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ABSTRACT 12 

Gene expression is imperfect, sometimes leading to toxic products. Solutions take two forms: 13 

globally reducing error rates, or ensuring that the consequences of erroneous expression are 14 

relatively harmless. The latter is optimal, but because it must evolve independently at so many 15 

loci, it is subject to a stringent “drift barrier” – a limit to how weak the effects of a deleterious 16 

mutation s can be, while still being effectively purged by selection, expressed in terms of the 17 

population size N of an idealized population such that purging requires s < -1/N. In previous 18 

work, only large populations evolved the optimal local solution, small populations instead 19 

evolved globally low error rates, and intermediate populations were bistable, with either 20 

solution possible. Here we take into consideration the fact that the effectiveness of purging 21 

varies among loci, because of variation in gene expression level and variation in the intrinsic 22 

vulnerabilities of different gene products to error. The previously found dichotomy between 23 

the two kinds of solution breaks down, replaced by a gradual transition as a function of 24 

population size. In the extreme case of a small enough population, selection fails to maintain 25 

even the global solution against deleterious mutations, explaining the non-monotonic 26 

relationship between effective population size and transcriptional error rate that was recently 27 

observed in experiments on E. coli, C. elegans and Buchnera aphidicola.  28 
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INTRODUCTION 29 

In classical population genetic models of idealized populations, the probability of fixation of a 30 

new mutant depends sharply on the product of the selection coefficient s and the population 31 

size N. As s falls below -1/N, fixation probabilities drop exponentially, corresponding to efficient 32 

selective purging of deleterious mutations. For s > -1/N, random genetic drift makes the fate of 33 

new mutants less certain. This nonlinear dependence of fixation probability on sN has given rise 34 

to the “drift barrier” hypothesis (Lynch 2007), which holds that populations are characterized 35 

by a threshold or “barrier” value of the selection coefficient s, corresponding to the tipping 36 

point at which the removal of deleterious mutations switches between effective and 37 

ineffective. In idealized populations described by Wright-Fisher or Moran models, the drift 38 

barrier is positioned at s = ~-1/N. Drift barriers also exist, albeit sometimes with less abrupt 39 

threshold behavior, in more complex models of evolution in which some assumptions of an 40 

idealized population are relaxed (Good and Desai 2014). 41 

 42 

The drift barrier theory argues that variation among species in their characteristic threshold 43 

values for s, thresholds that are equal by definition to the inverse of the selection effective 44 

population size Ne, can explain why different species have different characteristics, e.g. 45 

streamlined versus bloated genomes (Lynch 2007). The simplest interpretation of the drift 46 

barrier would seem to imply that large-Ne species show stricter quality control over all 47 

biological processes, e.g. higher fidelity in DNA replication, transcription, and translation, than 48 

small-Ne species, because molecular defects in quality control mechanisms are less effectively 49 

purged in the latter (Lynch 2010; Traverse and Ochman 2016a).  50 
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However, the data reveals more complex patterns. Unsurprisingly, Buchnera aphidicola, which 51 

has exceptionally low Ne (Mira and Moran 2002; Rispe et al. 2004), has a higher transcriptional 52 

error rate, at 4.67×10-5  (Traverse and Ochman 2016b), than the error rate 4.1×10-6 previously 53 

reported for Caenorhabditis elegans (Gout et al. 2013). But to the surprise of the authors, the 54 

error rate in large-Ne Escherichia coli is highest of all, at 8.23×10-5 (Traverse and Ochman 55 

2016b).  56 

 57 

A more refined drift barrier theory can explain these findings. As the fitness burden 58 

accumulates from the slightly deleterious mutations that a small-Ne species cannot purge, 59 

some forms of quality control may evolve as a second line of defense. The ideal solution is to 60 

purge all deleterious mutations, even those of tiny effect; when this first line of defense fails, 61 

the second line of defense is to ameliorate the cumulative phenotypic consequences of the 62 

deleterious mutations that have accumulated (Frank 2007; Rajon and Masel 2011; Warnecke 63 

and Hurst 2011; Lynch 2012; Wu and Hurst 2015). In some circumstances, as described further 64 

below, strict quality control can act as such an amelioration strategy (Rajon and Masel 2011). 65 

The existence of two distinct lines of defense complicates the naive drift barrier logic that large-66 

Ne species should generally exhibit stricter quality control in all molecular processes. The 67 

superior performance of large-Ne species in a primary line of defense other than quality control 68 

may remove any advantage of strict and costly quality control as a secondary line of defense. 69 

This creates a seemingly counter-intuitive pattern in quality control, in which small-Ne species 70 

can evolve more faithful processes than large-Ne species such as E. coli.  71 

 72 
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The existence of two substantively different lines of defense was first proposed by Krakauer 73 

and Plotkin (2002), who contrasted the “redundancy” of robustness to the consequences of 74 

mutational errors with the “antiredundancy” of hypersensitivity to mutations. By positing that 75 

redundancy had a cost, they showed that the superior cost-free solution of antiredundancy was 76 

available only with large Ne, giving small-Ne species higher levels of “redundancy”. 77 

 78 

A related argument was made by Rajon and Masel (2011) in the context of mitigating the harms 79 

threatened by errors in molecular processes such as translation. Rajon and Masel (2011) 80 

distinguished between “local” solutions, where a separate solution is required at each locus, 81 

and “global” solutions that can deal with problems at many loci simultaneously. The evolution 82 

of extensive quality control mechanisms was deemed a global solution because a single 83 

mutation impacting general quality control mechanisms can affect the prevention of gene 84 

expression errors at many loci. Note that quality control includes not only mechanisms such as 85 

proofreading for preventing errors from happening in the first place, but also mechanisms that 86 

reduce downstream damage from errors, e.g. degradation of mRNA molecules that seem faulty. 87 

Global quality control should come with a cost in time or energy. The alternative, local solution 88 

is to have a benign rather than a strongly deleterious “cryptic genetic sequence” at each locus 89 

at which expression errors might occur, making the consequence of an error at that locus 90 

relatively harmless. In contrast to the global solution, these local solutions bear no direct fitness 91 

cost, but because selection at any one locus is weak, mutations at any one locus pass more 92 

easily through the drift barrier, making them more difficult to maintain than global solutions.  93 

 94 
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Both the quality control of Rajon and Masel (2011) and the “redundancy” of Krakauer and 95 

Plotkin (2002) to the consequences of mutations are global across loci, and also costly (the 96 

former costly by design, the latter costly as a consequence of scaling decisions). Meantime, 97 

both the “local” solutions of Rajon and Masel (2011) and the “antiredundancy” of Krakauer and 98 

Plotkin (2002) carry no true fitness cost but instead require a large-Ne drift barrier and/or face a 99 

“cost of selection” (Haldane 1957) as limits to their adaptation. A mutation disrupting a solution 100 

specific to a single locus requires a large value of Ne for its purging, whereas a mutation 101 

disrupting a global quality control mechanism will have large fitness consequences and so be 102 

easier to purge. The higher-fitness solution is the local one, but it is evolutionarily achievable 103 

only with large Ne. With small Ne, we instead expect global solutions such as extensive (and 104 

costly) quality control. 105 

 106 

Selection to achieve the local solution by purging deleterious mutations to cryptic sequences 107 

(leaving in place genotypes whose cryptic genetic sequences are benign) may be difficult and 108 

hence restricted to high-Ne populations. There are, however, reasons to believe that it is not 109 

impossible. For example, when the error in question is reading through a stop codon, the local 110 

cryptic genetic sequence is the 3'UTR, which is read by the ribosome. One option for a more 111 

benign form of this cryptic sequence is the presence of a “backup” stop codon that provides the 112 

ribosome with a second and relatively early chance to terminate translation. Such backup stops 113 

are common at the first position past the stop in prokaryotes (Nichols 1970). In Saccharomyces 114 

cerevisiae, there is also an abundance of stop codons at the third codon position past the stop 115 

(Williams et al. 2004). Moreover, conservation at this position depends strongly on whether or 116 
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not the codon is a stop, and the overrepresentation of stops at this position is greater in more 117 

highly expressed genes (Liang et al. 2005). In some ciliates, where the genetic code has been 118 

reassigned so that UAA and UAG correspond to glutamine, this overrepresentation is much 119 

more pronounced (Adachi and Cavalcanti 2009). As with the consequences of erroneous 120 

readthrough, selective pressure on erroneous amino acid misincorporation and/or misfolding 121 

(Drummond and Wilke 2008), and on erroneous protein-protein interactions (Brettner and 122 

Masel 2012) are also strong enough to shape protein expression and interaction patterns. In 123 

the case of transcriptional errors, while both E. coli and B. aphidicola have high error rates, only 124 

E. coli shows signs of having evolved a first line of defense in the form of a decreased frequency 125 

with which observed transcriptional errors translate into non-synonymous changes, relative to 126 

randomly sampled transcriptional errors (Traverse and Ochman 2016a). 127 

 128 

Rajon and Masel (2011) found that for intermediate values of Ne that correspond strikingly well 129 

to many multicellular species of interest, the evolutionary dynamics of the system were 130 

bistable, with either the global or the local solution possible. This is a natural consequence of a 131 

positive feedback loop; in the presence of a strict global quality control mechanism, specialized 132 

solutions at particular loci are unnecessary and mutations destroying them pass through the 133 

drift barrier (we use the expression “pass through the drift barrier” to mean that 0 > s > -1/N), 134 

with their subsequent absence increasing the demand for quality control. Similarly, when 135 

specialized solutions predominate, the advantage to quality control is lessened, and resulting 136 

higher error rates further increase selection for many locally specialized solutions. If true, this 137 
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bistability suggests that historical contingency, rather than current values of Ne, determine 138 

which processes are error-prone vs. high-fidelity for populations at intermediate Ne. 139 

 140 

In the current work, we note that the model of Rajon and Masel (2011) contained an unrealistic 141 

symmetry, namely that the fitness consequence of a molecular error at one locus was exactly 142 

equal to that at any other loci. Here we find that with reasonable amounts of variation among 143 

loci (e.g. in their expression level or the per-molecule damage from their misfolded form), the 144 

bistability disappears. Intermediate solutions evolve instead, where cryptic deleterious 145 

sequences are purged only in more highly expressed genes, and quality control evolves to 146 

intermediate levels. Variation among loci does not change the previous finding that evolvability 147 

tracks the proportion of loci that contain a benign rather than a deleterious cryptic sequence. 148 

 149 

The high rate of transcriptional error in B. aphidicola can be explained by adding a second bias 150 

toward deleterious mutations (in error rate), and hence a second drift barrier to our model. B. 151 

aphidicola and E. coli have high error rates for different reasons; high-fidelity quality control is 152 

redundant and unnecessarily expensive in E. coli, but unattainable in B. aphidicola, leading to 153 

similarly high transcriptional error rates.   154 

 155 

METHODS 156 

In the following sections, we describe the computational model used to simulate the evolution 157 

of different solutions to errors in gene expression. All simulations were run with Matlab 158 

(R2014a). Source code for the simulations is available at https://github.com/MaselLab/. 159 
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 160 

Fitness 161 

We follow the additive model of Rajon and Masel (2011), as outlined below, with a few 162 

important modifications to accommodate variation in gene expression levels. The model’s 163 

canonical example is the risk that a ribosome reads through a stop codon during translation.  164 

 165 

The global mitigation strategy is to improve quality control of this gene expression subprocess. 166 

We assume that additional quality control that reduces the error rate ρ by some proportion 167 

consumes a certain amount of time or comparable resource. Relative to a generation time of 1 168 

in the absence of quality control costs, this gives generation time 1 + 𝛿𝛿 ln(1/𝜌𝜌), where δ scales 169 

the amount of resources that could have been used in reproduction but are redistributed to 170 

quality control. Malthusian fitness is the inverse of generation time, giving 171 

 172 

𝑤𝑤𝑄𝑄𝑄𝑄 = 1
1+𝛿𝛿 ln(1/𝜌𝜌)

           (1) 173 

 174 

Following Rajon and Masel (2011), we set δ = 10-2.5, such that reducing ρ from 10-2 to 10-3 175 

corresponds to a 0.7% reduction in fitness.  176 

 177 

When a readthrough error happens, with frequency ρ, the consequences for fitness depend on 178 

the nature of the “cryptic sequence” that lies beyond the stop codon in the 3'UTR. The 179 

consequences of mistakes, mutational or otherwise, have a bimodal distribution, being either 180 

strongly deleterious (often lethal), or relatively benign, but rarely in between (Eyre-Walker and 181 
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Keightley 2007; Fudala and Korona 2009). For example, a strongly deleterious variant of a 182 

protein might misfold in a dangerous manner, while a benign variant might fold correctly, 183 

although with reduced activity. We assume that alternative alleles of “cryptic genetic 184 

sequences” can be categorized according to a benign/deleterious dichotomy.  185 

 186 

The local mitigation strategy, the alternative to global quality control, is thus for each cryptic 187 

sequence to evolve away from “deleterious” options and toward “benign” options. The local 188 

strategy of benign cryptic sequences has no direct fitness cost, but it is nevertheless difficult to 189 

evolve at so many loci at once. In contrast, expressing deleterious cryptic sequences has an 190 

appreciable cost. This cost scales both with the base rate of expression of the gene, and the 191 

proportion ρ of gene products that include the cryptic sequence.  192 

 193 

Let the expression of gene i be Ei. We assign the concentration Ei of protein molecules of type i 194 

by sampling values of Ei from a log2-normal distribution with standard deviation σE. We define D 195 

to be the total frequency of protein expression that would be highly deleterious if expressed in 196 

error:  197 

 198 

𝐷𝐷 =
∑ 𝐸𝐸𝑖𝑖𝑖𝑖∈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑤𝑤𝑤𝑤𝑤𝑤ℎ_𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝐸𝐸𝑖𝑖𝑖𝑖∈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
          (2) 199 

 200 

where the numerator sums only over loci that are deleterious and the denominator sums over 201 

all loci. This normalization cancels out the effect of the mean value of Ei. We assume the costs of 202 

deleterious readthrough are additive across genes, based on the concept that misfolded proteins 203 
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(Thomas et al. 1995) may aggregate in a non-specific and harmful manner with other proteins 204 

and/or membranes (Kourie and Henry 2002), or may simply be expensive to dispose of (Goldberg 205 

2003). After the stop codon is read through, translation will usually end at a backup stop codon 206 

within the 3'UTR. Under the assumption of additivity, readthrough events will reduce fitness by 207 

cρD, where c represents the strength of selection against misfolded proteins. Geiler-Samerotte 208 

et al. (2011) found that an increase in misfolded proteins of approximately 0.1% of total cellular 209 

protein molecules per cell imposed a cost of about 2% to relative growth rate. This gives an 210 

estimate of c = 0.02/0.1% = 20.  211 

 212 

Readthrough involving benign cryptic sequences does not incur this cost. However, when all 213 

cryptic sequences are benign (i.e. D = 0), nothing stops ρ from increasing to unreasonably large 214 

values, i.e. ρ > 0.5, which makes “erroneous” expression into the majority (and hence the “new 215 

normal”) form. To avoid this scenario, we add a cost in fitness cρ2(1-D), whose impact is felt only 216 

at high values of ρ. One possible biological interpretation of this second order term is that with 217 

probability ρ2, readthrough occurs not just through the regular stop codon, but also through the 218 

backup stop codon at the end of the benign cryptic genetic sequence. To reflect the effects of 219 

the double-error scenario under this interpretation, we therefore multiplied the second order 220 

term by the probability µdel/(µdel+µben) that a neutrally evolving cryptic sequence will be 221 

deleterious, where µdel is the rate of deleterious-to-benign mutations and µben the reverse rate. 222 

Other double-error interpretations might involve different constants. In our case, the fitness 223 

component representing the cost of misfolded proteins is given by 224 

 225 
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𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = max(0,1 − 𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐2(1 − 𝐷𝐷) µ𝑑𝑑𝑑𝑑𝑑𝑑
µ𝑑𝑑𝑑𝑑𝑑𝑑+µ𝑏𝑏𝑏𝑏𝑏𝑏

)     (3) 226 

 227 

Eq. 3 is a natural extension of the additive model of Rajon and Masel (2011), generalizing to the 228 

case of variation in the degree of importance of cryptic loci. Where previous work referred to 229 

the number Ldel of loci having the deleterious rather than benign form, we now distinguish 230 

between two measures, Ldel and D, the latter reporting the proportion of gene product 231 

molecules rather than gene loci.  232 

 233 

Rajon and Masel (2011) also obtained near-identical results using a very different, multiplicative 234 

model. While this suggests that the exact function form of Eq. 3 is unimportant, we chose the 235 

additive Eq. 3 model as the more reasonable of the two options. The multiplicative model is 236 

premised on loss-of-function of the wild-type proteins, which likely has negligible impact for 237 

small losses of a protein whose activity is already close to saturation. In contrast, the additive 238 

model is premised on gain-of-negative-function effects of misfolded proteins. These plausibly 239 

constitute a major burden on fitness, through a combination of toxicity, disposal costs, and 240 

resources spent to replace a faulty molecule with a normal one.  241 

 242 

To study evolvability, let a subset of K (typically 50) out of the L  (typically 600 or more) loci 243 

affect a quantitative trait x, selection on which creates a third fitness component. Error-free 244 

expression of locus k, occurring with frequency 1-ρ, has quantitative effect αk, while expression 245 

that involves a benign version of the cryptic sequence has quantitative effect 𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘. 246 

Expression that involves a deleterious version of the cryptic sequence is assumed to result in a 247 
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misfolded protein that has no effect on the quantitative trait. We assume that expression level 248 

Ek is constant and already factored into values of αk and βk. This gives 249 

 250 

𝑥𝑥 = ∑ ((1 − 𝜌𝜌)𝛼𝛼𝑘𝑘 + 𝜌𝜌𝐵𝐵𝑘𝑘(𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘))𝐾𝐾
𝑘𝑘         (4) 251 

 252 

where Bk = 1 indicates a benign cryptic sequence and B = 0 a deleterious one. As in Rajon and 253 

Masel (2011), we impose Gaussian selection on x relative to an optimal value xopt 254 

 255 

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝑒𝑒
−(𝑥𝑥−𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜)2

2𝜎𝜎𝑓𝑓2           (5) 256 

 257 

where σf = 0.5. 258 

 259 

Putting the three fitness components together, the relative fitness of a genotype is given by the 260 

product  261 

 262 

𝑤𝑤 = 𝑤𝑤𝑄𝑄𝑄𝑄 × 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.       (6) 263 

 264 

Variance in expression levels 265 

We estimated the variance in expression σE2 from PaxDB (Wang et al. 2012; Wang et al. 2015), 266 

which is based on data released by the Global Proteome Machines (GMP) and other sources. 267 

We inferred σE equal to 2.24 (based on GMP 2012 release) or 3.31 (GMP 2014 release), for S. 268 

cerevisiae, and 2.93 (GMP 2014 release) for S. pombe. Note that while our quantitative 269 
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estimate of σE comes from variation in the expression levels of different proteins, consideration 270 

of variation along other lines might make a standard deviation of 2.25 into a conservative 271 

underestimate of the extent of variation. See Fig. S2 for an exploration of this parameter value. 272 

 273 

Mutation 274 

There are six kinds of mutation: 1) conversion of a deleterious cryptic sequence to a benign 275 

form, 2) conversion from benign to deleterious, 3) change to the error rate ρ, 4) change in the α 276 

value of one of the K quantitative trait genes, 5) change in the β value of one of those K genes, 277 

and 6) the co-option of a cryptic sequence to become constitutive, replacing the value of 278 

replacing αk with that of αk+βk and re-initializing Bk and βk. 279 

 280 

It is this sixth kind of mutation that is responsible for the evolvability advantage of the local 281 

solution of benign cryptic sequences, providing more mutational raw material by which x might 282 

approach xopt (Rajon and Masel 2011; Rajon and Masel 2013). The mutational co-option of a 283 

deleterious sequence (B = 0) is too strongly deleterious to be favored, even when replacing αk 284 

and βk might be advantageous. In other words, only benign cryptic sequences are available for 285 

mutational co-option. We use the term co-option of a 3'UTR readthrough sequence to refer to 286 

the case when a stop codon is lost by mutation, and not just read through by the ribosome 287 

(Giacomelli et al. 2007; Vakhrusheva et al. 2011; Andreatta et al. 2015). Mutational co-option 288 

for mimicking the consequences of errors other than stop codon readthrough might involve 289 

mutations that change expression timing to make a rare protein-protein interaction common, 290 

or switch a protein’s affinity preference between two alternative partners. 291 
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 292 

Because we use an origin-fixation approach to simulate evolution (see below), only relative and 293 

not absolute mutation rates matter for our outcomes, with the absolute rates setting only the 294 

timescale – our rates are therefore effectively unitless. We use the same mutation rates as 295 

Rajon and Masel (2011), reduced ten-fold for convenience. Each locus with a benign cryptic 296 

sequence mutates to deleterious at rate µdel = 2.4×10-8, while deleterious loci mutate to benign 297 

less often, at rate µben = 6×10-9. Changes to the error rate ρ occur at rate µρ = 10-6, while the α 298 

and β values of quantitative loci each change with rates µα = 3×10-7 and µβ = 3×10-8, 299 

respectively. Mutational co-option occurs at each quantitative locus at rate µcoopt =2.56×10-9. 300 

 301 

Each mutation to ρ increases log10ρ by an amount sampled from Normal(ρbias, σρ2). By default, 302 

we set ρbias = 0 and σρ = 0.2. To study extremely small populations with drift barriers to evolving 303 

even a global solution, we set ρbias = 0.256 and 0.465, corresponding to ratios of ρ-increasing 304 

mutations: ρ-decreasing mutations of 9:1 and 99:1, respectively.  305 

 306 

A similar scheme for α and β might create, in the global solution case of relaxed selection, a 307 

probability distribution of β whose variance increases in an unbounded manner over time 308 

(Lande 1975; Lynch and Gabriel 1983). Following previous work (Rajon and Masel 2011; Rajon 309 

and Masel 2013), we therefore let mutations alter α and β by an increment drawn from a 310 

normal distribution with mean –α/a or –β/a, with a set to 750, and with standard deviation of 311 

σm/K in both cases, with σm set to 0.5. In the case of neutrality, this mutational process 312 
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eventually reaches a stationary distribution with mean 0 and standard deviation as calculated in 313 

Eq. S3 of Rajon and Masel (2011): 314 

 315 

𝑉𝑉(𝑎𝑎, 𝐾𝐾, 𝜎𝜎𝑚𝑚) = (𝜎𝜎𝑚𝑚/𝐾𝐾)2

1−((𝑎𝑎−1)/𝑎𝑎)2
          (7) 316 

 317 

A co-option at gene k changes the gene’s quantitative effect to 318 

 319 

(1 − 𝜌𝜌)(𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘) + 𝜌𝜌𝐵𝐵𝑘𝑘′ (𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘 + 𝛽𝛽𝑘𝑘′ )       (8) 320 

 321 

where Bk’ and βk’ are the state and the quantitative effect of a new cryptic sequence created by 322 

co-option. Following a co-option mutation at locus k, we set the new Bk equal to 1 or 0 with 323 

probabilities proportional to µben and µdel, and resample the value of βk from Normal(0, V(a, K, 324 

σm)).  325 

 326 

Evolutionary simulations by origin-fixation 327 

We model evolution using an approach known as “weak mutation” (Gillespie 1983), or “origin-328 

fixation” (McCandlish and Stoltzfus 2014). This approximation of population genetics is accurate 329 

in the limit where the waiting time until the appearance of the next mutation destined to fix is 330 

substantially longer than its subsequent fixation time. The population can then be 331 

approximated as genetically homogeneous in any moment in time. While unrealistic for higher 332 

mutation rates and larger population sizes, origin-fixation models are computationally 333 

convenient. Still more importantly, origin-fixation models, unlike more realistic models with 334 
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segregating variation, allow the location of the drift barrier to be set externally in the form of 335 

the value of the parameter N, rather than having the location of the drift barrier emerge from 336 

complicated linkage phenomena within the model. Fortunately, for quantitative traits affected 337 

by multiple cryptic loci, most evolvability arises from diversity of the effects of co-option of 338 

different loci, rather than among the diversity of the effects of co-option from different starting 339 

genotypes (Rajon and Masel 2013). This allows us to study evolvability (in the population sense 340 

of Wagner (2008)) even in the absence of genetic diversity that is imposed by the origin-fixation 341 

formulation. 342 

 343 

Our computationally efficient implementation of origin-fixation dynamics is described in detail 344 

in the Supplement, simulating a series of mutations that successfully fix, and the waiting times 345 

between each. 346 

 347 

Initialization and convergence 348 

We initialized the trait optimum at xopt = 0. We could have initialized all values of αk and βk at 349 

zero. However, at steady state, variation in ∑ 𝛼𝛼𝑘𝑘𝐾𝐾
1   and ∑ 𝛽𝛽𝑘𝑘𝐾𝐾

1  is far lower than would be 350 

expected from variation in αk and βk – this emerges through a process of compensatory 351 

evolution (Rajon and Masel 2013). Allowing a realistic steady state to emerge in this way is 352 

computationally slow under origin-fixation dynamics, especially when N is large. We instead 353 

sampled the initial values of αk and βk from Normal(0, V(a, K, σm)), where V(a, K, σm) is defined 354 

by Eq. 7, and then subtracted 𝛼𝛼� from αk and 𝛽̅𝛽 from βk, where 𝛼𝛼� and 𝛽̅𝛽 are the means of a 355 

genotype across each of its quantitative loci k. This process initializes αk and βk to have 356 
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variances equal to those of the stationary distributions, while the overall trait value is initialized 357 

at the optimal value, zero. This procedure greatly reduces the burn-in computation time 358 

needed to achieve a somewhat subtle state of negative within-genotype among-loci 359 

correlations. We confirmed that subsequent convergence of the variance of ∑ 𝛼𝛼𝑘𝑘𝐾𝐾
1  was fast, 360 

occurring in less than 1000 steps, where a “step” is defined to be the fixation of one mutation. 361 

We expect log10ρ, D, and variation in βk, to converge even faster than variation in αk. 362 

 363 

For the low-ρ initial conditions, ρ was initialized at 10-5, and we initialized the benign vs. 364 

deleterious status of cryptic sequences at the neutral mutational equilibrium, choosing exactly 365 

L×µdel/(µdel+µben) (rounded to the nearest integer) to be deleterious, independently of their 366 

different values of E. For the high-ρ initial conditions, we set ρ to 10-1, and made all cryptic 367 

sequences benign. 368 

 369 

We ran simulations for 105 steps, recording information at fixed times (measured in terms of 370 

waiting times), corresponding to approximately every 1000 steps on average, and hence 371 

yielding about 100 timepoints. To summarize the evolutionary outcome, we calculated the 372 

arithmetic means of log10ρ, of Ldel, and of D among the last 20 timepoints, i.e. approximating 373 

steps 0.8×105-1×105.  374 

 375 

Evolvability 376 

After adaptation to a trait optimum of xopt = 0 had run to convergence (i.e. after 105 steps), we 377 

changed xopt to 2, forcing the quantitative trait to evolve rapidly. This allows the co-option of 378 
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benign cryptic sequences an opportunity to increase evolvability. We measured evolvability in 379 

two ways: as the inverse of the waiting time before trait x exceeded 1, and the inverse of the 380 

waiting time before the population recovered half of the fitness it lost after xopt changed. By 381 

default, we present results showing evolvability as time to fitness recovery; evolvability as time 382 

to trait recovery is shown only in Fig. S3. 383 

 384 

We want our measures of evolvability to reflect a genotype’s potential to generate beneficial 385 

mutations, but this goal was complicated by population size. A large population finds a given 386 

beneficial mutation faster than a small population does, inflating the total fixation flux 387 

∑ 𝜇𝜇𝑖𝑖𝑁𝑁𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖)𝑖𝑖∈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  , where µiN is the influx of mutations of beneficial type i and 388 

Pfix is their probability of fixation (the latter described by Eq. 9 in the supplemental material), in 389 

direct proportion to population size. We therefore divided our evolvability measures by the 390 

population size to correct for this effect. This normalization converts the population-level 391 

evolvability measure into a measure of the population-size-independent evolvability of a single 392 

individual that has the genotype of interest.  393 

 394 

RESULTS 395 

Recall that in the absence of variation in expression among genes, there are two solutions to 396 

handle erroneous expression due to stop codon readthrough: at high population size N, the 397 

local solution purges all deleterious cryptic sequences, making high rates of readthrough 398 

harmless, while at low N, the global solution reduces the rate of readthrough, allowing 399 

deleterious cryptic sequences to accumulate near-neutrally. At intermediate N, we see 400 
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bistability, with either solution possible, depending on starting conditions (Fig. 1, σE = 0). It is 401 

important to note that we use the word “bistability” loosely. Strictly speaking, bistability means 402 

that the system has two stable steady states (here a state is defined by readthrough rate and 403 

the exact property of each cryptic sequence), i.e. two attractors. But in a stochastic model, 404 

there are no attractors in the strict sense of the word, only a stationary distribution of states. 405 

We use the term bistability to refer to the case where the stationary distributions of states has 406 

two modes. Transitions between the two modes are rare, therefore the two modes can be 407 

loosely interpreted as the two attractors of the system.  408 

 409 

Our results qualitatively reproduce the bistability reported by Rajon and Masel (2011) for the 410 

case where there is no expression variation among genes, though the range of values of N 411 

leading to bistability is smaller than that found in Rajon and Masel (2011) in which a full Wright-412 

Fisher simulation is used. The smaller range of bistability in our model could be caused by the 413 

ease with which long-term evolution is captured using an origin-fixation framework, or by other 414 

subtle differences between the approaches, e.g. the greater ease of compensatory evolution 415 

under Wright-Fisher dynamics than under origin-fixation. We chose origin-fixation mainly to 416 

reduce the computational burden, which for our study was increased by the need to track 417 

individual loci, in contrast to previous work that needed only to track the number of loci with 418 

deleterious cryptic sequence, without distinguishing their identities (Rajon and Masel 2011; 419 

Rajon and Masel 2013).  420 

 421 
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However, bistability vanishes with variation in expression among genes (Fig. 1, σE = 2.25 and σE 422 

= 3.5). To understand why, consider a population initialized at low readthrough rate (ρ) and  many 423 

deleterious cryptic sequences. Because the strength of selection against a deleterious cryptic 424 

sequence at locus i is proportional to ρEi (the effect of a locus i on D in Eq. 3 is proportional to 425 

Ei), purging works at the most highly expressed loci, even when ρ is low. This lowers the 426 

proportion D of readthrough events that are deleterious, which relaxes selection for high fidelity, 427 

leading to an increase in ρ. As ρ increases, loci with lower Ei become subject to effective purging, 428 

which further reduces D, which feeds back to increase ρ further. Because Ei is log-normally 429 

distributed, but contributes linearly to selection via D, each round of the feedback loop involves 430 

smaller changes than the last. Eventually, the changes are too small for selection on them to 431 

overcome mutation bias in favor of deleterious sequences. Similarly, when a population is 432 

initialized at high ρ, mutational degradation begins at low Ei sites and arrests when selection is 433 

strong enough to kick in. The point of balance between mutation bias and selection defines a 434 

single intermediate attractor for σE ≥ 2.25, instead of the bistable pair of attractors found for 435 

uniform Ei (σE = 0). For σE < 2.25, bistability is still found, but for a narrower range of population 436 

sizes than in the absence of variation (Fig. S2). 437 

 438 

Even though bistability is not found for σE = 2.25, there is still a fairly sharp dichotomy, with 439 

solutions being either local (high ρ and low Ldel) or global (low ρ and high Ldel), and intermediate 440 

solutions found only for a very restrictive range of N, following a sigmoidal curve (Fig. 1a and 1c). 441 

Increasing variation in expression among genes blurs the boundary between the local solution 442 

and the global solution. Intermediate solutions are found for broader ranges of N as expression 443 
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variance σE increases to 3.5. The trend, as expression variance σE increases from 0, is to first 444 

replace bistability with a limited range of intermediate solutions (σE = 2.25), and then for the 445 

intermediate solutions to become more prevalent, with extreme local and global solutions 446 

becoming less attainable as σE > 2.25. 447 

  448 

The breakdown of the local solution begins with intermediate values of Ldel, while the breakdown 449 

of the global solution begins with intermediate values of ρ and D (Fig. 1 a-c). The breakdown of 450 

global solutions involves high-expression loci (Fig. 2), which affect D more than Ldel. In contrast, 451 

the breakdown of local solutions involves low-expression loci (Fig. 2), which affect Ldel more than 452 

D. Because ρ is better described as co-evolving with D than with Ldel, as explained earlier, 453 

intermediate values of ρ are seen more in the breakdown of global than local solutions.  454 

 455 

A primary motivation behind characterizing the two solutions is that the local solution was found 456 

to have dramatically higher evolvability than the global solution (Rajon and Masel 2011). We 457 

therefore check whether this conclusion still broadly stands in the presence of variance in 458 

expression levels. The local solution promotes evolvability by making benign cryptic sequences 459 

available for co-option. Differences in evolvability between genotypes should therefore be 460 

largely determined by the fraction of quantitative trait loci that carry benign rather than 461 

deleterious cryptic sequences. In agreement with this, evolvability inversely mirrors Ldel, as a 462 

function of population size, i.e., evolvability (Fig. 1d) resembles Ldel (Fig. 1c) far more than it 463 

resembles ρ (Fig. 1a) or D (Fig. 1b).  464 

 465 
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The distinction between global and location solutions becomes more extreme when the mutation 466 

bias toward deleterious rather than benign cryptic sequences is increased from 4:1 ratio to a 99:1 467 

ratio, but persists even when the mutation bias is eliminated in favor of a 1:1 ratio (Fig. 3). In the 468 

absence of mutation bias, there is less evolvability to be gained by the local relative to the global 469 

solution, since half the quantitative loci are available for co-option regardless (Fig. 3c). 470 

Nevertheless, a small evolvability advantage to the local solution can still be observed (Fig. 3d). 471 

In any case, assuming mutation bias toward deleterious options is biologically reasonable, and 472 

Fig. 3 shows that results are not sensitive to the quantitative strength of our assumption on this 473 

count. 474 

 475 

When we also account for mutation bias that tends to increase rather than decrease the error 476 

rate ρ, our model can explain the previously puzzling observation that the rate of 477 

transcriptional errors in small-Ne endosymbiont bacteria Buchnera is so much higher than that 478 

of C. elegans, and almost as high as that of large-Ne E. coli (McCandlish and Plotkin 2016; 479 

Traverse and Ochman 2016b). In extremely small populations, even the global solution is 480 

subject to a drift barrier, making ρ higher than its optimal value. For N so small such that most 481 

ρ-increasing mutations pass through the drift barrier, ρ can be almost as large as that in large 482 

populations (Fig. 4a). Despite their high error rates, these extremely small populations also 483 

carry heavy loads of deleterious cryptic products (Fig. 4b and c), consistent with the fact that in 484 

B. aphidicola, unlike E. coli, selection is unable to reduce the fraction of non-synonymous 485 

transcriptional errors that are non-synonymous (Traverse and Ochman 2016a). High ρ shows 486 

the absence of a global solution, while high D and Ldel show the absence of a local solution; 487 
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neither solution is found for a sufficiently small population. Similar error rates in large and small 488 

populations can also be found, given bias in mutations to ρ, when there is no variation in 489 

expression levels (Fig. S5). 490 

 491 

The parameters in our model can be classified into three groups, and the exploration of their 492 

values is summarized in Table S1. The first group controls selection coefficients relevant to the 493 

global vs. local solution outcome: the variance in expression levels (σE2), the number of loci (L, 494 

Fig. S4), the cost of misfolded protein molecules (c), and the cost of quality control (δ, Fig. S6). 495 

The second group controls mutation bias relevant to the global vs. local solution outcome: the 496 

frequency with which mutations turn deleterious cryptic sequences benign versus the reverse 497 

(µben:µdel), whether mutations to ρ tend to increase or decrease it (P+ρ:P-ρ), and variance in the 498 

magnitude of mutations to ρ (σρ2, Fig. S7). The third group contains all the parameters that 499 

control the evolution of quantitative traits encoded by a minority of loci relevant to the 500 

evolvability properties. Because our focus in this manuscript is on the evolution of global vs. 501 

local solutions, not on the precise details of the relationship between local solutions and 502 

evolvability, these parameter values were explored less.   503 

 504 

The influence of σE2 dominates our results. Its effect in eliminating bistability holds, with the 505 

one exception that very “cheap” quality control could partially restore bistability (Fig. S6). 506 

Otherwise, we found that three parameters – c, δ, and µben:µdel –  are the main determinants of 507 

the population size at which the transition between global and local solutions takes place, and 508 

of the exact error rate that evolves for global and local solutions (Table S1). The other 509 
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parameters in the first and second groups have little or no influence on the evolutionary 510 

outcomes that we study. In general, parameters in the first group, controlling selection, have 511 

stronger effects than the second group, controlling mutation bias.  512 

 513 

DISCUSSION 514 

When genes vary in their expression levels, the dichotomy between the local and global 515 

solutions is replaced by a continuous transition. Very large populations still resemble the local 516 

solution, although mutations making cryptic sequences deleterious still pass through the drift 517 

barrier in the occasional low-expression gene. Very small populations still resemble the global 518 

solution, although mutations making cryptic sequences deleterious may still be effectively 519 

purged in a few high-expression genes; because their high expression disproportionately affects 520 

the burden from misexpression, this relaxes expression for high fidelity, leading to less strict 521 

quality control.  522 

 523 

In agreement with drift barrier theory, large-Ne E. coli exhibits a local solution – a tendency for 524 

transcription errors to have synonymous effects – while small-Ne B. aphidicola does not 525 

(Traverse and Ochman 2016a). While as predicted, the global solution of low transcriptional 526 

error rates does not obey the naïve drift barrier expectation of being higher in B. aphidicola 527 

than in E. coli (Traverse and Ochman 2016a), nor are transcription error rates drastically lower 528 

in B. aphidicola as predicted by previous theory on the interplay between global and local 529 

solutions (Rajon and Masel 2011; McCandlish and Plotkin 2016). This significantly lower rate 530 

relative to E. coli is, however, found in intermediate-Ne C. elegans. Where previous work (Rajon 531 
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and Masel 2011) explained only the relative rates for E. coli and C. elegans, here we also explain 532 

the high error rate of B. aphidicola by taking into account a drift barrier on the global solution 533 

of low error rates. This drift barrier is significant because of mutation bias towards higher error 534 

rates. Small B. aphidicola populations have higher error rates than C. elegans because it is the 535 

best that evolution at low Ne can manage, despite the deleterious consequences; large E. coli 536 

populations have similarly high error rates because with the worst consequences of error 537 

already purged, they don’t need to incur the cost that quality control entails.  538 

 539 

With small amounts of variation in expression among genes, the range of intermediate values 540 

of Ne for which bistability is found shrinks. With more variation, bistability vanishes in favor of a 541 

sigmoidal transition between global and local solutions. With still more, the sigmoid is 542 

smoothed out, and intermediate solutions are found for most values of Ne.  543 

 544 

To interpret our results correctly, we must therefore estimate the degree to which genes vary. 545 

The results presented here focus on two estimates of the variation in log-expression in yeast, 546 

namely standard deviations of 2.25 and 3.5. However, variation among genes in the deleterious 547 

consequences of misfolding, in addition to variation in expression levels, might make larger 548 

standard deviations a better model of reality, further supporting a continuum of intermediate 549 

solutions. In other words, the value of c in Eq. 3 may vary among genes. Note that apart from 550 

the second-order ρ2 term, the cost of a deleterious misfolded protein i depends only on the 551 

product of ci and expression level Ei. Given log-normal distributions of ci and expression level 552 

Ei, the variance of the log-product is equal to the sum of the two log-variances, so we can 553 
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transform this scenario into one where c is constant, and σE2 is equal to this sum. This can be 554 

done because changing ci and Ei only affects wmisfolding and not other factors such as the 555 

magnitude of a locus’s influence on the quantitative trait. In other words, adding variation to c 556 

is almost equivalent to increasing the variance in expression levels.  557 

 558 

The values of µdel and µben may also vary among genes. Drift barrier effects operate via the 559 

effect of population size on the fate of deleterious not beneficial mutations – if purging is 560 

efficient, then the beneficial mutation rate does not matter, because a single beneficial 561 

mutation is enough. We therefore focus on µdel.  The inclusion of a benign-to-deleterious 562 

mutation Mi at locus i depends on the product of µdel at locus i and Mi‘s probability of fixation. 563 

It seems likely that variation among genes in the probability that a deleterious cryptic sequence 564 

becomes fixed will swamp variation in the deleterious mutation rate – variation in expression 565 

levels cause the former to vary over orders of magnitude. Note that as for the case of variation 566 

in c, it is possible to construct a manipulation of Ei that has the same effect on the relevant 567 

product, via the probability of fixation, as would occur given a change in µdel. While this case is 568 

less neat than for the product ciEi, it illustrates that a model of variation in expression levels 569 

can reflect, to some extent, the effect of variation in µdel. 570 

 571 

Our model makes three critical assumptions, which must be understood for the results to be 572 

interpreted appropriately. First, a “locus” in our model consists of one regular and one cryptic 573 

sequence. The primary example that we used to parameterize the simulations posits an entire 574 

protein-coding gene as the regular sequence, and the extended polypeptide resulting from stop 575 
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codon readthrough as the cryptic alternative. In the example of transcriptional errors, a locus is 576 

a single codon, with its corresponding amino acid being the regular sequence, and the most 577 

common consequence of a transcriptional error as the cryptic. The case of one regular 578 

sequence and many alternative cryptic ones has not been modeled. Similarly, proteins may 579 

each have a regular fold or binding partner, and our model considers the contrast between this 580 

state and a single cryptic alternative.  581 

 582 

Second, we assume that the rate of gene expression errors is set globally, across all loci. In 583 

reality, individual context may also affect the error rate, giving error rates a local solution 584 

aspect as well. A model of three rather than two interacting solutions – global error rates, local 585 

error rates, and local robustness to the consequences of error – remains for future work. 586 

Perhaps highly expressed genes will have both more benign cryptic sequences and lower rates 587 

of error, or perhaps the evolution of one kind of local solution will alleviate the need for 588 

another. Testing this empirically requires data on site-specific error rates and on a credible 589 

marker for the benign status of members of an identifiable class of cryptic sequences. Such 590 

tools are now becoming available, and indeed we recently found a positive correlation between 591 

a large number of readthrough errors at a particular stop codon and the benign status of the 592 

readthrough translation product (Kosinski et al., manuscript in preparation). We also reanalyzed 593 

the data of Traverse and Ochman (2016a) to find that highly expressed transcripts have lower 594 

transcriptional error rates (unpublished result).  595 

 596 
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Finally, we assume that the consequences of errors have a bimodal distribution: either highly 597 

deleterious or largely benign, but rarely in between. In other words, we assume that a basic 598 

phenomenon in biology is that changes tend to either break something, or to tinker with it. 599 

There are a variety of lines of evidence supporting this intuitively reasonable assumption 600 

(Fudala and Korona 2009; Wylie and Shakhnovich 2011).  601 
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Figure 1: Evolutionary dynamics are bistable 

in the absence of variation in gene 

expression (σE = 0), but not with variation in 

gene expression (σE = 2.25 and σE = 3.5). We 

calculated the average values of ρ, D, and 

Ldel towards the end of the simulations, and 

then measured the genotype evolvability 

after changing the optimal trait value (see 

Methods for details). For each value of N, 

20 simulations were initialized at high-ρ 

conditions and 15 at low-ρ conditions. For 

σE = 2.25 and σE = 3.5, simulations from the 

two initial conditions reached 

indistinguishable endpoints (Fig. S1), so the 

results were pooled. The increment in N is 

100.1 between 104.4 and 105.2 to increase 

resolution, and is 100.2 elsewhere. At σE = 0, 

D is indistinguishable from zero for N ≥

 105.2 under high-ρ conditions and for N ≥

 104.7 under low-ρ conditions, corresponding 

to Ldel being effectively zero. In contrast, 

when σE = 2.25 or 3.5, because the 

weakness of selection on low-expression 

genes prevents Ldel from falling all the way 

to zero, D never quite reaches zero either, 

despite appearing superimposable in b. For 

a to c, data is shown as mean±SD. For 

evolvability (d), data is shown as mean±SE. 

For a and d, these apply to log-transformed 

values. Evolvability is based on time to 

fitness recovery; see Fig. S3 for similar results based on time to trait recovery. L = 600.  
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Figure 2: The effectiveness of purging a cryptic sequence of deleterious mutations depends on 

its expression level. We examined the states of the cryptic sequences of the loci with the 10 

highest, the 10 lowest, and the 10 median expression levels among the 600 loci in each of the 

simulations showed in Fig. 1 (σE = 2.25). We counted how often each locus contained a 

deleterious cryptic sequence among the last 20 timepoints we had collected from that 

simulation. Bars represent the proportion of time that each of the 10 loci carried a deleterious 

cryptic sequence, averaged over 20 replicates, and shown as mean±SD  . Simulations were 

initialized at low-ρ conditions.  
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Figure 3: Results become more extreme 

when the mutation bias in the state of a 

cryptic sequence is increased from 4:1 ratio 

to a 99:1 ratio, but do not disappear 

completely when the mutation bias is 

eliminated in favor of a 1:1 ratio. The 

location of the drift barrier shifts as a 

function of mutation bias, but the dichotomy 

between local and global solutions (as seen 

in values of ρ and D) is not sensitive to 

relaxing the mutation bias. The advantage of 

the local solution with respect to evolvability 

(as seen in d and mirrored in Ldel (c)) is more 

sensitive to lack of mutation bias, but is still 

visible even with a 1:1 ratio. To compare 

results across different mutation biases, we 

kept the sum of the two mutation rates 

constant. For the low-ρ initial conditions, the 

number of deleterious cryptic sequences 

was initialized at the neutral mutational 

equilibrium of L×µdel/(µdel+µben) (rounded to 

the nearest integer). For µdel:µben = 4:1, we 

reused the results shown in Fig. 1. For the 

other ratios, five replicates were run for each 

initial condition, and pooled. For panels a to c, data is shown as mean±SD. For panel d, data is  

shown as mean±SE. For a and d, these apply to log-transformed values. L = 600 and σE = 2.25.  
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Figure 4: Mutation bias tends to increase ρ, 

such that even the global solution breaks down 

in sufficiently small populations. P+ρ is the 

probability that a mutation increases ρ, and P-ρ 

is the probability of a decrease. Each data 

point, (except those taken from Fig. 1 with 

P+ρ:P-ρ = 1:1 and N = 103.6 to N = 106.0), is 

pooled from 5 replicates of high-ρ initial 

conditions and 5 replicates of low-ρ initial 

conditions. Because we assume multiplicative 

mutational effects to ρ, its value converges 

even for extremely small N. I.e., as ρ increases, 

the additive effect size Δρ of a typical mutation 

also increases, preventing it from passing 

through the drift barrier. For a, b, and c, data is 

shown as mean±SD. For d, data is shown as 

mean±SE. For a and d, these apply to log-

transformed values. L = 600 and σE = 2.25.  
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Implementation of origin‐fixation simulations 

Origin‐fixation models are often implemented via a crude rejection algorithm; large numbers of 

mutations are simulated, and each is accepted as a successful fixation event if and only if a 

random number sample from the uniform [0, 1] distribution falls below its (fairly low) fixation 

probability. For large N, this method is computationally slow when significant numbers of 

nearly neutral mutations must be sampled before one fixes with probability ~1/N. Given that 

our model posits only a relatively small range of possible mutations, we instead sampled only 

mutations that go on to become fixed, by sampling according to the relative values of “fixation 

flux”, proportional to mutation rate  fixation probability for each of our six categories of 

mutation. In other words, we used a form of the Gillespie (1977) algorithm. 

 

In a haploid population of size N, the probability of fixation of a new mutant into a resident 

population is given by  

 

௙ܲ௜௫ ൌ
ଵି௘షೞ

ଵି௘షಿೞ
                       (9) 

 

where s = wmutant/wresident‐1. It is then straightforward to calculate fixation flux values for all 

possible switches between benign and deleterious states: 

 

ௗ݂௘௟_௧௢_௕௘௡ ൌ ௕௘௡ߤܰ ෍ ௙ܲ௜௫ሺ݈݀݁_ݐܽ_ܾ݊݁_݋ݐ_݅ሻ
௜∈௟௢௖௜_௪௜௧௛_ௗ௘௟_௖௥௬௣௧_௦௘௤

																																										ሺ10ሻ 

௕݂௘௡_௧௢_ௗ௘௟ ൌ ௗ௘௟ߤܰ ෍ ௙ܲ௜௫ሺܾ݁݊_ݐܽ_݈݁݀_݋ݐ_݅ሻ
௜∈௟௢௖௜_௪௜௧௛_௕௘௡_௖௥௬௣௧_௦௘௤

																																										ሺ11ሻ 
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Matters are slightly more complicated for quantitative mutations to α, β and ρ, because we 

must integrate the fixation flux over all possible sizes (∆ߙ௞, ∆ߚ௞, and ∆logଵ଴ߩ) for a mutation at 

a given locus, prior to summing across loci to arrive at the fixation flux for an entire mutational 

category:  

 

ఈ݂ ൌ ఈ෍නߤܰ ௙ܲ௜௫ሺ∆ߙ௞ሻܲሺ∆ߙ௞ሻ݀∆ߙ௞

௄

௞

																																																																																													ሺ12ሻ 

ఉ݂ ൌ ఉ෍නߤܰ ௙ܲ௜௫ሺ∆ߚ௞ሻܲሺ∆ߚ௞ሻ݀∆ߚ௞

௄

௞

																																																																																														ሺ13ሻ 

ఘ݂ ൌ ఘߤܰ න ௙ܲ௜௫ሺ∆logଵ଴ߩሻܲሺ∆logଵ଴ߩሻ݀∆݈݋ ଵ݃଴ߩ																																																																												ሺ14ሻ 

 

where P(Δαk), P(Δβk), and P(Δlog10ρ) are the probability densities for the magnitude of a given 

kind of mutation. 

 

We use the quadrature method to calculate the integral over these possibilities, using a grid of 

2000, limited for Δαk to the interval [–αk/a‐5σm/K, –αk/a+5σm/K], for Δβk to the interval [–βk/a‐

5σm/K, –βk/a+5σm/K], and for Δlog10ρ, to the interval [‐10σρ, min(10σρ , ‐log10ρ)]. In the latter 

case, the number of grid intervals is reduced proportional to any truncation of the interval at     

‐log10ρ.  
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For mutational co‐options of benign cryptic sequences, the effect of replacing the value of αk 

with that of αk+βk is fixed, but there is also a stochastic range of effects of initializing a new βk 

and a new Bk (Eq. 15). Let P(βk') be the probability density of a new βk given by Normal(0, V(a, K, 

σm)), and ܲሺܤ௞ᇱ ൌ 1ሻ ൌ 1 െ ܲሺܤ௞
ᇱ ൌ 0ሻ be the probability that a new Bk equals to 1, and hence 

the new βk  affects the trait value. The fixation flux associated with cooption mutations we 

obtained numerically by integration over the range [‐5σm/K, 5σm/K]: 

 

௖݂௢௢௣௧ ൌ ௖௢௢௣௧ߤܰ ෍ ቌ
ܲሺܤ௞

ᇱ ൌ 1ሻන ௙ܲ௜௫ሺߚ௞
ᇱ , ௞ܤ

ᇱ ൌ 1ሻܲሺߚ௞
ᇱ ሻ݀ߚ௞

ᇱ

൅ܲሺܤ௞
ᇱ ൌ 0ሻ ௙ܲ௜௫ሺܤ௞

ᇱ ൌ 0ሻ
ቍ			

௄

௞∈௟௢௖௜_௪௜௧௛_௕௘௡_௖௥௬௣௧_௦௘௤

ሺ15ሻ 

 

The expected waiting time before the current genotype is replaced by another is 

 

waiting	time ൌ ଵ

୲୭୲ୟ୪	୤୧୶ୟ୲୧୭୬	୤୪୳୶	୭୴ୣ୰	ୟ୪୪	ୱ୧୶	ୡୟ୲ୣ୥୭୰୧ୣୱ
                                           (16) 

 

A  standard Gillespie  (1977)  algorithm would  calculate  the  realized waiting  time  as  a  random 

number drawn from an exponential distribution with this mean. Since we are only interested in 

the outcome of evolution, and not the variation in its timecourse, we used the expected waiting 

time instead, decreasing our computation time. The waiting time can be interpreted as the time 

it  takes  for  a mutation  destined  for  fixation  to  appear,  neglecting  the  time  taken during  the 

process of fixation itself. Using this interpretation, we specify waiting times in terms of numbers 

of generations, based on our assumptions about absolute mutation rates. 
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We assign the identity of the next fixation event among the six categories according to 

probabilities proportional to their relative fixation fluxes, then we assign the identity within the 

category. For switches between benign and deleterious states, allocating a fixation event within 

a category according to the relative values of fixation fluxes is straightforward. For mutations to 

ρ, α, and β, and mutational co‐option, we relax the granularity and cutoff assumptions of the 

grid‐integration method when choosing a mutation within the category. Instead, we sample a 

mutational value of Δlog10ρ from Normal(ρbias, σρ
2). We reject and resample Δlog10ρ if 

Δlogଵ଴ߩ ൒ െlogଵ଴ߩ. Otherwise, we accept vs. reject‐resample according to the fixation 

probability of that exact mutation, by comparing this probability to a random number uniformly 

distributed at [0, 1.1the maximum fixation probability across the grid points previously 

calculated for Δlog10ρ during our grid calculation]. For Δα (or Δβ), the procedure is conceptually 

similar but has a more complicated implementation. We first sample from Normal(0, (σm /K)2). 

We then add the random number to each of the values of –αk/a, and calculate the sum of 

corresponding fixation probabilities across all loci k. We accept vs. reject‐resample the 

mutation by comparing this sum to a random sample from a uniform distribution at [0, 1.1the 

maximum corresponding fixation probability sum calculated during our grid calculation]. If the 

mutation is accepted, we allocate it to a locus k with probability proportional to their relative 

fixation probabilities. For mutational co‐option of a benign cryptic sequence, the main effect is 

to replace αk with αk+βk, but there are also subtler effects arising from the reinitialization of the 

new cryptic sequence. Any of the k loci for which B = 1 are eligible for co‐option, the new value 

of B may be either 0 to 1, and the new βk may take a range of values. Each combination of k and 

new B has its own fitness flux, and the first choice is among these {k, B} pairs. Next we sample 
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βk from Normal(0, (σm/K)2); for a new B equal to 0 we always accept the result, and for new B 

equal to 1, we accept vs. reject‐resample βk by comparing its probability of fixation to a random 

sample from a uniform distribution at [0, 1.1the maximum corresponding fixation probability 

sum calculated during our grid calculation]. 
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Figure S1: At σE = 2.25, the final state of 

the evolutionary simulation does not 

depend on the initial conditions. The 

data shown here is the same as that 

shown pooled in Fig. 1. 
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Figure S2: The range of population sizes that exhibit significant bistability drops dramatically 

even for σE < 2.25. We used average values of ρ towards the end of the simulations as a 

measure of the solution found by each replicate. For each initial condition, we averaged over 

five replicates (except for σE = 0, 2.25, and 3.5, where we reused the 20 replicates of Fig. 1), and 

over each of the values of N between 103.6 to 106, with an increment of 100.2. The extent of 

bistability was assessed as ∑ ሺlogଵ଴̅ߩ௜௡௜௧_௟௢௪	 െ logଵ଴̅ߩ௜௡௜௧_௛௜௚௛ሻଶே . L = 600. 

 

 

 

   

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2016. ; https://doi.org/10.1101/058453doi: bioRxiv preprint 

https://doi.org/10.1101/058453
http://creativecommons.org/licenses/by-nd/4.0/


9 

 

Figure S3: The time taken for the trait to approach the new value of xopt behaves similarly to the 

recovery time of fitness shown in Fig. 1d. The same simulations were used as in Fig. 1. At σE = 

2.25 and σE = 3.5, we pooled the results from high‐ρ and low‐ρ conditions. Evolvability is shown 

as meanേSE of the log‐transformed values. L = 600.
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Figure S4: Changing the number of loci does 

not qualitatively change our results. 

Quantitatively, fewer loci favor more local 

solutions. Changing L alters the average 

contribution of each locus to D. This alters the 

average strength of selection on each locus, 

independent of population size. Therefore, the 

same solutions, characterized by the values of 

ρ and D, are “shifted” to small values of N as L 

decreases. While L changed, we held the 

number of quantitative trait loci constant at 

50. For L = 600, we reused the results shown 

in Fig. 1. For other values of L, five replicates 

were run for each of the two initial conditions. 

We pooled results from both initial conditions 

across all values of L. We normalized Ldel to the 

neutral mutational equilibrium of 

Lൈµdel/(µdel+µben). For panels a to c, data is 

shown as meanേSD. For d, data is shown as 

meanേSE. For a and d, these apply to log‐

transformed values. σE = 2.25. 
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Figure S5: Fig. 4 results (that the global 

solution breaks down in sufficiently small 

populations) remain true in the absence 

of variation of expression levels. Data 

points between N = 103.6 to N = 106.0 and 

P+ρ:P‐ρ = 1:1, are reused from Fig. 1; for 

the others, we performed 5 replicates for 

each condition. For panels a to c, data is 

shown as meanേSD. For d, data is shown 

as meanേSE. For a and d, these apply to 

log‐transformed values. L = 600. 
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Figure S6: Increasing the cost of quality 

control δ expands global solutions to 

smaller populations and reduces the 

differences in error rates as a function of 

population size. For δ = 10‐2.5, we reused 

the data from Fig. 1; for each of the other 

values of δ, we ran 5 replicates from the 

high‐ρ initial condition and 5 from the 

low‐ρ initial condition. Each data point 

represents the pooled results from the 

two initial conditions. For panels a to c, 

data is shown as meanേSD. For d, data is 

based on time to fitness recovery and is 

shown as meanേSE. For a and d, the 

mean, SD and SE are calculated on log‐

transformed values. The large error bars 

at N = 105.8 under δ = 10‐3.5 across all 

panels are due to different initial 

conditions, which is a sign of bistability. L 

= 600, σE = 2.25. 
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Figure S7: The variance in the magnitude of 

mutations to ρ does not affect a 

population’s solution to error or 

evolvability. For σρ = 0.2, we reused the data 

from Fig. 1; for each of the other values of 

σρ, we ran 5 replicates from each of the two 

initial conditions. We pooled results from 

the two initial conditions for each data 

point. For panels a to c, data is shown as 

meanേSD. For d, data is based on time to 

fitness recovery and is shown as meanേSE. 

For a and d, these apply to log‐transformed 

values. L = 600, σE = 2.25.
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Table S1: Summary of model parameters 

[1] The numbers outside parentheses are the default values and the numbers inside indicate the parameter range explored.  
[2] Rajon and Masel (2011)

Group  Parameter  Biological meaning  Exploration 
Parameter 
values in 
model[1] 

Influence on global v. local solutions 

Selection for 
local vs. global 

solution 

σE
2  Variance of log2 expression among loci  Fig. 1, Fig. S2  5.1 (0‐12.3)  Central finding: lower σE

2 promotes dichotomy 

c  Cost of misfolding  Fig. S3[2]  20 (7‐28[2]) 
Large c makes ρ smaller, with a slightly larger impact on 
global solutions, and expands the bistable region to 

smaller populations. 

δ  Scaling of quality control costs  Fig. S6  10‐2.5 (10‐0.5‐10‐
3.5) 

Higher cost makes ρ larger, with a larger impact on global 
solutions, and expands global solutions to smaller 

populations   

L  Total number of loci  Fig. S4, Fig. S2[2]  600 (200‐1000) 
Lower L shift the transition between local and global 

solutions to smaller populations, but maintain the shape of 
the transition    

Mutation bias 
for local vs. 

global 
solution 

μdel 
Rate of benign‐to‐deleterious 

mutations 
Fig. 3  μdel:μben = 4:1 

 (1:1‐99:1) 
Stronger mutation bias lowers ρ and shifts the transition 
between local and global solutions to larger populations 

μben 
Rate of deleterious‐to‐benign 

mutations 
P+ρൈμρ  Rate of mutations that increase ρ 

Fig. 4, Fig. S5 
P+ρ:P‐ρ = 1:1 
(1:1‐99:1) 

 

Mutation bias prevents extremely small populations from 
reducing ρ P‐ρൈμρ

  Rate of mutations that decrease ρ 

σρ
2  var(mutations to ρ)  Fig. S7  0.04 (2.5ൈ10‐3‐ 

0.64)  No apparent influence 

Relevant only 
for 

quantitative 
effects and 

evolvability (of 
peripheral 

interest to our 
central 
findings) 

K  Number of quantitative trait loci  Fig. S7[2]  50 (5‐50[2]) 

‐ 

a  Speed that α and β revert to mean  Fig. S10[2]  750 (250‐
2000[2]) 

μcoopt  Rate of co‐option mutations  ‐  2.56ൈ10‐9 
μα  Rate of mutations to α    ‐  3ൈ10‐7 
μβ  Rate of mutations to β  ‐  3ൈ10‐8 
σm

2
  σm

2/K = var(mutations to α and β)  Fig. S8[2]  0.25 (0.04‐1[2]) 

σf  Strength of selection on trait 
No loss of generality 
when σm

2 only is 
explored 

0.2 

.
C

C
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Y
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