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1  Abstract 

Knowledge of genetic cause in neurodevelopmental disorders can highlight 

molecular and cellular processes critical for typical development. Furthermore, 

the relative homogeneity of neurodevelopmental disorders of known genetic 

origin allows the researcher to establish the subsequent neurobiological 

processes that mediate cognitive and behavioural outcomes. The current study 

investigated white matter structural connectivity in a group of individuals with 

intellectual disability due to mutations in ZDHHC9. In addition to shared cause of 

cognitive impairment, these individuals have a shared cognitive profile, 

involving oro-motor control difficulties and expressive language impairment. 

Analysis of structural network properties using graph theory measures showed 

global reductions in mean clustering coefficient and efficiency in the ZDHHC9 

group, with maximal differences in frontal and parietal areas. Regional variation 

in clustering coefficient and local efficiency across cortical regions in cases and 

controls were significantly associated with known pattern of expression of 

ZDHHC9 in the normal adult human brain. The results demonstrate that a 

mutation in a single gene impacts upon white matter organisation across the 

whole-brain, but also shows regionally specific effects, according to variation in 

gene expression. Furthermore, these regionally specific patterns may link to 

specific developmental mechanisms, and correspond to specific cognitive 

deficits.  
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2  Introduction 

Many cognitive and psychiatric disorders are highly heritable (Lee 2013, 

Sullivan 2012, Haworth 2009). In some cases, genetic risk factors have been 

identified, but understanding the neural mechanisms linking altered gene 

transcripts to cognitive or behavioural outcomes remains challenging. One 

reason for this is the heterogenous nature of the vast majority of these disorders, 

which presents a major challenge to establishing the neural endophenotypes 

that mediate any gene-cognition relationships; any group defined on the basis of 

a cognitive impairment or behavioural difficulty will likely contain individuals 

with different genetic and neural causes, making it difficult to identify 

mechanisms at the group level. One promising approach has been to study brain 

organisation in groups of individuals that have rare but clearly defined genetic 

causes of those impairments (Meyer-Lindenberg 2009, Griffa 2013). These 

groups, whilst necessarily small in size, have an homogenous aetiology. Studying 

these groups can therefore provide a powerful means for identifying the 

neurobiological pathways that potentially mediate cognitive and behavioural 

phenotypes in the wider population. For instance, the study of a rare familial 

speech disorder (KE family, FOXP2 mutation) highlighted the importance of 

striatal networks for emergent higher-order language skills (Watkins 2011, 

Liégeois 2011). 

However, studies of brain differences have mainly focussed on focal 

differences in brain areas or white matter tracts that show the most pronounced 

group differences. This is true of both genetically defined group comparisons 

and case-control designs more generally. However, genetic differences are likely 

to have wide-ranging effects on the organisation of neural ensembles across 

many areas. To explore this fully requires a more advanced network science 

approach, cable of establishing how organisational principles differ across 

groups of individuals (Petersen 2015, Meyer-Lindenberg 2009). We take this 

approach here.   

In a network analysis brain regions are described as a nodes and their 

connections as edges. Nodes typically correspond to regions of interest 

(Dell’Acqua 2012, Fornito 2015). Edges can represent the strength of white 

matter connectivity based on diffusion-weighted imaging (Qi 2015). Graph 

theory provides a mathematical framework for the analysis of the resulting 

network (Bullmore 2009, Rubinov 2010), which describes organisational 

principles related to ease of information exchange and wiring cost. Structural 

network approaches have been used to study typical and atypical brains across 

the lifespan (Griffa 2013, Hagmann 2012, Di Martino 2014, Deco 2014). These 

studies have revealed an organisational principle of high local connectivity with 

some additional long-range connections (Bassett 2006). This organisation 

provides an optimal trade-off between ease of information transfer and 

minimization of wiring costs (Fornito 2015).  

White matter has been shown to be highly heritable indicating a high level of 

genetic influence on white matter structure (Lee 2015, Kochunov 2015). A few 

studies have employed a network analysis approach to investigate if this also 

extends to structural network organisation (Ottet 2013, Meoded 2014, Hong 

2014, Leow 2014, Bruno 2016). These studies focussed on common variants of 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


4 

trophic factor genes (Meoded 2014), genes involved the regulation of synaptic 

weights (Ottet 2013, Meoded 2014, Hong 2014), and mutations associated with 

specific phenotypes (Leow 2014, Bruno 2016). Genetic differences were 

associated with differences in structural brain network organisation, with 

specific effects for each genetic factor. This suggests that studying differences in 

brain organisation may offer important insight into understanding the effects of 

genetic variation.  

In the present study we take a network analysis approach to studying brain 

organisation in a genetically defined neurodevelopmental disorder. Mutations in 

ZDHHC9 are a recurrent cause of X-linked Intellectual Disability (XLID) 

(Raymond 2007). The ZDHHC9 gene codes for a palmitoylation enzyme, 

involved in post-translational modification of specific target substrates. 

Palmitoylation plays an important role in the recruitment of receptors and ion 

channels at the synapse (Topinka 1998, Young 2013, El-Husseini 2000). A 

systematic assessment of clinical history and cognitive deficits across multiple 

XLID-associated genes led to the observation that ZDHHC9 mutations are 

associated with homogeneous neurological and cognitive features, including 

disproportionate attention problems, language impairment, and deficits in oro-

motor control in the context of mild to moderate intellectual disability (Baker 

2015). The majority of affected individuals also had a history of epilepsy that 

resembled Rolandic epilepsy in presentation and spike topography (Baker 

2015). Previous neuroimaging work in our group investigated focal differences 

in brain structure in ZDHHC9 cases. These studies indicated differences in 

subcortical volumes (thalamus, putamen, caudate nucleus) and hypoplasia of the 

corpus callosum (Baker 2015). Reductions in cortical thickness were found that 

were most pronounced in areas around the temporo-parietal junctions and 

inferior frontal lobe (Bathelt et al. under review). Mutation of ZDHHC9 was also 

associated with reductions in white matter structural integrity involving cortical, 

cortico-subcortical, and interhemispheric connections (Bathelt et al. under 

review).  

Given strong evidence for pervasive effects on white matter integrity, we 

expected the ZDHHC9 mutation to influence information transfer within the 

brain network. More specifically, we predicted that in addition to any global 

impact of gene mutation, we ought to observe some regional specificity, 

according to variability in the expression of that gene across the brain. This 

regional specificity may correspond to the areas of most marked cognitive 

impairment resulting from the mutation, and overlap with other genes known to 

impact upon similar developmental mechanisms. In short, across our analyses 

we explored how both a mutation to, and regional expression of, ZDHHC9 are 

associated with structural brain organisation. 
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3. Methods 

3.1 Participants  

The study compared 7 males with inherited loss of function mutations in the 

ZDHHC9 gene (Age in years: mean=29.13, SE=4.86, Range=13.83-41.83) to 7 

males individually matched in age +/- 2 years (Age in years: mean=27.23, 

SE=5.31, Range=10.17-42.5). Comparison subjects had no history of 

neurological illness or cognitive impairment. Statistical analysis indicated no 

significant difference in age between the groups (Welch-corrected t-test: 

t(11.91)=-0.265, p=0.796). 

For detailed description of clinical and cognitive characteristics of the 

ZDHHC9 group see Baker et al. 2015. In summary, all individuals with a ZDHHC9 

mutation had mild to moderate intellectual disability (full-scale IQ: mean=64.86, 

SE=2.32, Range=57-73). 5 individuals had a history of epilepsy, with seizure 

characteristics and EEG features similar to the Rolandic epilepsy spectrum. At 

the time of MRI acquisition, 1 participant reported seizures within the previous 

3 months, and 3 currently received anti-epileptic medication (carbemazapine 

n=1, carbemazapine and lamotrigine n=1, phenytoin n=1). Vineland scores 

(Sparrow 2005) indicated stronger receptive language abilities compared to 

expressive and written language abilities in the ZDHHC9 group. The Verbal 

Motor Production Assessment for Children (VMPAC) (Hayden 1999) indicated 

significant oromotor difficulties in the ZDHHC9 group, including deficits in oral 

control, sequencing, voice characteristics, and connected speech. Inhibitory 

control was also reduced in the ZDHHC9 group on a visual attention task. These 

specific features differentiated with ZDHHC9 group from age and IQ matched 

controls (Baker 2015). 

 

3.2  MRI data acquisition 

Magnetic resonance imaging data was acquired at the MRC Cognition and 

Brain Sciences Unit, Cambridge U.K. All scans were obtained on the Siemens 3 T 

Tim Trio system (Siemens Healthcare, Erlangen, Germany), using a 32-channel 

quadrature head coil. The imaging protocol consisted of two sequences: T1-

weighted MRI and a diffusion-weighted sequence. 

T1-weighted volume scans were acquired using a whole brain coverage 3D 

Magnetisation Prepared Rapid Acquisition Gradient Echo (MP RAGE) sequence 

with 1mm isometric image resolution. Echo time was 2.98 ms, and repetition 

time was 2250 ms. 

Diffusion scans were acquired using echo-planar diffusion-weighted images 

with an isotropic set of 60 non-collinear directions, using a weighting factor of b 

= 1000 s/mm−2, interleaved with 4 T2-weighted (b = 0) volumes. Whole brain 

coverage was obtained with 60 contiguous axial slices and isometric image 

resolution of 2mm. Echo time was 90 ms and repetition time was 8400 ms. 

 

3.3  Structural connectome analysis 

The white-matter connectome reconstruction followed a commonly used 

procedure of estimating the most probable white matter connections for each 

individual, and then obtaining measures of fractional anisotropy (FA) between 
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cortical regions after transformation to common space (Horn 2016). Computer 

code for this workflow and subsequent analyses is available online 

(https://github.com/joebathelt/ZDHHC9_connectome). The details of the 

procedure are described in the following paragraphs. 

 

In the current study, MRI scans were converted from the native DICOM to 

compressed NIfTI-1 format using the dcm2nii tool developed at the 

McCauseland Centre for Neuroimaging http://www.mccauslandcenter.sc.edu/ 

mricro/mricron/dcm2nii.html. Subsequently, the images were submitted to an 

implementation of a non-local means de-noising algorithm (Coupe 2008) in the 

Diffusion Imaging in Python (DiPy) v0.8.0 package (Garyfallidis 2014) to boost 

signal to noise ratio. Next, a brain mask of the b0 image was created using the 

brain extraction tool (BET) of the FMRIB Software Library (FSL) v5.0.8. Motion 

and eddy current correction were applied to the masked images using FSL 

routines. The corrected images were re-sliced to 1mm resolution with trilinear 

interpolation using in-house software based on NiBabel v2.0.0 functions 

http://nipy.org/nibabel/. A spherical constrained deconvolution (CSD) model 

was fitted to the 60 gradient direction diffusion-weighted images using a 

maximum harmonic order of 8. Correct anatomical orientation of CSD glyphs 

was visually inspected for white matter tracts of known orientation (corpus 

callosum, cortico-spinal tract). 

 

A whole-brain tractography was generated by seeding streamlines from each 

voxel within the brain mask using the probabilistic tractography algorithm of 

MRTrix (Tournier 2012). The desired number of streamlines was set to 150,000. 

Other settings followed the recommendations for MRTrix: The fibre tracking 

algorithm was set to a minimum and maximum track length of 10mm and 

200mm respectively. The minimum radius of curvature was set to 1 mm and the 

track size to 0.2mm. The track termination threshold was set to an FA value of 

0.1. 

 

Subsequently, a 12 degree-of-freedom affine transform between each 

participant’s skull-stripped FA image and the FMRIB58 template in MNI152 was 

calculated with the correlation ratio as the cost function using FSL FAST. This 

transform was applied to the streamlines in each participant’s anatomical space 

to move them into MNI common space (Horn 2016) using a TrackVis v0.6.01 

algorithm (Wang et al., 2007). 

For structural connectome analysis, regions of interests (ROIs) were based 

on the Desikan-Killiany parcellation of the MNI template (Klein & Tourville 

2012) with 34 ROIs per hemisphere. The ROIs filled the space between the 

cortical grey and white matter so that streamlines would terminate at the edges 

of the ROI. For each pairwise combination of ROIs, the number of streamlines 

intersecting both ROIs was estimated and transformed to a density map. This 

density map was binarized and multiplied with the FA map to obtain the FA 

value corresponding to the connection between the ROIs. This procedure was 

implemented in-house based on DiPy v0.8.0 functions (Garyfallidis 2014). Only 

cortical ROIs were considered in the current analysis, because Allen Brain atlas 

data could only be mapped for these ROIs (French & Paus, 2015). Visualizations 
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of the structural connectome were generated using the BrainNet Viewer toolbox 

(Xia et al., 2013).  

 

3.4  Graph theory 

Structural networks were analysed using graph theory metrics to compare 

network characteristics between the groups and relate node properties to the 

expression profile of ZDHHC9. Graph metrics were calculated in the python 

implementation of the Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/). Weighted undirected networks were 

used for all analyses. The weight represented the FA value in the structural 

connectome. A detailed description of the graph theory metrics used in the 

analysis can be found elsewhere (Bullmore & Sporns, 2009, Rubinov & Sporns, 

2010). In brief, for characterisation of network nodes, node degree, node 

strength, and clustering coefficient were used. The node degree is the number of 

edges connected to a node. The node strength is the sum of the weight of edges 

connected to a node. The clustering coefficient is the number of connections of a 

node to its neighbours relative to all possible connections. For a characterisation 

of the global network, global efficiency was calculated. Global efficiency 

describes the ease of information transfer within a network based on the 

number of nodes that have to be traversed to reach any node from any other 

node in the network. 

 

 

3.5  Allen Brain Atlas data 

Gene expression data were obtained from the Allen Brain Atlas Human Brain 

public database (http://human.brain-map.org). Gene expression data were 

based on microarray analysis of post-mortem tissue samples from 6 human 

donors between 18 and 68 years with no known history of neuropsychiatric or 

neurological conditions (see online documentation). MRIs and transformations 

from individual donors MR space to MNI coordinates were also obtained from 

the Allen Brain Atlas website. For the current investigation, expression values 

were averaged across donors and mapped onto areas of the Desikan-Killiany 

parcellation of the MNI brain as described by French and colleagues (French & 

Paus, 2015). The current investigation focussed on the expression of ZDHHC9. In 

order to investigate the specificity of the link of ZDHHC9 expression and 

structural connectome organisation, we compared ZDHHC9 to a number of other 

genes: First, GAPDH was added as a control gene that is not associated with any 

known neurological or cognitive phenotype (Nicholls et al., 2012).   We then 

assessed genes that are associated with a similar mutation phenotype. For 

overlap with language deficits, FOXP2 was included (Khadem et al., 2005). FMR1 

was selected as an X-linked intellectual disability gene (Bourgeois et al., 2009). 

GRIN2A was included for the association with Rolandic Epilepsy (McTague et al., 

2015).  
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4  Results 

4.1  Structural connectome analysis 

Brain networks were obtained from structural connectome descriptions of 

diffusion-weighted MR data. Adjacency matrices represented the FA value 

associated with streamlines between pairs of regions in the Desikan-Killiany 

atlas. A visual representations of the group-average structural connectome is 

shown in Figure 1. Principles of organisation within the structural networks 

were analysed using graph theory. Statistical comparison indicated significant 

brain-wide differences in mean node strength, mean clustering coefficient, and 

global efficiency with reductions in all measures in the ZDHHC9 group (see Table 

1). There was no statistically significant difference in mean node degree 

between groups.   

 

Figure 1 about here 

 

Subsequently, local differences in graph theory metrics within cortical 

regions of the Desikan-Killiany atlas were compared between the ZDHHC9 and 

control group. The results indicated significant reductions in the ZDHHC9 group 

for the clustering coefficient of the left inferior frontal, middle frontal, and 

orbito-frontal cortex; precentral, and supramarginal gyrus; and posterior, and 

isthmus cingulate cortex. For the right hemisphere, reductions in cluster 

coefficient in the ZDHHC9 group were found in the supramarginal gyrus, 

superior temporal gyrus, insula, inferior frontal cortex, lingual cortex, and 

cuneus. The clustering coefficient of a node is the number of connections to the 

node’s neighbours relative to the possible number of connections (Rubinov & 

Sporns, 2011). A reduction in the clustering coefficient of nodes in the ZDHHC9 

group therefore indicates a reduction in the integration of these nodes. A 

comparison of the topographical pattern of differences in local efficiency 

indicated widespread reduction in the ZDHHC9 group expected due to the 

relationship in the algorithms for calculating clustering coefficient and local 

efficiency (Rubinov & Sporns, 2011). Regional analysis of node strength and 

node degree did not show any similar pattern. 

 

Figure 2 about here 
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Table 1: Comparison of global graph theory metrics between the ZDHHC9 and 

control group. Statistical comparison indicated significantly lower mean node 

strength, mean clustering coefficient, and global efficiency in the ZDHHC9 group. 
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4.2 ZDHHC9 expression and structural connectome properties 

We then investigated the relationship between measures of structural 

connectivity and ZDHHC9 expression. First, gene expression information was 

obtained from the Allen Brain Institute Human Brain database and mapped onto 

the Desikan-Killiany parcellation of the MNI brain (French & Paus 2015). 

ZDHHC9 expression was found to be higher in the left compared to the right 

hemisphere (see Figure 2). Local maxima were found in the left post-central 

gyrus, inferior frontal cortex, anterior cingulate cortex, inferior parietal lobule, 

and right lingual gyrus. Low expression was observed in the right posterior and 

isthmus cingulate cortex, and left superior temporal gyrus. 

Next, we investigated whether the variation of ZDHHC9 expression over 

cortical regions in the healthy adult brain explained the regional variation of 

graph theoretical measures in the structural connectome derived from case 

control analysis of patients with ZDHHC9 mutations. The Shapiro-Wilk test 

indicated significant departures from the normality assumption for all variables 

(ZDHH9 expression: W=0.98, p=0.071; Node strength: W=0.93, p=0.001; 

Clustering coefficient: W=0.96, p=0.001; Betweenness centrality: W=0.89, 

p=0.001; Local Efficiency: W=0.95, p=0.001). Therefore, all variables were 

transformed to z-scores for further analysis; these z-scores were normally 

distributed. We firstly checked the correlations between graph measures, which 

were not sufficiently high to introduce multiple co-linearity problems (all 

r<0.71). Separate multiple linear regression models were fitted for each graph 

measure using ZDHHC9 expression and participant group as predictors. A 

significantly better fit than the null model was indicated for all regression 

models, apart from model for betweenness centrality (Node strength: 

F(2,129)=9.56, p=0.001, R2=0.129; Clustering coefficient: F(2,129)=50.91, 

p=0.001, R2=0.441; Betweenness centrality: F(2,129)=0.52, p=0.597, 

R2=0.008; Local efficiency: F(F(2,129)=225.8, p=0.001, R2=0.778). A significant 

effect of participant group was found for node strength, clustering coefficient, 

and local efficiency (Node strength: t=-4.36, p=0.001; Clustering coefficient: t=-

9.73, p=0.001; Local efficiency: t=-21.12, p=0.001). Further, there was a 

significant effect of ZDHHC9 expression on clustering coefficient (t=2.67, 

p=0.009). The findings indicated that cortical areas with higher expression of 

ZDHHC9 were linked by white matter with higher FA. This relationship was 

similar in both groups, but was associated with overall lower graph measure 

scores in the ZDHHC9 group. 

Lastly, we investigated the specificity of the association between ZDHHC9 

expression and structural connectome graph measures by repeating the analysis 

with a control brain-expressed gene and with genes with a similar mutation-

associated phenotype. As in the main analysis, regression analysis was applied 

with the graph measure as the outcome and gene expression and participant 

group as predictors. FOXP2 showed a significant negative association with 

clustering coefficient in both groups (β=-0.251, t=-3.93, p<0.001). There were 

no other significant effects for any graph measure and gene expression 

combination.  
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Figure 3 about here 
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5  Discussion 

We investigated the influence of mutations in the palmitoylation-enzyme-

gene ZDHHC9 on differences in white-matter-network organisation. To this end, 

a connectome was constructed to describe the fractional anisotropy (FA) value 

associated with all connections between cortical regions in the Desikan-Killiany 

cortical parcellation. Comparison of global graph theory measures indicated 

significantly lower global efficiency accompanied by reductions in mean 

clustering coefficient and mean node strength. Topological analysis indicated 

that differences in clustering coefficient were localised to frontal, temporal and 

parietal areas, whereas differences in local efficiency were more pervasive. 

Further, we investigated the relationship between ZDHHC9 expression and 

structural connectivity of cortical regions. Analysis of the relationship between 

regional variation in ZDHHC9 expression and structural network metrics in both 

groups indicated a significant effect of clustering coefficient with higher 

expression being associated with a higher clustering coefficient. In contrast, 

regional variation in FOXP2 expression showed a negative association with 

clustering coefficient, while other genes with overlapping phenotypes did not 

show an association with regional differences in graph metrics.   

 

 

ZDHHC9 mutations result in global changes in brain organisation 

In the current investigation we observed global reductions in edge weight in 

the ZDHHC9 case group. Edge weight represented the fractional anisotropy (FA) 

of white matter pathways in the networks. FA is commonly interpreted as a 

measure of white matter integrity. Reduction in FA may be caused by differences 

in axon diameter, packing density, or myelination (Alexander 2011). The global 

reduction in FA mirrors previous results with tract-based spatial statistics 

analysis (Bathelt et al., under review) that indicated widespread differences in 

white matter integrity in the ZDHHC9 group.  

Graph theoretical analysis indicated that reduced FA in the ZDHHC9 group 

was associated with lower mean clustering coefficient and global efficiency. 

Lower mean clustering coefficient suggests reduced local connectivity of nodes 

with their neighbours. Reduced global efficiency is linked to reduced information 

transfer across the structural brain network in the ZDHHC9 group.  

These observed global differences in structural brain network organisation 

may arise early in brain development. Global network efficiency has been found 

to be stable across the human lifespan in typical development. The structural 

core of the white matter connectome is formed during the second to third 

trimester of pregnancy (Collin 2013). Any differences in genetic predisposition 

affecting this processes are likely to impose early constraints with general 

effects on the later trajectory of neural and cognitive development and may 

contribute to the mild-moderate intellectual disability observed in this group 

(Di Martino 2014).  

 

 

ZDHHC9 mutations result in regionally-specific changes in brain organisation 
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Topographical analysis of clustering coefficient and local efficiency indicated 

differences in nodes of the frontal, left parietal, and right temporal lobe; these 

nodes are less integrated with the rest of the network in the ZDHHC9 group. 

These regionally specific effects may provide a basis for the profile of 

disproportionate speech and language deficits observed in these individuals 

(Baker et al 2015).  

Furthermore, the expression of ZDHHC9 was related to the observed regional 

variation in graph metrics. Regression analysis indicated that a significant effect 

of ZDHHC9 expression on the local efficiency and clustering coefficient of nodes. 

Higher expression of ZDHHC9 was related to a higher clustering coefficient and 

higher local efficiency in the ZDHHC9 mutated group and typical control. 

Expression of ZDHHC9 was highest in left parietal and frontal regions that also 

showed the largest reduction in regional comparison of clustering coefficient 

and local efficiency in the ZDHHC9 group. In contrast, regional variations in 

clustering coefficient was negatively related to the expression of FOXP2, a 

transcription factor implicated in language function (Khadem, 2005), but 

showed no relationship to the expression of other genes with overlapping 

mutation phenotype.  There are a number of possible explanations for the 

observation of parallel (but opposite) associations between connectivity and 

ZDHHC9 or FOXP2 expression.  Firstly, the observation could be explained by a 

similar expression topology for both genes, with no direct mechanistic link.  

However, data from the Allen Brain Atlas does not support this explanation 

(ZDHHC9 and FOXP2 expression region-by-region correlation -0.0445). 

Alternatively, the observation could suggest that these genes have convergent 

influence on cortical architecture and cognitive development via a shared 

molecular pathway.  FOXP2 is a transcriptional repressor, hence FOXP2 might 

down-regulate ZDHHC9 expression leading to reduced palmitoylation and 

disrupted trafficking of relevant substrates.  Vernes and colleagues (Vernes et al., 

2011) found that ZDHHC3 is regulated by FOXP2, but there is currently no 

positive evidence that ZDHHC9 is a target of FOXP2 in either developing or adult 

human brain (Gene specific Chipsq (Spiteri et al 2007, Vernes et al 2007; Text-

based mining (Han et al 2015)).  Alternatively, an indirect interaction could 

explain the observation, if FOXP2 represses expression of a key palmitoylated 

target. One candidate target for both genes could be CNTNAP2, another gene 

associated with language deficits, which is predicted to be palmitoylated based 

on protein sequence (SwissPalm database).  Connectome analysis of cases with 

FOXP2 mutations could provide further lines of evidence regarding similarity in 

neurodevelopmental pathology.  

 

 

Comparison to structural connectome studies in other disorders 

The influence of ZDHHC9 mutation on structural brain organisation shows 

both similarities and differences to published results on groups with a similar 

phenotype or genetic mechanisms.  

Several studies investigated structural network organisation in Fragile-X 

syndrome. Similar to ZDHHC9 mutation (Raymond et al., 2007), Fragile-X 

syndrome is a cause of X-linked intellectual disability. Leow et al. investigated 

local and global properties of the white matter connectome in Fragile-X 
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syndrome (FXS). FXS is caused by CGG trinucleotide repeats in the Fragile-X 

mental retardiation 1 (FMR1) gene on the X chromosome (Belmonte & 

Bourgeron, 2006). Leow and colleagues reported an association between the 

number of trinucleotide repeats in the FMR1 gene and global network efficiency 

in male premutation carriers (Leow et al., 2014) as well as local differences in 

efficiency and clustering coefficient in left temporal nodes (also see Bruno et al. 

2016). Our results for ZDHHC9 also indicated a reduction in global efficiency of 

the structural network similar to that reported for FXS, suggesting that this 

observation relates non-specifically to low IQ. However, topographical analysis 

of clustering coefficient and local efficiency indicated reductions in the parietal 

and frontal lobe in the ZDHHC9 group, whereas reductions in temporal areas 

were less pronounced or were statistically indistinguishable from the control 

group. In other words, mutations in ZDHHC9 and FXS show a convergent 

reduction in global network efficiency, but different local patterns of efficiency 

and clustering coefficient that distinguish the groups.  

Rolandic epilepsy is another relevant neurodevelopmental condition for 

comparison due to the overlapping phenotype of expressive language deficits 

and epilepsy with centro-temporal spikes that were also observed in the carriers 

of ZDHHC9 mutation (Baker et al., 2015). A study by Besseling and colleagues 

identified a reduction in structural white matter connectivity of the Perisylvian 

system, including the left inferior frontal, supramarginal, and postcentral gyrus 

(Besseling et al., 2013a). Studies of functional connectivity indicated reduced 

integration of these areas and delayed convergence of structural and functional 

connectivity in RE. (Besseling et al. 2013b & 2014). Further, graph theoretical 

analysis of the functional connectome indicated reduced clustering coefficient 

and local efficiency in areas of the parietal and frontal lobe in RE similar to the 

findings of structural connectivity differences in the current study (Xiao et al., 

2015). In summary, studies of functional and structural connectivity in a 

neurodevelopmental condition of mixed aetiology with a similar phenotype to 

ZDHHC9 mutation showed reduced connectivity in areas of the parietal and 

frontal lobe akin to the structural connectivity changes observed in the current 

investigation. We are not aware of another connectome analysis of a 

developmental language disorder (either of known or unknown origin) against 

which to compare the results of our study. 

 

 

 

Limitations 

The findings of the current investigation are associated with some 

limitations. First, the sample size of the current study was inherently limited by 

the rarity of single-gene mutations associated with XLID. Further, group 

comparisons in the current study were made relatively to an age-matched 

typical control group rather than an IQ-matched control. Comparison to a mixed-

aetiology low IQ group would be confounded by the association between 

intellectual disability and diverse structural abnormalities, whilst comparison to 

an alternative single-aetiology low IQ group with its own profile of 

neuroanatomical abnormality could be equally difficult to interpret.   
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In addition to limitations associated with the study sample, same caveats 

regarding the analysis methods need to be considered. A multitude of methods 

for structural connectome analysis of diffusion-weighted MR data have been 

reported in the literature (Qi 2015). There is currently no consensus on best 

practices or published rigorous comparisons across different methods. 

Biological validation of methods would require extensive in vivo studies that are 

difficult to carry out. In the absence of biological validation, Zalesky (2010) and 

Qi (2015) systematically compared the influence of various choices in the 

processing pipeline on graph theoretical comparisons. Following the 

recommendations arising from these comparisons, the same scanning protocol, 

diffusion model (constrained spherical deconvolution), and parcellation scheme 

was used for all participants in the current study so that any group differences 

are unlikely to be explained by these factors. Additionally, ROI size may 

influence connectivity results, and is likely to differ between case and control 

groups. Several methods for correcting this effects have been used (Daducci 

2012, Hagmann 2012). In the current study, streamlines were transformed to a 

common space to alleviate differences in ROI size while maintaining a standard 

definition of anatomical cortex parcellation (Horn 2016). Another choice 

concerns the measure of connection strength. The current investigation used FA 

as the measure of connection strength as this measure is a common measure 

used in diffusion-weighted imaging that is easy to interpret in contrast to 

alternative approaches that use streamline-based measures.  

 

 

Conclusion 

Mutations in the ZDHHC9 gene were associated with altered network 

properties, including reduction in mean clustering coefficient and global 

efficiency. Topological analysis indicated that reductions in the ZDHHC9 group 

were most pronounced for frontal and temporo-parietal nodes. Further, 

comparison of graph theory metrics with ZDHHC9 expression data obtained 

from the Allen Brain Human Brain repository indicated that nodal variation in 

the clustering coefficient and local efficiency related to higher expression of 

ZDHHC9. This relationship between gene expression and regional variation in 

white matter organisation may provide a mechanistic link between this 

particular gene and the disproportionate impact of this mutation of speech and 

language development.  In short, white matter networks may represent an 

important intermediate phenotype to understand the effect of genetic mutations 

on cognitive development. 
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Captions  

 

Figure 1: White matter network structure in the ZDHHC9 and control group. The 

colour values represent the edge weight, i.e. the fractional anisotropy (FA) value 

associated with a connection between any two ROIs. The adjacency matrix was 

thresholded at 0.2 for visualization.  

 

Figure 2: Overview of regional differences in clustering coefficient and local 

efficiency between the ZDHHC9 and control group. Red-blue maps show the 

distribution of graph metrics z-scored across hemispheres and participant 

groups. Yellow-red maps show the results of t-test comparisons of graph metrics 

corrected for multiple comparison using Bonferroni correction.  

 

Figure 3: a: Expression of ZDHHC9 (top) and FOXP2 (bottom) in regions of the 

cortex in the normal adult human brain (Allen Brain Atlas). b: Relationship 

between regional variation in ZDHHC9 (top) and FOXP2 (bottom) expression 

and graph theory measures in the ZDHHC9 case (red) and control (blue) groups. 

Regression analysis indicated a significant effect of participant group for node 

strength, clustering coefficient, and local efficiency. Local ZDHHC9 expression 

was found to be an additional significant predictor for the clustering coefficient 

and local efficiency. FOXP2 emerged as a significant negative predictor for 

regional variation in clustering coefficient. 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


17 

References 

Allen Brain Atlas: Human Brain, Retrieved February, 16, 2016: 

http://human.brain-

map.org/microarray/search/show?exact_match=true&search_term=ZD

HHC9&search_type=gene&donors=12876,9861,10021,15496,14380,156

97 

Baker, K, Astle, DE, Scerif, G, Barnes, J, Smith, J, Moffat, G. 2015. Epilepsy 

cognitive deficits and neuroanatomy in males with ZDHHC9 mutations. 

Annals of Clinical and Translational Neurology, 2(5), 559–569. 

Bassett, DS, & Bullmore, E. 2006. Small-World Brain Networks. The 

Neuroscientist, 12(6), 512–523. 

Belmonte, MK, & Bourgeron, T. 2006. Fragile X syndrome and autism at the 

intersection of genetic and neural networks. Nature Neuroscience, 9(10), 

1221–1225. 

Blondel, VD, Guillaume, JL., Lambiotte, R & Lefebvre, E. 2008. Fast unfolding of 

communities in large networks. J. Stat. Mech., 2008(10), P10008. 

Besseling, RMH, Jansen, JFA, Overvliet, GM, van der Kruijs, SJM, Ebus, S CM, de 

Louw, A. 2013a. Reduced structural connectivity between sensorimotor 

and language areas in rolandic epilepsy. PloS One, 8(12), e83568. 

http://doi.org/10.1371/journal.pone.0083568 

Besseling, RMH, Jansen, JFA, Overvliet, GM, van der Kruijs, SJM, Vles, J S. H, Ebus, 

SCM. 2013b. Reduced functional integration of the sensorimotor and 

language network in rolandic epilepsy. NeuroImage: Clinical, 2(C), 239–

246. http://doi.org/10.1016/j.nicl.2013.01.004 

Besseling, RMH, Jansen, JFA, Overvliet, GM, van der Kruijs, SJM., Ebus, S. C. M., de 

Louw, A. J. A., et al. 2014. Delayed convergence between brain network 

structure and function in rolandic epilepsy. Frontiers in Human 

Neuroscience, 8, 704. http://doi.org/10.3389/fnhum.2014.00704 

Bourgeois, JA, Coffey, SM, Rivera, SM, Hessl, D, Gane, LW, Tassone, F, Berry-

Kravis, E. 2009. A review of fragile X premutation disorders: expanding 

the psychiatric perspective. The Journal of clinical psychiatry, 70(6), 

1,478–862, http://doi.org/10.4088/JCP.08m04476 

Bruno, JL, Hosseini, SMH, Saggar, M, Quintin, EM, Raman, MM, & Reiss, AL. 2016. 

Altered Brain Network Segregation in Fragile X Syndrome Revealed by 

Structural Connectomics. Cerebral Cortex, bhw055. 

http://doi.org/10.1093/cercor/bhw055 

Bullmore, E, & Sporns, O. 2009. Complex brain networks: graph theoretical 

analysis of structural and functional systems. Nature Reviews 

Neuroscience, 10(3), 186–198. 

Collin, G, & Heuvel, MP van den. 2013. The Ontogeny of the Human Connectome: 

Development and Dynamic Changes of Brain Connectivity Across the Life 

Span. The Neuroscientist, 19(6), 616–628. 

Coupe, P, Yger, P, Prima, S, Hellier, P, Kervrann, C, & Barillot, C. 2008. An 

Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic 

Resonance Images. IEEE Transactions on Medical Imaging, 27(4), 425–

441. 

Crossley, NA, Mechelli, A, Scott, J, Carletti, F, Fox, PT, McGuire, P, . 2014. The hubs 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


18 

of the human connectome are generally implicated in the anatomy of 

brain disorders. Brain, 137(8), 2382–2395. 

Courchesne, E, Campbell, K, & Solso, S. 2011. Brain growth across the life span in 

autism: Age-specific changes in anatomical pathology. Brain 

Research, 1380, 138–145. doi:10.1016/j.brainres.2010.09.101 

Daducci, A, Gerhard, S, Griffa, A, Lemkaddem, A, Cammoun, L, Gigandet, X. 2012. 

The Connectome Mapper: An Open-Source Processing Pipeline to Map 

Connectomes with MRI. PLoS ONE, 7(12), e48121. 

Deco, G, & Kringelbach, ML 2014. Great Expectations: Using Whole-Brain 

Computational Connectomics for Understanding Neuropsychiatric 

Disorders. Neuron, 84(5), 892–905. 

Dell’Acqua, F, & Catani, M. 2012. Structural human brain networks. Current 

Opinion in Neurology, 1. 

Desikan, RS, Ségonne, F, Fischl, B, Quinn, BT, Dickerson, BC, Blacker, D, . 2006. An 

automated labeling system for subdividing the human cerebral cortex on 

MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–

980. 

Dubois, J, Dehaene-Lambertz, G, Kulikova, S, Poupon, C, Hüppi, P, & Hertz-

Pannier, L. 2014. The early development of brain white matter: A review 

of imaging studies in fetuses newborns and infants. Neuroscience, 276, 

48–71. 

DeSalvo, MN, Douw, L, Tanaka, N, & Reinsberger, C. 2013. Altered structural 

connectome in temporal lobe epilepsy. Radiology, 270 (3). 842-848, 

doi:10.1148/radiol.13131044 

Fornito, A, Zalesky, A, & Breakspear, M. 2015. The connectomics of brain 

disorders. Nature Reviews Neuroscience, 16(3), 159–172. 

French, L, & Paus, T 2015. A FreeSurfer view of the cortical transcriptome 

generated from the Allen Human Brain Atlas. Front. Neurosci., 9. 

Garyfallidis, E, Brett, M, Amirbekian, B, Rokem, A, Walt, S van der, Descoteaux, M. 

2014. Dipy a library for the analysis of diffusion MRI data. Front. 

Neuroinform., 8. 

Goldman, A, Pezawas, L, Mattay, V, Fischl, B, Verchinski, B, Zoltick, B, Meyer-

Lindenberg, A. 2008. Heritability of Brain Morphology Related to 

Schizophrenia: A Large-Scale Automated Magnetic Resonance Imaging 

Segmentation Study. Biological Psychiatry, 63(5), 475–483. 

doi:10.1016/j.biopsych.2007.06.006 

Goldman, D, Weinberger, DR, Malhotra, AK, & Goldberg, TE. 2009. The Role of 

COMT Val158Met in Cognition. Biological Psychiatry, 65(1), e1–e2. 

Griffa, A., Baumann, PS, Thiran, JP, & Hagmann, P. 2013. Structural connectomics 

in brain diseases. NeuroImage, 80, 515–526. 

Hagmann, P, Grant, PE, & Fair, DA. 2012. MR connectomics: a conceptual 

framework for studying the developing brain. Front. Syst. Neurosci., 6. 

Hagmann, P, Sporns, O, Madan, N, Cammoun, L, Pienaar, R, Wedeen, VJ, . 2010. 

White matter maturation reshapes structural connectivity in the late 

developing human brain. Proceedings of the National Academy of 

Sciences, 107(44), 19067–19072. 

Hong, SB, Zalesky, A, Park, S, Yang, YH, Park, MH, Kim, B. 2014. COMT genotype 

affects brain white matter pathways in attention-deficit/hyperactivity 

disorder. Human Brain Mapping, 36(1), 367–377. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


19 

Horn, A, & Blankenburg, F. 2016. Toward a standardized structural–functional 

group connectome in MNI space. NeuroImage, 124, 310–322. 

Huang, Shu, Mishra, Jeon, Chalak, Wang, ZJ. 2013. Development of Human Brain 

Structural Networks Through Infancy and Childhood. Cerebral Cortex, 

25(5), 1389–1404. 

Innocenti, GM, & Price, DJ. 2005. Exuberance in the development of cortical 

networks. Nature Reviews Neuroscience, 6(12), 955–965. 

Khadem, F, Gadian, DG, Copp, A, & Mishkin, M. 2005. FOXP2 and the 

neuroanatomy of speech and language. Nature Reviews 

Neuroscience, 6(2), 131–138. doi:10.1038/nrn1605 

Kochunov, P, Jahanshad, N, Marcus, D, Winkler, A, Sprooten, E, Nichols, TE. 2015. 

Heritability of fractional anisotropy in human white matter: A comparison 

of Human Connectome Project and ENIGMA-DTI data. NeuroImage, 111, 

300–311. 

Lancichinetti, A, & Fortunato, S. 2012. Consensus clustering in complex 

networks. Sci. Rep., 2. 

Leow, A, Harvey, D, Goodrich-Hunsaker, NJ, Gadelkarim, J, Kumar, A, Zhan, L. 

2014. Altered structural brain connectome in young adult fragile X 

premutation carriers. Human Brain Mapping, 35(9), 4518–4530. 

McTague, A, Howell, KB, Cross, JH, & Kurian, MA. 2016. The genetic landscape of 

the epileptic encephalopathies of infancy and childhood. The Lancet 

15:304-316, doi:10.1016/S1474-4422(15)00250-1 

Meoded, A, Katipally, R, Bosemani, T, Huisman, T, & Poretti, A. 2015. Structural 

connectivity analysis reveals abnormal brain connections in agenesis of 

the corpus callosum in children. European radiology, 25(5), 1471–1478. 

doi:10.1007/s00330-014-3541-y 

Martino, AD, Fair, DA, Kelly, C, Satterthwaite, TD, Castellanos, FX, Thomason, ME, 

2014. Unraveling the Miswired Connectome: A Developmental 

Perspective. Neuron, 83(6), 1335–1353. 

Meyer-Lindenberg, A. 2009. Neural connectivity as an intermediate phenotype: 

Brain networks under genetic control. Human Brain Mapping, 30(7), 

1938–1946. 

Nicholls, C, Li, H, & Liu, JP 2012. GAPDH: A common enzyme with uncommon 

functions. Clinical and Experimental Pharmacology and Physiology, 39(8), 

674–679. doi:10.1111/j.1440-1681.2011.05599.x 

Ottet, MC, Schaer, M, Debbane, M, Cammoun, L, Thiran, JP, & Eliez, S 2013. Graph 

theory reveals dysconnected hubs in 22q11DS and altered nodal 

efficiency in patients with hallucinations. Frontiers in Human 

Neuroscience, 7. 

Petersen, SE & Sporns, O. 2015. Brain Networks and Cognitive Architectures. 

Neuron, 88(1), 207–219. 

Polleux, F, Ince-Dunn, G, & Ghosh, A. 2007. Transcriptional regulation of 

vertebrate axon guidance and synapse formation. Nature Reviews 

Neuroscience, 8(5), 331–340. 

Rivero, O, Sich, S, Popp, S, Schmitt, A, Franke, B, & Lesch, KP. 2013. Impact of the 

ADHD-susceptibility gene CDH13 on development and function of brain 

networks. European Neuropsychopharmacology, 23(6), 492–507. 

doi:10.1016/j.euroneuro.2012.06.009 

Qi, S, Meesters, S, Nicolay, K, Haar Romeny, BM, & Ossenblok, P. 2015. The 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


20 

influence of construction methodology on structural brain network 

measures: A review. Journal of Neuroscience Methods, 253, 170–182. 

Raymond, FL, Tarpey, PS, Edkins, S, Tofts, C, O’Meara, S, Teague, J. 2007. 

Mutations in ZDHHC9 Which Encodes a Palmitoyltransferase of NRAS and 

HRAS Cause X-Linked Mental Retardation Associated with a Marfanoid 

Habitus. The American Journal of Human Genetics, 80(5), 982–987. 

Rubinov, M, & Sporns, O. 2010. Complex network measures of brain 

connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. 

Spiteri, E, Konopka, G, Coppola, G, Bomar, J, Oldham, M, Ou, J. 2007. Identification 

of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and 

Language, in Developing Human Brain. The American Journal of Human 

Genetics, 81(6), 1144–1157. http://doi.org/10.1086/522237 

Tournier, JD, Calamante, F, & Connelly, A. 2012. MRtrix: Diffusion tractography in 

crossing fiber regions. Int. J. Imaging Syst. Technol., 22(1), 53–66. 

Tunbridge, EM, Harrison, PJ, & Weinberger, DR. 2006. Catechol-o-

Methyltransferase Cognition, and Psychosis: Val158Met and Beyond. 

Biological Psychiatry, 60(2), 141–151. 

Vernes, SC, Oliver, PL, Spiteri, E, Lockstone, HE, Puliyadi, R, Taylor, JM. 2011. 

FOXP2 Regulates Gene Networks Implicated in Neurite Outgrowth in the 

Developing Brain. PLOS Genet, 7(7), e1002145. 

http://doi.org/10.1371/journal.pgen.1002145 

Wang, R, Benner, T, Sorensen, AG, Wedeen, VJ. 2007. Diffusion toolkit: A software 

package for diffusion imaging data processing. Proc. Intl. Soc. Mag. Reson. 

Med. 15. http://cds.ismrm.org/ismrm-2007/files/03720.pdf 

Xia, M, Wang, J, & He, Y. 2013. BrainNet Viewer: A Network Visualization Tool for 

Human Brain Connectomics. Plos One, 8(7), e68910. 

http://doi.org/10.1371/journal.pone.0068910 

Xiao, F, Lei, Du, An, D, Li, Chen, Chen, 2015. Functional brain connectome and 

sensorimotor networks in rolandic epilepsy. Epilepsy Research, 113, 113–

125. http://doi.org/10.1016/j.eplepsyres.2015.03.015 

Zalesky, A, Fornito, A, Harding, IH, Cocchi, L, Yücel, M, Pantelis, C. 2010. Whole-

brain anatomical networks: Does the choice of nodes matter? 

NeuroImage, 50(3), 970–983. 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2016. ; https://doi.org/10.1101/057687doi: bioRxiv preprint 

https://doi.org/10.1101/057687
http://creativecommons.org/licenses/by-nd/4.0/

