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2 

Abstract 29 

Background: Variants in transcription factor binding sites (TFBSs) may have important 30 

regulatory effects, as they have the potential to alter transcription factor (TF) binding 31 

affinities and thereby affecting gene expression. With recent advances in sequencing 32 

technologies the number of variants identified in TFBSs has increased, hence understanding 33 

their role is of significant interest when interpreting next generation sequencing data. Current 34 

methods have two major limitations: they are limited to predicting the functional impact of 35 

single nucleotide variants (SNVs) and often rely on additional experimental data, laborious 36 

and expensive to acquire. We propose a purely bioinformatic method that addresses these two 37 

limitations while providing comparable results. 38 

  39 

Results: Our method uses position weight matrices and a sliding window approach, in order 40 

to account for the sequence context of variants, and scores the consequences of both SNVs 41 

and INDELs in TFBSs. We tested the accuracy of our method in two different ways. Firstly, 42 

we compared it to a recent method based on DNase I hypersensitive sites sequencing (DHS-43 

seq) data designed to predict the effects of SNVs: we found a significant correlation of our 44 

score both with their DHS-seq data and their prediction model. Secondly, we called INDELs 45 

on publicly available DHS-seq data from ENCODE, and found our score to represent well the 46 

experimental data. We concluded that our method is reliable and we used it to describe the 47 

landscape of variation in TFBSs in the human genome, by scoring all variants in the 1000 48 

Genomes Project Phase 3. Surprisingly, we found that most insertions have neutral effects on 49 

binding sites, while deletions, as expected, were found to have the most severe TFBS-scores. 50 

We identified four categories of variants based on their TFBS-scores and tested them for 51 

enrichment of variants classified as pathogenic, benign and protective in ClinVar: we found 52 

that the variants with the most negative TFBS-scores have the most significant enrichment for 53 

pathogenic variants. 54 

 55 
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Conclusions: Our method addresses key shortcomings of currently available bioinformatic 56 

tools in predicting the effects of INDELs in TFBSs, and provides an unprecedented window 57 

into the genome-wide landscape of INDELs, their predicted influences on TF binding, and 58 

potential relevance for human diseases. We thus offer an additional tool to help prioritising 59 

non-coding variants in sequencing studies. 60 

 61 

Keywords 62 

Transcription factor binding sites, insertions, deletions, functional impact, position weight 63 

matrices, enrichment analysis 64 

 65 

Background 66 

 The binding of transcription factors (TFs) to sequence-specific binding sites is crucial 67 

for directing gene expression in a time-dependent and cell-selective manner [1,2], and 68 

variants in TF binding sites (TFBSs) are thus likely to have important regulatory effects. 69 

Variants in transcription factor binding sites have already been associated to various diseases 70 

[3,4,5] including diabetes, [6] retinitis pigmentosa [7] and cancers [8,9]. It has become 71 

increasingly clear that disease- and trait-associated variants are enriched in regions of TF-72 

binding [10,11], and therefore the need for methods that can estimate their functional impact 73 

has grown. The functional importance of TFBSs is supported by their conservation in 74 

evolution and the lower levels of variation across binding sites compared to their flanking 75 

regions [12,13]. Studies have also shown that the binding of TFs to TFBSs has important 76 

roles in chromatin remodelling [14].  77 

The increased availability of next-generation sequencing (NGS) data increases the 78 

number of variants discovered in TFBSs: understanding the role of these novel and rare 79 

variants is fundamental to the analysis and interpretation of NGS data. However, while it is 80 

relatively straightforward to predict the biological effects of variants in the protein-coding 81 

regions, it is much harder to interpret their effects when they are positioned in non-coding 82 

regions. Available methods depend on multiple sources of data, expensive and laborious to 83 
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acquire (e.g. data on DNase I sensitivity or histone modifications), and yet are limited to 84 

predicting the effects of single nucleotide variants SNVs [15-17]. 85 

 One method that is often used to predict the probability of a TF binding to a specific 86 

sequence is based on position weight matrices (PWMs). PWMs represent the optimal binding 87 

sequence(s) of TFs, by weighting the importance for TF binding of each of the four bases at 88 

every position in a given sequence. Such matrices have been derived for numerous TFs using 89 

chromatin immuno-precipitation sequencing (ChiP-seq) [18]. Additive models using these 90 

have been shown to accurately predict TF binding in vitro [19] and TFBSs with “weak” 91 

PWM-scores generally show the highest levels of individual variation [13]. Despite the 92 

potential of PWMs to calculate a score for any type of variant overlapping a TFBS, they have 93 

only been used to predict the impact of SNVs and not the one of insertions/deletions 94 

(INDELs). This is likely due to the complexities in calling and interpreting INDELs. 95 

 Two key methods, based on DNase I hypersensitive sites sequencing data (DHS-seq), 96 

emerged in the recent literature to infer the importance of variants in TFBSs [16,17]: the first 97 

uses sequencing data in the context of DNase I hypersensitivity, creating a predictive model 98 

with support vector machines (SVM) [16], while the second assesses the imbalance of 99 

sequence reads covering one or the other allele in heterozygous sites [17]. Despite the 100 

capability of the two methods to predict the consequences of variants on TF binding, both 101 

methods are limited to predicting the consequences of SNVs. 102 

 Hence a gap emerges in our capability to assess the impact of INDELs in such 103 

important regulatory regions: studies suggest that INDELs are likely to play a significant role 104 

in genome variability in health and disease [20,21], and they might be expected to introduce 105 

more severe disruptions on TFBSs than SNVs. Currently, the ability to estimate the biological 106 

role of an INDEL located outside of genes is limited to two approaches: 1) calculating the 107 

severity of the variant based on the amount of information available on the genomic region, 108 

rather than the actual change introduced to the sequence [15]; 2) correlating the INDEL to 109 

gene expression data, thereby identifying eQTLs [22].  110 
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 In this investigation, we address the above mentioned gap in the understanding of 111 

how INDELs affect TF binding, by developing a method for scoring all SNVs and INDELs 112 

called in 2,504 individuals and 26 populations from the 1000 Genomes Project Phase 3 (~84 113 

million variants) [23]. By investigating such a comprehensive resource of human genetic 114 

variation, we ensure comparable results with studies on SNVs based on experimental data and 115 

additionally provide an unprecedented window into the genome-wide landscape of INDELs 116 

and their predicted influences on TF binding. Our method provides a way to estimate the 117 

effect of variants on TF-binding that works independently of, but is comparable to, DHS-seq 118 

data for both SNVs and INDELs. 119 

 120 

Results: 121 

 We focused our analysis on SNVs and INDELs from the 1000 Genomes Project 122 

Phase 3, combinedly accounting for about 99.4 % of the available variants in the dataset. 123 

High confidence TFBSs have been identified through the ENSEMBL API [24,25]. We have 124 

limited our analysis to TFBSs that have been mapped using a combination of ChIP-seq peaks 125 

and position weight matrices, to ensure the use of sites verified to bind TFs.  126 

  We first analysed how many of the ~84 million variants overlap known TFBSs 127 

(Table 1). Approximately 1.2 ‰ of the variants overlap at least one TFBS, 0.3 ‰ overlap at 128 

least two TFBSs while 0.1 ‰ of the variants overlap three or more TFBSs. It is well known 129 

that TFBSs for different factors overlap, and these sites, enriched in TFBSs, are termed TF 130 

hubs [26]. It has been shown that relative levels of binding of co-occupying TFs to shared 131 

targets correlate with specific functions of these factors; furthermore TF hubs have been 132 

suggested to be particularly sensitive to genetic variation, as genetic polymorphisms have 133 

been found to destabilize TF occupancy across entire hubs [26, 27]. To ensure that most of 134 

the impact of variants on TF hubs was captured, TF binding scores were calculated for each 135 

TFBS overlapping a variant. 136 

 137 
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Variant Type 
Genome 
Count 

Genome 
Proportion 

Genome 
Median 
MAF 

TFBS 
Count 

TFBS 
Proportion 

TFBS 
Median 
MAF 

Single Nucleotide Variant 81102787 0.96 0.00040 98062 0.95 0.00040 

Deletion 2070985 0.02 0.0046 2539 0.02 0.0032 

Insertion 1124563 0.01 0.012 1093 0.01 0.0050 

Table 1: Distribution of SNVs, insertions and deletions in the entire 1000 Genomes Project 138 

Phase 3 and among variants overlapping at least one TFBS annotated in the Ensembl 139 

Regulatory Build. Genome Count: The total number of SNVs, insertions and deletions in the 140 

1000 Genomes Project Phase 3. Genome Proportion: The proportion of SNVs, insertions and 141 

deletions of all variants in the 1000 Genomes Project Phase 3. Genome Median MAF: The 142 

median minor allele frequency (MAF) of SNVs, insertions and deletions across all 143 

populations in the 1000 Genomes Project Phase 3. TFBS Count: The number of SNVs, 144 

insertions and deletions in the 1000 Genomes Project Phase 3 that overlap at least one TFBS 145 

in the Ensembl Regulatory Build. TFBS Proportion: The proportion of SNVs, insertions and 146 

deletions of all variants in 1000 Genomes Project Phase 3 overlapping at least one TFBS. 147 

TFBS Median MAF: The median MAF of SNVs, insertions and deletions overlapping at least 148 

one TFBS. 149 

 150 

 We next compared the minor allele frequency (MAF) of all variants in the dataset to 151 

those overlapping TFBSs, by variant type: as expected, the MAF was found to be 152 

significantly lower for variants overlapping TFBSs for all three variant types (Table 1, Mann-153 

Whitney test p-values for SNPs: 2.2x10-16, deletions: 2.9x10-10, insertions: 8.0x10-14). This 154 

finding is in accordance with previously mentioned studies on TFBSs indicating purifying 155 

selection [13, 28].  156 

 In order to improve our understanding of INDELs in this context, we developed a 157 

new method that uses PWMs: our method computes the effects of variants on TF binding by 158 

taking the sequence context of TFBSs into account. We introduced a sliding-window 159 

approach in our method, in order to capture new potential TFBSs originating as result of the 160 

variation. This approach makes it possible to estimate the effect of both SNVs and INDELs, 161 

overcoming most of the difficulties in evaluating the impact of deletions but also of 162 
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insertions, where new sequence is introduced in the site (Figure 1). The effect is calculated as 163 

a difference between two PWM-scores that each either represents the predicted binding 164 

affinity to the TFBS of the minor allele or to that of the major allele. We thus calculated a 165 

TFBS-score that could be used to directionally estimate allelic imbalances in TF binding 166 

(Figure 1). Negative scores predict that the minor allele reduces the strength of TF binding to 167 

the site, while positive scores predict a stronger binding. TFBS-scores of zero predict no 168 

differences in TF binding between the sites containing either of the two alleles.    169 

 170 

Figure 1: Examples of how TFBS-scores were calculated for SNVs, insertions and deletions. 171 

When estimating the PWM-score at the alternative allele, depending on the variation type, 172 

several new alternative sequences are formed that have the potential to form a new TFBSs. To 173 

ensure that these new TFBSs were captured, PWM-scores for all sequences immediately 174 

surrounding the original binding site were calculated using a sliding window approach 175 

(underlined sequences), and the surrounding sequence with the highest PWM-score was 176 

chosen as the alternative sequence (scores marked in bold). The TFBS-score was then 177 

calculated by subtracting the PWM-score at the major allele from the PWM-score at the 178 

minor allele. In all three examples above it was assumed that the major allele is the reference 179 

sequence and the minor allele the alternative sequence, though this is not always the case. 180 

 181 

 In order to thoroughly verify the consistency of our newly developed method with 182 

those investigating SNVs and based on experimental data, we used two different approaches. 183 

First, we extensively compared the TFBS-score of all our annotated SNVs with the 184 

information provided by Maurano et al. on allelic imbalanced DHS-seq reads [17]. We found 185 

that our score negatively correlates both with the percentage of reference reads across 186 

heterozygous samples (Supplementary figure 1, Spearman’s rank correlation, p-value < 187 

2.2x10-16), and with their final prediction score using additional experimental data 188 

(Supplementary figure 2, Spearman’s rank correlation, p-value: < 2.2x10-16). Since the 189 

available experimental data contained only information about the SNVs, we called INDELs 190 
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on 178 samples from the ENCODE dataset (Supplementary material 3), and applied the same 191 

method as Maurano et al., in order to measure the allelic imbalance of reads containing 192 

INDELs overlapping TFBSs. While confirming the difficulties in calling INDELs on DHS-193 

seq data, which explain the lack of information from previous studies, we found a clear trend 194 

between our score and the allelic imbalance (Supplementary figure 3+4 and Supplementary 195 

Materials 3.3 for more details). We therefore concluded that our algorithm provides a way to 196 

predict the effects of INDELs on TFBSs, consistent with experimental data, but easier to 197 

compute on most datasets. 198 

 TFBS-scores were calculated for each of the 142,234 TFBSs overlapping a SNV, 199 

insertion or deletion. For each TFBS-score only a single variant was taken into account. The 200 

GERP conservation score, also available through Ensembl, was used to estimate the level of 201 

conservation for each TFBS, and for positively conserved TFBSs the TFBS-scores were 202 

found to be significantly lower than for negatively conserved TFBSs (Mann-Whitney, p-203 

value: >2.2x10-16). The distributions of TFBS-scores differed significantly between the three 204 

variant types (Figure 2; Kruskal–Wallis, p-value: >2.2x10-16). All three distributions were 205 

found to have the highest densities around zero, predicting that the majority of variants have 206 

little or no effect on the TF binding affinity. This finding is in agreement with experimental 207 

studies suggesting that only a minority of TFBSs containing heterozygous variants show 208 

significant allele-specific TF binding [29,30]. This trend was surprisingly the most 209 

pronounced for insertions, whereas deletions, as expected, on average had the most severe 210 

effects. The three distributions were compared pairwise to estimate their similarity, and the 211 

distribution of TFBS-scores for insertions was found to have the most distinct profile (Mann-212 

Whitney, p-values for SNVs vs Insertions: 1.58x10-98, SNVs vs deletions: 8.39x10-6, 213 

insertions vs deletions: 8.7x10-62).  214 

 215 

Figure 2: Violin plot of the TFBS-score distributions for each of the 142,234 TFBSs 216 

overlapping a SNV, insertion or deletion. The x-axis indicates the TFBS-score density 217 

mirrored around zero. The y-axis indicates the TFBS-score.  218 
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 219 

 Next we investigated how the position of variants within TFBSs relates to the TFBS-220 

score (Figure 3A). For all three variant types on average the TFBS-scores were the closest to 221 

zero in the start and in the end of TFBSs, whereas the scores were the most negative in the 222 

centre of the sites, more clearly for INDELs. This trend inversely correlated with the average 223 

information content across the 63 TFBSs investigated, for which the average information 224 

content was found to be the highest in the centre of the sites and the lowest at the edges 225 

(Supplementary figure 7). As previously seen (Figure 2), deletions on average resulted in the 226 

most negative scores, whereas insertions resulted in the least negative. Next we calculated the 227 

average MAF for the variants across the TFBSs (Figure 3B). The overall MAF of variants 228 

seemed to be almost evenly distributed across the TFBSs for all three variant types. We 229 

therefore investigated the relationship between the MAF and the TFBS-score: for all three 230 

variant types the least common variants were on average found to have the most severe 231 

TFBS-scores (Figure 4), and a significant correlation between the two were found for each of 232 

the three variant types (Spearman’s rank correlation, p-values for SNVs: p-value < 2.2x10-16, 233 

Insertions: 8.46x10-13 and Deletions: < 2.2x10-16). 234 

 235 

 236 

Figure 3: The relationship between variant position and both TFBS-scores (A) and MAF (B). 237 

Deletions were represented as SNVs at each position in the site.  238 

 239 

Figure 4: TFBS-score vs MAF per variant type. 240 

 241 

 To understand the clinical relevance of the TFBS-scores, the overall TFBS-score 242 

distribution was divided into four categories based on the two major local minima of the 243 

distribution, and an interval around zero was identified using the local minimum closest to 244 

zero (Figure 5A; from left to right): Category 1) Variants with very negative TFBS-scores, 245 

Category 2) with moderately negative scores, Category 3) with scores around zero, Category 246 
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4) and variants with positive scores. Each of the four categories was tested for enrichment in 247 

clinically relevant variants according to the categories described in the ClinVar database [31].  248 

 Category 1, with the most negative scores, was the one most significantly enriched in 249 

pathogenic variants (Figure 5B; Category 1, p-value: 4.1x10-6), suggesting that variants with 250 

larger magnitude in reduction of TF binding affinity are more likely to be pathogenic. 251 

Category 2, with negative TFBS-scores, is significantly enriched in both pathogenic (p-value: 252 

4.8x10-3) and benign (p-value: 2.1x10-10) variants (Figure 5B; Category 2). In category 3 there 253 

was significant enrichment for more variant classes: pathogenic (p-value: 1.1x10-2), benign 254 

(p-value: 1.22x10-3) and protective (p-value: 5.4x10-7) variants (Figure 5B; Category 3). 255 

Finally, category 4 was significantly enriched only in benign variants (Figure 5B; Category 4, 256 

p-value: 7.1x10-2). 257 

 258 

Figure 5: The variants were divided into four categories based on their TFBS-score 259 

distributions, and each category was tested for enrichment in clinically relevant variants from 260 

the ClinVar database. A) The overall TFBS-score distribution divided by three vertical blue 261 

lines into four categories based on the two major local minima of the distribution, and an 262 

interval around zero was identified using the local minimum closest to zero. From left to right 263 

the categories are: Category 1 (C1): Very Negative, Category 2 (C2): Moderately Negative, 264 

Category 3 (C3): Around Zero, Category 4 (C4): Positive. B) The results from the enrichment 265 

analysis with –log10 of the p-values on the y-axis and the ClinVar categories on the x-axis. 266 

The dotted lines represent a significance level of 0.05 Bonferroni adjusted. 267 

  268 

 To better understand the differences in variation between the different TFBSs we 269 

calculated the average TFBS-score for each (Figure 6). The score profiles of the different 270 

TFBSs were quite diverse: interestingly, the one with the lowest average score binds GATA2, 271 

while the one with the highest average scores binds CTCF. Both TFs have important roles, 272 

and have been associated to various pathologies. 273 

 274 
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Figure 6: Average TFBS-scores for each TFBS with the whiskers indicating the standard 275 

deviation. 276 

 277 

Discussion 278 

  In this paper we address a significant gap in the literature, as well as a shortcoming 279 

of currently available bioinformatic tools to investigate transcription factor binding sites. The 280 

lack of in-depth information on the role of insertions/deletions on TFBSs is a key limitation in 281 

our understanding of genetic variants located in non-coding regions. The reason for this gap is 282 

mainly due to difficulties in calling INDELs from Chip-Seq or DHS-Seq data: sequence 283 

occupancy experiments still rely on short reads for identifying TF footprints [32], and short 284 

reads by definition provide a low-quality material to call insertions/deletions. Therefore, 285 

bioinformatic tools that can be used on any genotype dataset, without the need of additional 286 

experiments, can be a great alternative to estimate the effects of variants in TFBSs. We 287 

validated our approach, by checking the correlation of our annotation with those available for 288 

SNVs calculated using other methods [17]. Additionally, we have applied the same thorough 289 

approach of previous studies [17] in order to measure the allelic imbalance at sites where 290 

insertion/deletions overlap TFBSs, by calling insertion/deletions from raw data of a large 291 

number of individuals available in ENCODE, and correlated our results with DHS-Seq data 292 

also for INDELs. We can thus conclude that our method provides a reliable measure to 293 

investigate the effect of genetic variation on TF binding across the genome. 294 

 We used this newly developed approach to extensively characterise all SNVs and 295 

INDELs from 1000 Genome phase 3 and provide a comprehensive description of all known 296 

INDELs located in TFBSs. The picture we provide with this approach confirms some of the 297 

major findings for single nucleotide variants in these regions: the average MAF of INDELs 298 

overlapping TFBSs has been found significantly lower than the average MAF of all INDELs 299 

in the dataset. Similarly, the TFBS-score has been found to be significantly lower for highly 300 

conserved TFBSs compared to less conserved TFBSs, i.e. the variability of the sequence 301 

being consistent with a locus under evolutionary constraints. It is also known that flanking 302 
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regions of TFBSs harbour higher variation than the central regions, where the information 303 

content is higher because the sequence is likely more important for the protein recognition 304 

and binding. We confirm these characteristics also for INDELs by using our score: 305 

insertions/deletions in the edge regions of binding sites have higher scores than those located 306 

in the centre of TFBSs, indicating that INDELs in edge regions of TFBSs are less disruptive 307 

to binding while INDELs at the centre of TFBSs are more likely to reduce the strength of TF 308 

binding. 309 

 Our findings for deletions are in line with the expectation that these variants 310 

introduce more severe disruptions of the binding sequences than SNVs; however, insertions 311 

seem on average to display less severe consequences than SNVs. We might speculate that, 312 

while deletions ablate part of the binding site, insertions introduce an additional sequence, by 313 

splitting but not removing the original binding sequences. This different action, and potential 314 

of creating alternative binding sequences, as we verify with our sliding window approach (see 315 

methods and Figure 1), might account for the less severe consequences we observed in the 316 

binding affinities of TFs. 317 

 A major reason for devoting time to understanding better the biological consequences 318 

of genetic variants is the need for effective tools to interpret the increasing amount of 319 

sequence data available in clinical settings and in precision medicine initiatives. For this 320 

reason we analysed the distribution of the scores calculated with our method, using the 321 

information available in ClinVar, a progressively more important resource for the annotation 322 

of variants with potential for clinical relevance. In the current version of the database, the 323 

variants are flagged as pathogenic, likely pathogenic, benign, likely benign and protective, 324 

depending on the amount of support for the pathological consequences of each genetic variant 325 

[31]. We tested for enrichment of these variant groups in four categories of TFBS-scores and 326 

our results confirmed the hypothesis that variants with the most negative scores, i.e. those 327 

most severely reducing binding affinity, are the most enriched in pathogenic variants. This is 328 

relative straightforward to interpret: those variants that severely disrupt binding sites, 329 
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especially when those are evolutionary conserved, are most likely to produce a negative effect 330 

and therefore be pathogenic. 331 

 On the other hand, both categories with moderately negative (Category 2) and 332 

positive scores (Category 4) show a positive enrichment in benign variants (Figure 5). We 333 

might speculate that in both cases the effect of the changes to the binding affinity does not 334 

have sufficient magnitude to be either damaging or protective: indeed, variants in category 2 335 

are only slightly reducing the binding affinity, while variants in category 4 are only slightly 336 

increasing the binding affinity.  337 

 More surprisingly, variants with scores around zero (Category 3) are the only group 338 

significantly enriched in protective variants, but also a group enriched both in pathogenic and 339 

benign variants, to a lower extent. These mixed enrichment results for variants with scores 340 

around zero are less straightforward to decipher. A closer look at the variants in this group 341 

reveals the presence of quite heterogeneous variation, and the clinical importance seems to be 342 

independent from the effect on TF binding. In this category we found, for example, a SNV 343 

(rs2302615) which is classified as “protective”: it overlaps three TF binding sequences and its 344 

TFBS-scores range between -0.0012 and 0.0151, indicating no large effect on TF binding; 345 

however, rs2302615 is associated with reduction in adenoma recurrence when the subjects are 346 

treated with aspirin [33], which is the reason for its classification. On the other hand, in this 347 

category we also find variants like rs72553883, which also has no influence on TF binding 348 

(TFBS-score = 0.0153), but is reported to be a missense variant causing severe impairment in 349 

B-cells function, and therefore is associated to common variable immunodeficiency [34]. The 350 

variant is annotated as “pathogenic”, but its biological consequence is clearly related to the 351 

amino acid change, rather than to the effect on the overlapping TFBS. The mixed enrichment 352 

results we observed for this category seem therefore due to reasons independent of the effect 353 

on the TF binding. 354 

 The scoring method we present here also allows us to look at transcription factors 355 

from a different perspective: we show that we can describe a characteristic profile for each 356 

TF, based on the scores of the variants affecting its binding sites across the whole genome. 357 
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Interestingly, if we look at those profiles, we find that CTCF is the TFBS with the highest 358 

average score, and GATA2 is the one with the lowest. They both play a pivotal role in gene 359 

regulation. CTCF is a transcription factor that once bound to DNA, can function as a 360 

transcriptional insulator, repressor or activator. A number of mutations in the CTCF gene 361 

have been associated with mental retardation [35]. GATA2 is a transcription factor expressed 362 

in hematopoietic progenitors, including early erythroid cells, mast cells and megakaryocytes. 363 

Mutations in the GATA2 gene have been associated with both Immunodeficiency 21 and 364 

Chronic Myeloid Leukemia [36,37]. 365 

 366 

Conclusions 367 

With this work we introduce a way to estimate the effects of variants on TF binding, 368 

independently of the availability of additional experimental data for the genetic dataset to be 369 

analysed. Our method handles both SNVs and INDELs, thus filling an important gap in the 370 

interpretation of the effect of insertion/deletions in TFBSs. The enrichment analysis, finally, 371 

shows how our score can be used in order to further prioritise variants in sequencing studies. 372 

 373 

Materials and methods 374 

Data sources 375 

 Human variation data, including allele frequencies, are from the 1000 Genomes 376 

Project Phase 3 release based on the 20130502 sequence freeze and alignments with file date 377 

18th of February 2015 [23]. TFBSs, PWMs and genetic annotations were detected querying 378 

the Ensembl API version 75, assembly GRCh37 [25] using a custom script. The following 379 

four databases were installed locally for the queries: homo_sapiens_core_75_37, 380 

homo_sapiens_funcgen_75_37, homo_sapiens_variation_75_37 and ensembl_compara_75. 381 

Variants annotated with clinically relevance were retrieved from the variant summary of the 382 

ClinVar database May 25th [31]. Phenotypes and ontologies were retrieved using the R 383 

package biomaRt [38]. Analyses were performed using BASH and R. 384 

 385 
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Motif selection for analysis 386 

 The motifs with overlapping variants were detected querying the Ensembl functional 387 

genomics database. In the database putative TFBSs live up to the two criteria; there has to be 388 

both ChIP-seq data and publicly available PWMs available. For each variant all overlapping 389 

MotifFeatures were detected. MotifFeatures are objects representing the genomic location of 390 

a sequence motif. If the same motif was detected twice for a variant, only the motif with the 391 

most negative TFBS-score was selected. For each MotifFeature information was available on 392 

what TF bound the motif and what PWM was associated with it. 393 

 394 

Transcription factor binding site scores 395 

 For each TFBS with an overlapping variant a TFBS-score was calculated. The score 396 

predicts the difference in TF binding affinity between the TFBS where the major allele is 397 

present and the TFBS with the minor allele. The TFBS-score was calculated in two steps 398 

using PWMs available through the Ensembl API. First, PWM-scores, predicting the 399 

individual TFBS binding affinities, were calculated for the major and the minor allele. 400 

Second, the PWM-score of the major allele was subtracted from the PWM-score of the minor 401 

allele. 402 

 403 

��������	 
 ��
����	������ ���	�	� �  ��
����	������ ���	�	� 

 404 

 The PWM-scores were calculated using a method available through the Ensembl API 405 

called “Bio::EnsEMBL::Funcgen::BindingMatrix::relative_affinity()”. This method calculates 406 

the binding affinity of a given sequence relative to the optimal site for the matrix, considering 407 

a random background, where the probability of each of the four bases was considered to be 408 

equal at each position. The method returns scores between 0 and 1, where 1 means that the 409 

sequence the score is calculated for is the optimal binding sequence. Depending on the 410 

variation type (SNVs, insertions or deletions), several new sequences were formed at the 411 

minor allele with the potential to form a new TFBS. To account for this issue, PWM-scores 412 
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for all sequences immediately surrounding the original binding site were calculated for SNVs, 413 

insertions and deletions. For insertions a total of TFBS length + insertion length + 1 414 

sequences were scanned for a new TFBS, while for deletions a total of TFBS length + 1 415 

sequences were scanned and for SNVs a total of TFBS length + 2 sequences. The surrounding 416 

sequence with the highest PWM score was then chosen to represent TF binding at the minor 417 

allele. 418 

 419 

Filtering of ClinVar data 420 

 ClinVar contains reports of the relationships among human variations and phenotypes 421 

including supporting evidence. We used the variants with rs-numbers together with their 422 

genomic position relative to the GRCh37 reference. Variants annotated both with benign and 423 

pathogenic effects were flagged as conflicting data. All variants annotated with uncertain 424 

significance were also flagged as conflicting data no matter the additional variant annotations. 425 

In order to be conservative variants that were flagged as both being likely benign and benign 426 

were flagged as likely benign, and the same approach was used to flag variants that were both 427 

annotated as likely pathogenic and pathogenic. Variants with only one annotation were 428 

flagged accordingly. 429 

 430 

Enrichment analysis 431 

 We used a hypergeometric test to identify which groups of clinically relevant 432 

variants, as classified in ClinVar, were over-represented in the four categories of variants we 433 

identified in our TFBS-score distribution. The variant population used for the tests included 434 

all variants from the 1000 Genomes Project Phase 3 potentially overlapping variants 435 

annotated in the ClinVar database. That is all SNVs, insertions and deletions in the 1000 436 

Genomes phase 3 with rs-numbers. The variants analysed for enrichment included all SNVs, 437 

insertions and deletions annotated in the ClinVar database with rs-numbers. 438 

 439 

Availability of data and materials 440 
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Script used to annotated The 1000 Genomes Project Phase 3: 441 

 Project name: TFBS Annotator 442 

 Project home page: https://github.com/esbeneickhardt/TFBSAnnotator 443 

 Operating system(s): Platform independent 444 

 Programming language: Perl 445 

 Other requirements: ENSEMBL API version 75 446 

 License: MIT modified 447 

 Any restrictions to use by non-academics: licence needed 448 

 449 

Dataset with all TFBSs in the ENSEMBL databases that overlap a variant in the 1000 450 

Genomes Phase 3: 451 

 https://github.com/esbeneickhardt/TFBSAnnotator/tree/master/Data/TFBSDataset.txt.452 

zip 453 

 454 

Dataset with all TFBSs in the ENSEMBL databases that overlap a variant called in the public 455 

DHS data (GSE26328). 456 

 https://github.com/esbeneickhardt/TFBSAnnotator/tree/master/Data/DHSDataset.txt 457 

 458 

Abbreviations 459 

ChiP: chromatin immunoprecipitation 460 

DHS: DNase I hypersensitive site 461 

eQTL: expression quantitative trait loci  462 

GWAS: genome-wide association study 463 

INDEL: insertion/deletion 464 

MAF: minor allele frequency 465 

PWM: position weight matrix 466 

SNV: single nucleotide variant 467 

SVM: support vector machines 468 
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TF: transcription factor 469 

TFBS: transcription factor binding site 470 
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SNV
GGATCACGTGTGCCTG
GGATCACTTGTGCCTG

Ref sequence:
Alt sequence:

Ref score:
0.917

Alt score:
0.067
0.268
0.315
0.210
0.814
0.204
0.716
0.067
0.334

0.814
 - 0.917

 - 0.103

Ref motif:
GGATCACGTGTGCCT

Alt motifs:
GGATCACTTGTGCCT
GGATCACTTGTGCCT
GGATCACTTGTGCCT
GGATCACTTGTGCCT
GGATCACTTGTGCCT
GGATCACTTGTGCCT
GGATCACTTGTGCCT
GGATCACTTGTGCCT
GGATCACTTGTGCCT

Minor allele:
Major allele:

TFBS-score:

Insertion
GGATCACGTGTGCCTG
GGATCACGTTGTGCCTG

Ref sequence:
Alt sequence:

Ref score:
0.917

Alt score:
0.296
0.473
0.091
0.841
0.340
0.363
0.558
0.067
0.334

0.841
 - 0.917

 - 0.076

Ref motif:
GGATCACGTGTGCCTG

Alt motifs:
GATCACGTTGTGCCT
GATCACGTTGTGCCT
GATCACGTTGTGCCT
GATCACGTTGTGCCT
GATCACGTTGTGCCT
GATCACGTTGTGCCT
GATCACGTTGTGCCT
GATCACGTTGTGCCT
GATCACGTTGTGCCT

Minor allele:
Major allele:

TFBS-score:

Deletion
GGATCACGTGTGCCTG
GGATCACTGTGCCTG

Ref sequence:
Alt sequence:

Ref score:
0.917

Alt score:
0.296
0.502
0.250
0.751
0.473
0.225
0.334
0.120

0.751
 - 0.917

 - 0.166

Ref motif:
GGATCACGTGTGCCTG

Alt motifs:
GGATCACTGTGCCTG
GGATCACTGTGCCTG
GGATCACTGTGCCTG
GGATCACTGTGCCTG
GGATCACTGTGCCTG
GGATCACTGTGCCTG
GGATCACTGTGCCTG
GGATCACTGTGCCTG

Minor allele:
Major allele:

TFBS-score:

>

>
>

>
>

>
>

>
>
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