closely	 resemble	 the	 gut	 and	 oral	 microbiome	 as	 profiled	 by	 the	 HMP	 (10).	 The	 taxonomic	310 

profile	 of	 the	 cohort	 samples	 suggests	 the	 prevalence	 of	 the	 several	 phyla,	 Proteobacteria,	311 

Firmicutes	and	Cyanobacteria,	across	individuals	and	different	disorders	included	in	our	study.		312 
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This	 is	 in	 line	 with	 a	 recent	 study	 that	 used	 16S	 targeted	 meta-genomic	 sequencing,	 which	313 

reported	 Proteobacteria	 and	 Firmicutes	 among	 the	 most	 abundant	 phyla	 detected	 in	 blood	314 

(23).		315 

Rigorous	 quality	 control	 is	 critically	 important	 for	 any	 high-throughput	 sequencing	316 

project,	especially	 in	the	context	of	studying	the	microbiome	(35).	To	this	end,	we	performed	317 

both	 negative	 and	 positive	 quality	 control	 experiments,	 and	 we	 carefully	 evaluated	 possible	318 

contamination	effects	introduced	during	the	experiments.	Our	results	suggest	that	the	detected	319 

phyla	represent	true	microbial	communities	in	whole	blood	and	are	not	due	to	contaminants.	320 

However,	 it	 should	 be	 noted	 that	 whether	 only	 the	 microbial	 products	 crossed	 into	 the	321 

bloodstream	or	whether	 the	microbes	 themselves	 are	 present	 in	 blood	 cannot	 be	 answered	322 

using	sequencing	techniques.	Future	experiments,	for	example,	using	microscopy,	culturing	or	323 

direct	measures	of	gut	permeability,	may	be	able	to	shed	light	on	this	question.		324 

	325 

The	 most	 striking	 finding	 of	 our	 study	 that	 relates	 to	 diseases	 affecting	 the	 central	326 

nervous	system	is	the	increased	microbial	alpha	diversity	in	schizophrenia	patients	compared	to	327 

controls	 and	 the	 other	 two	 disease	 groups	 (ALS,	 BPD).	 We	 replicate	 this	 finding	 in	 an	328 

independent	 cohort	 of	 schizophrenia	 cases	 and	 controls.	 The	 replication	 experiment,	 while	329 

based	on	different	library	preparation	(Ribo-Zero	versus	Poly(A)),	provides	strong	evidence	for	330 

an	increased	alpha	diversity	of	the	microbiome	detected	in	blood	in	schizophrenia	and	explains	331 

roughly	 5%	 of	 disease	 variation.	 We	 not	 only	 observe	 an	 increased	 individual	 microbial	332 

diversity,	but	also	an	increased	diversity	between	individuals	(Beta	diversity)	with	schizophrenia	333 

compared	to	controls,	rendering	it	unlikely	that	a	single	phylum	or	microbial	profile	is	causing	334 
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the	disease-specific	increase	in	diversity.	Nevertheless,	in	our	study	we	observed	that	two	phyla	335 

in	 particular,	 Planctomycetes	 and	 Thermotogae,	 were	 present	 in	 significantly	 more	336 

schizophrenia	 samples	when	 compared	 to	 the	 other	 groups.	 Interestingly,	 Planctomycetes	 is	337 

group	of	gram-negative	bacteria	closely	related	to	Verrucomicrobia	and	Chlamydiae;	together	338 

these	 comprise	 the	 Planctomycetes-Verrucomicrobia-Chlamydiae	 superphylum	 (47).	 From	339 

peripheral	blood,	 infection	with	Chlamydiaceae	 species	has	been	 reported	 to	be	 increased	 in	340 

schizophrenia	(40%)	compared	to	controls	(7%)	(48).	Since	Chlamydiae	is	one	of	the	taxa	of	the	341 

superphylum,	 it	 is	 possible	 that	 the	 increase	 in	 Planctomycetes	we	 observe	 is	 related	 to	 the	342 

observed	increase	in	Chlamydiaceae	species.	As	the	collection	of	available	reference	genomes	343 

continues	 to	 grow	 and	 improve,	 future	 studies	 are	 needed	 to	 corroborate	 and	 refine	 these	344 

findings.		345 

For	 the	 study	 of	 microbiome	 diversity,	 we	 employed	 reference-based	 methods	346 

(PhyloSift	and	MethPhlAn)	and	the	EMDebruin	method,	a	purely	reference-agnostic	approach.	347 

The	 latter	 showed	 strong	 correspondence	 to	both	 reference-based	methods,	 highlighting	 the	348 

value	 of	 this	 unbiased	 sequence-based	 analysis	 for	 investigating	microbial	 differences	 across	349 

groups.	However,	in	addition	to	differences	in	distribution	of	microbial	transcripts,	EMDebruin	350 

may	capture	variation	of	other,	yet	unknown,	origin.		351 

In	 addition	 to	 our	 observation	 that	microbial	 diversity	 is	more	 generally	 increased	 in	352 

schizophrenia,	our	study	demonstrates	the	value	of	analyzing	non-human	reads	present	in	the	353 

RNA-Seq	data	to	study	the	microbial	composition	of	a	tissue	of	interest	(49,	50).	The	RNA-Seq	354 

approach	avoids	biases	introduced	by	primers	in	targeted	16S	ribosomal	RNA	gene	profiling.	In	355 

addition,	since	mRNA	stability	is	low	in	prokaryotes,	RNA-Seq	might	offer	a	potential	advantage	356 
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of	avoiding	contamination	of	genomic	DNA	by	dead	cells	compared	to	genome	sequencing	(51).		357 

Given	the	many	 large-scale	RNA-Seq	datasets	 that	are	becoming	available,	we	anticipate	 that	358 

high-throughput	meta-transcriptome-based	microbiome	profiling	will	find	broad	applications	as	359 

a	hypothesis-generating	tool	in	studies	across	different	tissues	and	disease	types.		360 

	361 

	 The	increased	microbial	diversity	observed	in	schizophrenia	could	be	part	of	the	disease	362 

etiology	 (i.e.,	 causing	 schizophrenia)	 or	 may	 be	 a	 secondary	 effect	 of	 disease	 status.	 In	 our	363 

sample,	we	observed	no	correlation	between	increased	microbial	diversity	and	genetic	risk	for	364 

schizophrenia	 as	 measured	 by	 polygenic	 risk	 scores	 (52).	 In	 addition,	 it	 is	 remarkable	 that	365 

bipolar	 disorder,	which	 is	 genetically	 and	 clinically	 correlated	 to	 schizophrenia	 (53),	 does	not	366 

show	 a	 similar	 increased	 diversity.	 We	 did	 observe	 a	 strong	 inverse	 correlation	 between	367 

increased	diversity	and	estimated	cell	abundance	of	a	population	of	T-cells	in	healthy	controls.		368 

Even	though	this	finding	is	based	on	indirect	cell	count	measures	using	DNA	methylation	data	369 

(41),	the	significant	correlation	highlights	a	likely	close	connection	between	the	immune	system	370 

and	 the	 blood	 microbiome,	 a	 relationship	 that	 has	 been	 documented	 before	 (54).	 More	371 

extensive	cell	count	measures	and/or	better	markers	of	immune	sensing	of	microbial	products	372 

could	 be	 used	 to	 study	 this	 relationship	 more	 directly.	 In	 the	 absence	 of	 a	 direct	 link	 with	373 

genetic	 susceptibility	 and	 the	 reported	 correlation	with	 the	 immune	 system,	we	 hypothesize	374 

that	the	observed	effect	in	schizophrenia	may	be	mostly	a	consequence	of	disease.	This	may	be	375 

affected	 by	 lifestyle	 and/or	 health	 status	 differences	 of	 schizophrenia	 patients,	 including	376 

smoking,	 treatment	plans,	 (chronic)	 infection,	GI	 status,	 the	use	of	probiotics,	 antibiotics	and	377 

other	drug	use	or	other	environmental	exposures.	Future	targeted	and/or	longitudinal	studies	378 
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with	 larger	 sample	 sizes,	 detailed	 clinical	 phenotypes	 and	 more	 in-depth	 sequencing	 are	379 

needed	to	corroborate	this	hypothesis.	Another	interesting	direction	for	future	work	is	to	study	380 

gut	permeability	in	the	context	of	our	findings	more	directly.	For	example,	how	does	damage	to	381 

the	gut	 (such	as	measured	using	 I-FABP)	 affect	observed	microbial	diversity	 in	blood?	These	382 

studies	 would	 likely	 result	 in	 an	 expanded	 understanding	 of	 the	 functional	 mechanisms	383 

underlying	 the	 connection	 between	 the	 human	 immune	 system,	 microbiome,	 and	 disease	384 

etiology.	In	particular,	we	hope	that	these	future	efforts	will	provide	a	useful	quantitative	and	385 

qualitative	 assessment	 of	 the	 microbiome	 and	 its	 role	 across	 the	 gut-blood	 barrier	 in	 the	386 

context	of	psychiatric	disorders.		387 

	 	388 

	 	389 
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Availability	of	Data	and	Materials:	390 

The	data	discussed	in	this	publication	have	been	deposited	in	NCBI's	Gene	Expression	Omnibus	391 

(55)	 and	 are	 accessible	 through	 GEO	 Series	 accession	 number	 GSE80974	392 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80974).	393 
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Figure	Legends	545 

	546 

Figure	1.	Microbial	profiling	using	RNA-Seq	data	from	whole	blood.	(A)	We	analyzed	a	cohort	of	547 

192	individuals	from	four	subject	groups,	i.e.	Schizophrenia	(SCZ,	n=48),	amyotrophic	lateral	548 

sclerosis	(ALS	n=47),	bipolar	disorder	(BPD	n=48),	unaffected	control	subjects	(Controls	n=49).	549 

(B)	Peripheral	blood	was	collected	for	RNA	collection.	(B)	RNA-Seq	libraries	were	prepared	from	550 

total	RNA	using	ribo-depletion	protocol.	Reads	that	failed	to	map	to	the	human	reference	551 

genome	and	transcriptome	were	sub-sampled	and	further	filtered	to	exclude	low-quality,	low	552 

complexity,	and	remaining	potentially	human	reads.		High	quality,	unique,	non-host	reads	were	553 

used	to	determine	the	taxonomic	composition	and	diversity	of	the	detected	microbiome.	See	554 

also	Table	S1.		555 

	556 

Figure	2.	Relative	abundances	of	microbial	taxa	at	phylum	level.	Phylogenetic	classification	is	557 

performed	using	PhyloSift,	which	is	able	to	assign	the	filtered	candidate	microbial	reads	to	the	558 

microbial	genes	from	23	distinct	taxa	on	the	phylum	level.		559 

	560 

Figure	3.	Increased	diversity	of	microbiome	detected	in	blood	in	schizophrenia	samples.	(A)	561 

Alpha	diversity	per	sample	for	four	subject	groups	(Controls,	ALS,	BPD,	SCZ),	measured	using	562 

the	inverse	Simpson	index	on	the	phylum	level	of	classification.	Schizophrenia	samples	show	563 

increased	diversity	compared	to	all	three	other	groups	(ANCOVA	P	<	0.005	for	all	groups,	after	564 

adjustment	of	covariates,	see	also	Methods,	Table	S5	and	Figure	S3).	(B)	Alpha	diversity	per	565 

sample	of	schizophrenia	cases	and	controls,	measured	using	the	inverse	Simpson	index	on	the	566 
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genus	level	of	classification.	Schizophrenia	samples	show	increased	within-subject	diversity	567 

compared	to	Controls	(P	=	0.003	after	adjustment	of	covariates).	568 
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