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Abstract
Neuroscience has focused on the detailed implementation of computation, studying neural codes,
dynamics and circuits. In machine learning, however, artificial neural networks tend to eschew
precisely designed codes, dynamics or circuits in favor of brute force optimization of a cost func-
tion, often using simple and relatively uniform initial architectures. Two recent developments have
emerged within machine learning that create an opportunity to connect these seemingly divergent
perspectives. First, structured architectures are used, including dedicated systems for attention,
recursion and various forms of short- and long-term memory storage. Second, cost functions and
training procedures have become more complex and are varied across layers and over time. Here
we think about the brain in terms of these ideas. We hypothesize that (1) the brain optimizes cost
functions, (2) the cost functions are diverse and differ across brain locations and over development,
and (3) optimization operates within a pre-structured architecture matched to the computational
problems posed by behavior. In support of these hypotheses, we argue that a range of implemen-
tations of credit assignment through multiple layers of neurons are compatible with our current
knowledge of neural circuitry, and that the brain’s specialized systems can be interpreted as en-
abling efficient optimization for specific problem classes. Such a heterogeneously optimized system,
enabled by a series of interacting cost functions, serves to make learning data-efficient and precisely
targeted to the needs of the organism. We suggest directions by which neuroscience could seek to
refine and test these hypotheses.
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1. Introduction

Machine learning and neuroscience speak dif-
ferent languages today. Brain science has dis-
covered a dazzling array of brain areas (Solari
and Stoner, 2015), cell types, molecules, cellular
states, and mechanisms for computation and in-
formation storage. Machine learning, in contrast,
has largely focused on instantiations of a single
principle: function optimization. It has found
that simple optimization objectives, like mini-
mizing classification error, can lead to the forma-
tion of rich internal representations and powerful
algorithmic capabilities in multilayer and recur-
rent networks (LeCun et al., 2015; Schmidhuber,
2015). Here we seek to connect these perspec-
tives.

The artificial neural networks now promi-
nent in machine learning were, of course, orig-
inally inspired by neuroscience (McCulloch and
Pitts, 1943). While neuroscience has continued
to play a role (Cox and Dean, 2014), many of
the major developments were guided by insights
into the mathematics of efficient optimization,
rather than neuroscientific findings (Sutskever
and Martens, 2013). The field has advanced
from simple linear systems (Minsky and Papert,
1972), to nonlinear networks (Haykin, 1994),
to deep and recurrent networks (Schmidhuber,
2015; LeCun et al., 2015). Backpropagation
of error (Werbos, 1974, 1982; Rumelhart et al.,
1986) enabled neural networks to be trained effi-
ciently, by providing an efficient means to com-
pute the gradient with respect to the weights
of a multi-layer network. Methods of training
have improved to include momentum terms, bet-
ter weight initializations, conjugate gradients and
so forth, evolving to the current breed of net-
works optimized using batch-wise stochastic gra-
dient descent. These developments have little ob-
vious connection to neuroscience.

We will argue here, however, that neuro-
science and machine learning are again ripe for
convergence. Three aspects of machine learning
are particularly important in the context of this
paper. First, machine learning has focused on
the optimization of cost functions (Figure 1A).

Second, recent work in machine learning has
started to introduce complex cost functions,
those that are not uniform across layers and
time, and those that arise from interactions be-
tween different parts of a network. For exam-
ple, introducing the objective of temporal coher-
ence for lower layers (non-uniform cost function
over space) improves feature learning (Sermanet
and Kavukcuoglu, 2013), cost function sched-
ules (non-uniform cost function over time) im-
prove1 generalization (Saxe et al., 2013; Good-
fellow et al., 2014b; Gülçehre and Bengio, 2016)
and adversarial networks – an example of a cost
function arising from internal interactions – al-
low gradient-based training of generative mod-
els (Goodfellow et al., 2014a)2. Networks that are
easier to train are being used to provide “hints”
to help bootstrap the training of more powerful
networks (Romero et al., 2014).

Third, machine learning has also begun to di-
versify the architectures that are subject to opti-
mization. It has introduced simple memory cells
with multiple persistent states (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014), more
complex elementary units such as “capsules” and
other structures (Hinton et al., 2011; Livni et al.,
2013; Delalleau and Bengio, 2011; Tang et al.,
2012), content addressable (Weston et al., 2014;
Graves et al., 2014) and location addressable
memories (Graves et al., 2014), as well as point-
ers (Kurach et al., 2015) and hard-coded arith-
metic operations (Neelakantan et al., 2015).

These three ideas have, so far, not received
much attention in neuroscience. We thus formu-
late these ideas as three hypotheses about the
brain, examine evidence for them, and sketch
how experiments could test them. But first, let
us state the hypotheses more precisely.

1.1 Hypothesis 1 – The brain optimizes
cost functions.

The central hypothesis for linking the two fields
is that biological systems, like many machine-
learning systems, are able to optimize cost func-
tions. The idea of cost functions means that neu-
rons in a brain area can somehow change their

1. Hyper-parameter optimization shows that complicated schedules of training, which differ across parts of the
network, lead to optimal performance (Maclaurin et al., 2015).

2. In adversarial networks, a generator network is trained to fool a discriminator network into being unable to
distinguish generated samples from real data samples, while the discriminator network is trained to prevent the
generator network from fooling it in this way.
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properties, e.g., the properties of their synapses,
so that they get better at doing whatever the cost
function defines as their role. Human behavior
sometimes approaches optimality in a domain,
e.g., during movement (Körding, 2007), which
suggests that the brain may have learned opti-
mal strategies. Subjects minimize energy con-
sumption of their movement system (Taylor and
Faisal, 2011), and minimize risk and damage to
their body, while maximizing financial and move-
ment gains. Computationally, we now know that
optimization of trajectories gives rise to elegant
solutions for very complex motor tasks (Mor-
datch et al., 2012; Todorov and Jordan, 2002;
Harris and Wolpert, 1998). We suggest that cost
function optimization occurs much more gener-
ally in shaping the internal representations and
processes used by the brain. Importantly, we also
suggest that this requires the brain to have mech-
anisms for efficient credit assignment in multi-
layer and recurrent networks.

1.2 Hypothesis 2 – Cost functions are
diverse across areas and change over
development.

A second realization is that cost functions need
not be global. Neurons in different brain ar-
eas may optimize different things, e.g., the mean
squared error of movements, surprise in a visual
stimulus, or the allocation of attention. Impor-
tantly, such a cost function could be locally gen-
erated. For example, neurons could locally eval-
uate the quality of their statistical model of their
inputs (Figure 1B). Alternatively, cost func-
tions for one area could be generated by another
area. Moreover, cost functions may change over
time, e.g., guiding young humans to understand-
ing simple visual contrasts early on, and faces a
bit later3. This could allow the developing brain
to bootstrap more complex knowledge based on
simpler knowledge. Cost functions in the brain
are likely to be complex and to be arranged to
vary across areas and over development.

1.3 Hypothesis 3 – Specialized systems
allow efficient solution of key
computational problems.

A third realization is that structure matters.
The patterns of information flow seem funda-
mentally different across brain areas, suggesting
that they solve distinct computational problems.
Some brain areas are highly recurrent, perhaps
making them predestined for short-term mem-
ory storage (Wang, 2012). Some areas contain
cell types that can switch between qualitatively
different states of activation, such as a persis-
tent firing mode versus a transient firing mode,
in response to particular neurotransmitters (Has-
selmo, 2006). Other areas, like the thalamus ap-
pear to have the information from other areas
flowing through them, perhaps allowing them to
determine information routing (Sherman, 2005).
Areas like the basal ganglia are involved in re-
inforcement learning and gating of discrete deci-
sions (Sejnowski and Poizner, 2014; Doya, 1999).
As every programmer knows, specialized algo-
rithms matter for efficient solutions to computa-
tional problems, and the brain is likely to make
good use of such specialization (Figure 1C).

These ideas are inspired by recent advances
in machine learning, but we also propose that
the brain has major differences from any of to-
day’s machine learning techniques. In particular,
the world gives us a relatively limited amount
of information that we could use for supervised
learning (Fodor and Crowther, 2002). There is
a huge amount of information available for un-
supervised learning, but there is no reason to
assume that a generic unsupervised algorithm,
no matter how powerful, would learn the precise
things that humans need to know, in the order
that they need to know it. The evolutionary chal-
lenge of making unsupervised learning solve the
“right” problems is, therefore, to find a sequence
of cost functions that will deterministically build
circuits and behaviors according to prescribed de-
velopmental stages, so that in the end a relatively
small amount of information suffices to produce
the right behavior. For example, a developing
duck imprints (Tinbergen, 1965) a template of
its parent, and then uses that template to gener-

3. Psychologists have been quantifying the subtleties of many such developmental stagings, e.g., of our perceptual
and motor performance, e.g., (Nardini et al., 2010; Dekker and Nardini, 2015; McKone et al., 2009).
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ate goal-targets that help it develop other skills
like foraging.

Generalizing from this and from other stud-
ies (Ullman et al., 2012; Minsky, 1977), we pro-
pose that many of the brain’s cost functions arise
from such an internal bootstrapping process. In-
deed, we propose that biological development and
reinforcement learning can, in effect, program the
emergence of a sequence of cost functions that
precisely anticipates the future needs faced by
the brain’s internal subsystems, as well as by the
organism as a whole. This type of developmen-
tally programmed bootstrapping generates an in-
ternal infrastructure of cost functions which is di-
verse and complex, while simplifying the learning
problems faced by the brain’s internal processes.
Beyond simple tasks like familial imprinting, this
type of bootstrapping could extend to higher cog-
nition, e.g., internally generated cost functions
could train a developing brain to properly access
its memory or to organize its actions in ways that
will prove to be useful later on. The potential
bootstrapping mechanisms that we will consider

operate in the context of unsupervised and rein-
forcement learning, and go well beyond the types
of curriculum learning ideas used in today’s ma-
chine learning (Bengio et al., 2009).

In the rest of this paper, we will elaborate
on these hypotheses. First, we will argue that
both local and multi-layer optimization is, per-
haps surprisingly, compatible with what we know
about the brain. Second, we will argue that cost
functions differ across brain areas and change
over time and describe how cost functions inter-
acting in an orchestrated way could allow boot-
strapping of complex function. Third, we will
list a broad set of specialized problems that need
to be solved by neural computation, and the
brain areas that have structure that seems to
be matched to a particular computational prob-
lem. We then discuss some implications of the
above hypotheses for research approaches in neu-
roscience and machine learning, and sketch a set
of experiments to test these hypotheses. Finally,
we discuss this architecture from the perspective
of evolution.

2. The brain can optimize cost
functions

Much of machine learning is based on efficiently
optimizing functions, and, as we will detail be-
low, the ability to use backpropagation of er-
ror (Werbos, 1974; Rumelhart et al., 1986) to cal-
culate gradients of arbitrary parametrized func-
tions has been a key breakthrough. In Hypoth-
esis 1, we claim that the brain is also, at least
in part4, an optimization machine. But what ex-
actly does it mean to say that the brain can op-
timize cost functions? After all, many processes
can be viewed as optimizations. For example, the
laws of physics are often viewed as minimizing an
action functional, while evolution optimizes the

fitness of replicators over a long timescale. To
be clear, our main claims are: that a) the brain
has powerful mechanisms for credit assignment
during learning that allow it to optimize global
functions in multi-layer networks by adjusting
the properties of each neuron to contribute to
the global outcome, and that b) the brain has
mechanisms to specify exactly which cost func-
tions it subjects its networks to, i.e., that the
cost functions are highly tunable, shaped by evo-
lution and matched to the animal’s ethological
needs. Thus, the brain uses cost functions as
a key driving force of its development, much as
modern machine learning systems do.

To understand the basis of these claims, we
must now delve into the details of how the

4. Our point in this section will not be that all learning in the brain can be captured by cost function optimization,
but rather, somewhat more narrowly, our claim is that the algorithms for optimization like backpropagation in
deep learning may have correspondences in biological brains. We feel that it is an important task for neuroscience
to determine whether and how brains implement these algorithms. The brain may also disclose dynamics that
are unlike these algorithms, so we are not disclaiming the possibility of broader theories. In machine learning,
many useful algorithms are not explicitly formulated as cost function optimization; for example, many algorithms
are based on linear algebra procedures like singular value decomposition, rather than explicit optimization. Such
methods can be made nonlinear by using nonlinear kernels – relatedly, some brain circuits run specialized compu-
tations using fixed nonlinear basis functions (e.g., in cerebellum). Moreover, while an implicit cost function can
be attributed to account for many dynamical processes, as well as many popular learning algorithms, our claim is
not merely that the brain uses other learning procedures that lead to solutions which implicitly minimize a cost
function, but rather that it actually finds its solutions by performing a powerful form of optimization as such.
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Fig 1: Putative differences between conventional and brain-like neural network designs.
A) In conventional deep learning, supervised training is based on externally-supplied, labeled data.
B) In the brain, supervised training of networks can still occur via gradient descent on an error signal,
but this error signal must arise from internally generated cost functions. These cost functions are
themselves computed by neural modules specified by both genetics and learning. Internally generated
cost functions create heuristics that are used to bootstrap more complex learning. For example, an
area which recognizes faces might first be trained to detect faces using simple heuristics, like the
presence of two dots above a line, and then further trained to discriminate salient facial expressions
using representations arising from unsupervised learning and error signals from other brain areas
related to social reward processing.
C) Internally generated cost functions and error-driven training of cortical deep networks form
part of a larger architecture containing several specialized systems. Although the trainable cortical
areas are schematized as feedforward neural networks here, LSTMs or other types of recurrent
networks may be a more accurate analogy, and many neuronal and network properties such as
spiking, dendritic computation, neuromodulation, adaptation and homeostatic plasticity, timing-
dependent plasticity, direct electrical connections, transient synaptic dynamics, excitatory/inhibitory
balance, spontaneous oscillatory activity, axonal conduction delays (Izhikevich, 2006) and others,
will influence what and how such networks learn.
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brain might efficiently perform credit assignment
throughout large, multi-layered networks, in or-
der to optimize complex functions. We argue
that the brain uses several different types of op-
timization to solve distinct problems. In some
structures, it may use genetic pre-specification
of circuits for problems that require only limited
learning based on data, or it may exploit local
optimization to avoid the need to assign credit
through many layers of neurons. It may also use a
host of proposed circuit structures that would al-
low it to actually perform, in effect, backpropaga-
tion of errors through a multi-layer network, us-
ing biologically realistic mechanisms – a feat that
had once been widely believed to be biologically
implausible (Crick, 1989; Stork, 1989). Poten-
tial such mechanisms include circuits that liter-
ally backpropagate error derivatives in the man-
ner of conventional backpropagation, as well as
circuits that provide other efficient means of ap-
proximating the effects of backpropagation, i.e.,
of rapidly computing the approximate gradient
of a cost function relative to any given connec-
tion weight in the network. Lastly, the brain
may use algorithms that exploit specific aspects
of neurophysiology – such as spike timing de-
pendent plasticity, dendritic computation, local
excitatory-inhibitory networks, or other proper-
ties – as well as the integrated nature of higher-
level brain systems. Such mechanisms promise to
allow learning capabilities that go even beyond
those of current backpropagation networks.

2.1 Local self-organization and
optimization without multi-layer
credit assignment

Not all learning requires a general-purpose op-
timization mechanism like gradient descent5.
Many theories of cortex (George and Hawkins,
2009; Kappel et al., 2014) emphasize potential

self-organizing and unsupervised learning prop-
erties that may obviate the need for multi-layer
backpropagation as such. Hebbian plasticity,
which adjusts weights according to correlations
in pre-synaptic and post-synaptic activity, is well
established6. Various versions of Hebbian plastic-
ity (Miller and MacKay, 1994), e.g., with nonlin-
earities (Brito and Gerstner, 2016), can give rise
to different forms of correlation and competition
between neurons, leading to the self-organized
formation of ocular dominance columns, self-
organizing maps and orientation columns (Fer-
ster and Miller, 2003; Miller et al., 1989). Often
these types of local self-organization can also be
viewed as optimizing a cost function: for exam-
ple, certain forms of Hebbian plasticity can be
viewed as extracting the principal components of
the input, which minimizes a reconstruction er-
ror (Pehlevan and Chklovskii, 2015).

To generate complex temporal patterns, the
brain may also implement other forms of learning
that do not require any equivalent of full back-
propagation through a multilayer network. For
example, “liquid-” (Maass et al., 2002) or “echo-
state machines” (Jaeger and Haas, 2004) are ran-
domly connected recurrent networks that form a
basis set (also known as a “reservoir”) of ran-
dom filters, which can be harnessed for learning
with tunable readout weights. Variants exhibit-
ing chaotic, spontaneous dynamics can even be
trained by feeding back readouts into the net-
work and suppressing the chaotic activity (Sus-
sillo and Abbott, 2009). Learning only the read-
out layer makes the optimization problem much
simpler (indeed, equivalent to regression for su-
pervised learning). Additionally, echo state net-
works can be trained by reinforcement learning
as well as supervised learning (Bush, 2007; Ho-
erzer et al., 2014). Reservoirs of random nonlin-
ear filters are one interpretation of the diverse,
high-dimensional, mixed-selectivity tuning prop-

5. Of course, some circuits may also be heavily genetically pre-specified to minimize the burden on learning. For in-
stance, particular cell adhesion molecules (Hattori et al., 2007) expressed on particular parts of particular neurons
defined by a genetic cell type (Zeisel et al., 2015), and the detailed shapes and placements of neuronal arbors, may
constrain connectivity in some cases, though in other cases local connectivity is thought to be only weakly con-
strained (Kalisman et al., 2005). Genetics is sufficient to specify complex circuits involving hundreds of neurons,
such as central pattern generators (Yuste et al., 2005) which create complex self-stabilizing oscillations, or the
entire nervous systems of small worms. Genetically guided wiring should not be thought of as fixed “hard-wiring”
but rather as a programmatic construction process that can also accept external inputs and interact with learning
mechanisms (Marcus, 2004).

6. Hebbian plasticity even has a well-understood biological basis in the form of the NMDA receptors, which are
activated by the simultaneous occurrence of chemical transmitter delivered from the pre-synaptic neuron, and
voltage depolarization of the post-synaptic neuron.
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erties of many neurons, e.g. in the prefrontal
cortex (Enel et al., 2016). Other variants of
learning rules that modify only a fraction of the
synapses inside a random network are being de-
veloped as models of biological working memory
and sequence generation (Rajan et al., 2016).

2.2 Biological implementation of
optimization

We argue that the above mechanisms of local self-
organization are likely insufficient to account for
the brain’s powerful learning performance (Brea
and Gerstner, 2016). To elaborate on the need for
an efficient means of gradient computation in the
brain, we will first place backpropagation into its
computational context (Hinton, 1989; Baldi and
Sadowski, 2015). Then we will explain how the
brain could plausibly implement approximations
of gradient descent.

2.2.1 The need for efficient gradient
descent in multi-layer networks

The simplest mechanism to perform cost function
optimization is sometimes known as the “twid-
dle” algorithm or, more technically, as “serial
perturbation”. This mechanism works by per-
turbing (i.e., “twiddling”), with a small incre-
ment, a single weight in the network, and ver-
ifying improvement by measuring whether the
cost function has decreased compared to the
network’s performance with the weight unper-
turbed. If improvement is noticeable, the per-
turbation is used as a direction of change to the
weight; otherwise, the weight is changed in the
opposite direction (or not changed at all). Serial
perturbation is therefore a method of “coordinate
descent” on the cost, but it is slow and requires
global coordination: each synapse in turn is per-
turbed while others remain fixed.

Weight perturbation (or parallel perturba-
tion) perturbs all of the weights in the net-
work at once. It is able to optimize small net-
works to perform tasks but generally suffers from
high variance. That is, the measurement of the
gradient direction is noisy and changes drasti-
cally from perturbation to perturbation because
a weight’s influence on the cost is masked by the

changes of all other weights, and there is only
one scalar feedback signal indicating the change
in the cost7. Weight perturbation is dramatically
inefficient for large networks. In fact, parallel and
serial perturbation learn at approximately the
same rate if the time measure counts the num-
ber of times the network propagates information
from input to output (Werfel et al., 2005).

Some efficiency gain can be achieved by
perturbing neural activities instead of synaptic
weights, acknowledging the fact that any long-
range effect of a synapse is mediated through a
neuron. Like weight perturbation and unlike se-
rial perturbation, minimal global coordination is
needed: each neuron only needs to receive a feed-
back signal indicating the global cost. The vari-
ance of node perturbation’s gradient estimate is
far smaller than that of weight perturbation un-
der the assumptions that either all neurons or
all weights, respectively, are perturbed and that
they are perturbed at the same frequency. In
this case, node perturbation’s variance is propor-
tional to the number of cells in the network, not
the number of synapses.

All of these approaches are slow either due
to the time needed for serial iteration over all
weights or the time needed for averaging over low
signal-to-noise ratio gradient estimates. To their
credit however, none of these approaches requires
more than knowledge of local activities and the
single global cost signal. Real neural circuits in
the brain have mechanisms (e.g., diffusible neuro-
modulators) that appear to code the signals rele-
vant to implementing those algorithms. In many
cases, for example in reinforcement learning, the
cost function, which is computed based on inter-
action with an unknown environment, cannot be
differentiated directly, and an agent has no choice
but to deploy clever twiddling to explore at some
level of the system (Williams, 1992).

Backpropagation, in contrast, works by com-
puting the sensitivity of the cost function to each
weight based on the layered structure of the sys-
tem. The derivatives of the cost function with
respect to the last layer can be used to compute
the derivatives of the cost function with respect
to the penultimate layer, and so on, all the way

7. The variance can be mitigated by averaging out many perturbations before making a change to the baseline value
of the weights, but this would take significant time for a network of non-trivial size as the variance of weight
perturbation’s estimates scales in proportion to the number of synapses in the network.
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down to the earliest layers8. Backpropagation
can be computed rapidly, and for a single input-
output pattern, it exhibits no variance in its gra-
dient estimate. The backpropagated gradient has
no more noise for a large system than for a small
system, so deep and wide architectures with great
computational power can be trained efficiently.

2.2.2 Biologically plausible
approximations of gradient
descent

To permit biological learning with efficiency ap-
proaching that of machine learning methods,
some provision for more sophisticated gradient
propagation may be suspected. Contrary to what
was once a common assumption, there are now
many proposed “biologically plausible” mecha-
nisms by which a neural circuit could imple-
ment optimization algorithms that, like back-
propagation, can efficiently make use of the
gradient. These include Generalized Recir-
culation (O’Reilly, 1996), Contrastive Hebbian
Learning (Xie and Seung, 2003), random feed-
back weights together with synaptic homeosta-
sis (Lillicrap et al., 2014; Liao et al., 2015),
spike timing dependent plasticity (STDP) with
iterative inference and target propagation (Scel-
lier and Bengio, 2016; Bengio et al., 2015a),
complex neurons with backpropagating action-
potentials (Körding and König, 2000), and oth-
ers (Balduzzi et al., 2014). While these mech-
anisms differ in detail, they all invoke feedback
connections that carry error phasically. Learning
occurs by comparing a prediction with a target,
and the prediction error is used to drive top-down
changes in bottom-up activity.

As an example, consider O’Reilly’s tempo-
rally eXtended Contrastive Attractor Learning
(XCAL) algorithm (O’Reilly et al., 2012, 2014b).

Suppose we have a multilayer neural network
with an input layer, an output layer, and a set of
hidden layers in between. O’Reilly showed that
the same functionality as backpropagation can be
implemented by a bidirectional network with the
same weights but symmetric connections. After
computing the outputs using the forward con-
nections only, we set the output neurons to the
values they should have. The dynamics of the
network then cause the hidden layers’ activities
to evolve toward a stable attractor state link-
ing input to output. The XCAL algorithm per-
forms a type of local modified Hebbian learning
at each synapse in the network during this pro-
cess (O’Reilly et al., 2012). The XCAL Hebbian
learning rule compares the local synaptic activ-
ity (pre x post) during the early phase of this
settling (before the attractor state is reached)
to the final phase (once the attractor state has
been reached), and adjusts the weights in a way
that should make the early phase reflect the later
phase more closely. These contrastive Hebbian
learning methods even work when the connection
weights are not precisely symmetric (O’Reilly,
1996). XCAL has been implemented in biolog-
ically plausible conductance-based neurons and
basically implements the backpropagation of er-
ror approach.

Approximations to backpropagation could
also be enabled by the millisecond-scale timing of
of neural activities (O’Reilly et al., 2014b). Spike
timing dependent plasticity (STDP) (Markram
et al., 1997), for example, is a feature of some
neurons in which the sign of the synaptic weight
change depends on the precise millisecond-scale
relative timing of pre-synaptic and post-synaptic
spikes. This is conventionally interpreted as Heb-
bian plasticity that measures the potential for a
causal relationship between the pre-synaptic and
post-synaptic spikes: a pre-synaptic spike could

8. If the error derivatives of the cost function with respect to the last layer of unit activities are unknown, then they
can be replaced with node-perturbation-like correlations, as is common in reinforcement learning.

9. Interestingly, STDP is not a unitary phenomenon, but rather a diverse collection of different rules with differ-
ent timescales and temporal asymmetries (Sjöström and Gerstner, 2010; Mishra et al., 2016). Effects include
STDP with the inverse temporal asymmetry, symmetric STDP and STDP with different temporal window sizes.
STDP is also frequency dependent, which can be explained by rules that depend on triplets rather than pairs of
spikes (Pfister and Gerstner, 2006). In some cortical neurons, STDP even switches its sign as the synapse moves
away from the neuron’s soma into the dendritic tree (Letzkus et al., 2006). While STDP is often included explicitly
in models, biophysical derivations of STDP from various underlying phenomena are also being attempted, some
of which involve the post-synaptic voltage (Clopath and Gerstner, 2010) or a local dendritic voltage (Urbanczik
and Senn, 2014). Meanwhile, other theories suggest that STDP may enable the use of precise timing codes based
on temporal coincidence of inputs, the generation and unsupervised learning of temporal sequences (Fiete et al.,
2010; Abbott and Blum, 1996), enhancements to distal reward processing in reinforcement learning (Izhikevich,
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have contributed to causing a post-synaptic spike
only if it occurs shortly beforehand9. To enable
a backpropagation mechanism, Hinton has sug-
gested an alternative interpretation: that neu-
rons could encode the types of error deriva-
tives needed for backpropagation in the tempo-
ral derivatives of their firing rates (Hinton, 2007,
2016). STDP then corresponds to a learning rule
that is sensitive to these error derivatives (Ben-
gio et al., 2015b; Xie and Seung, 2000). In other
words, in an appropriate network context, STDP
learning could give rise to a biological implemen-
tation of backpropagation10.

Another possible mechanism, by which bio-
logical neural networks could approximate back-
propagation, is “feedback alignment” (Lillicrap
et al., 2014; Liao et al., 2015). There, the feed-
back pathway in backpropagation, by which er-
ror derivatives at a layer are computed from error
derivatives at the subsequent layer, is replaced by
a set of random feedback connections, with no
dependence on the forward weights. Subject to
the existence of a synaptic normalization mecha-
nism and approximate sign-concordance between
the feedforward and feedback connections (Liao
et al., 2015), this mechanism of computing error
derivatives works nearly as well as backpropaga-
tion on a variety of tasks. In effect, the forward
weights are able to adapt to bring the network
into a regime in which the random backwards
weights actually carry the information that is
useful for approximating the gradient. This is
a remarkable and surprising finding, and is in-
dicative of the fact that our understanding of
gradient descent optimization, and specifically of
the mechanisms by which backpropagation itself
functions, are still incomplete. In neuroscience,
meanwhile, we find feedback connections almost
wherever we find feed-forward connections, and

their role is the subject of diverse theories (Call-
away, 2004; Maass et al., 2007). It should be
noted that feedback alignment as such does not
specify exactly how neurons represent and make
use of the error signals; it only relaxes a con-
straint on the transport of the error signals.
Thus, feedback alignment is more a primitive
that can be used in fully biological (approximate)
implementations of backpropagation, than a fully
biological implementation in its own right. As
such, it may be possible to incorporate it into
several of the other schemes discussed here.

The above “biological” implementations of
backpropagation still lack some key aspects of bi-
ological realism. For example, in the brain, neu-
rons tend to be either excitatory or inhibitory
but not both, whereas in artificial neural net-
works a single neuron may send both excitatory
and inhibitory signals to its downstream neurons.
Fortunately, this constraint is unlikely to limit
the functions that can be learned (Parisien et al.,
2008; Tripp and Eliasmith, 2016). Other biolog-
ical considerations, however, need to be looked
at in more detail: the highly recurrent nature of
biological neural networks, which show rich dy-
namics in time, and the fact that most neurons in
mammalian brains communicate via spikes. We
now consider these two issues in turn.

Temporal credit assignment: The biolog-
ical implementations of backpropagation pro-
posed above, while applicable to feedforward net-
works, do not give a natural implementation of
“backpropagation through time” (BPTT) (Wer-
bos, 1990) for recurrent networks, which is widely
used in machine learning for training recurrent
networks on sequential processing tasks. BPTT
“unfolds” a recurrent network across multiple
discrete time steps and then runs backpropaga-
tion on the unfolded network to assign credit to

2007), stabilization of neural responses (Kempter et al., 2001), or many other higher-level properties (Nessler
et al., 2013; Kappel et al., 2014).

10. Hinton has suggested (Hinton, 2007, 2016) that this could take place in the context of autoencoders and recircu-
lation (Hinton and McClelland, 1988). Bengio and colleagues have proposed (Scellier and Bengio, 2016; Bengio
and Fischer, 2015; Bengio, 2014) another context in which the connection between STDP and plasticity rules
that depend on the temporal derivative of the post-synaptic firing rate can be exploited for biologically plausible
multilayer credit assignment. This setting relies on clamping of outputs and stochastic relaxation in energy-based
models (Ackley et al., 1985), which leads to a continuous network dynamics (Hopfield, 1984) in which hidden units
are perturbed towards target values (Bengio and Fischer, 2015), loosely similar to that which occurs in XCAL.
This dynamics then allows the STDP-based rule to correspond to gradient descent on the energy function with
respect to the weights (Scellier and Bengio, 2016). This scheme requires symmetric weights, but in an autoencoder
context, Bengio notes that these can arise spontaneously (Arora et al., 2015).

11. Even BPTT has arguably not been completely successful in recurrent networks. The problems of vanishing and
exploding gradients led to long short term memory networks with gated memory units. An alternative is to use
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particular units at particular time steps11. While
the network unfolding procedure of BPTT itself
does not seem biologically plausible, to our in-
tuition, it is unclear to what extent temporal
credit assignment is truly needed (Ollivier and
Charpiat, 2015) for learning particular tempo-
rally extended tasks.

If the system is given access to appropriate
memory stores and representations (Buonomano
and Merzenich, 1995; Gershman et al., 2012,
2014) of temporal context, this could potentially
mitigate the need for temporal credit assignment
as such – in effect, memory systems could “spa-
tialize” the problem of temporal credit assign-
ment12. For example, memory networks (We-
ston et al., 2014) store everything by default
up to a certain buffer size, eliminating the need
to perform credit assignment over the write-to-
memory events, such that the network only needs
to perform credit assignment over the read-from-
memory events. In another example, certain
network architectures that are superficially very
deep, but which possess particular types of “skip
connections”, can actually be seen as ensembles
of comparatively shallow networks (Veit et al.,
2016); applied in the time domain, this could
limit the need to propagate errors far backwards
in time. Other, similar specializations or higher-
levels of structure could, potentially, further ease
the burden on credit assignment.

Can generic recurrent networks perform tem-
poral credit assignment in in a way that is more
biologically plausible than BPTT? Indeed, new
discoveries are being made about the capacity for
supervised learning in continuous-time recurrent
networks with more realistic synapses and neu-
ral integration properties. In internal FORCE
learning (Sussillo and Abbott, 2009), internally

generated random fluctuations inside a chaotic
recurrent network are adjusted to provide feed-
back signals that drive weight changes internal
to the network while the outputs are clamped
to desired patterns. This is made possible by a
learning procedure that rapidly adjusts the net-
work output to a state where it is close to the
clamped values, and exerts continuous control to
keep this difference small throughout the learn-
ing process13. This procedure is able to control
and exploit the chaotic dynamical patterns that
are spontaneously generated by the network.

Werbos has proposed in his “error critic”
that an online approximation to BPTT can be
achieved by learning to predict the backward-
through-time gradient signal (costate) in a man-
ner analogous to the prediction of value functions
in reinforcement learning (Si, 2004). This kind
of idea was recently applied in (Jaderberg et al.,
2016) to allow decoupling of different parts of a
network during training and to facilitate back-
propagation through time. Broadly, we are only
beginning to understand how neural activity can
itself represent the time variable (Finnerty and
Shadlen, 2015; Xu et al., 2014)14, and how recur-
rent networks can learn to generate trajectories
of population activity over time (Liu and Buono-
mano, 2009). Moreover, as we discuss below, a
number of cortical models also propose means,
other than BPTT, by which networks could be
trained on sequential prediction tasks, even in an
online fashion (Cui et al., 2015; O’Reilly et al.,
2014b; Brea et al., 2016). A broad range of ideas
can be used to approximate BPTT in more real-
istic ways.

Spiking networks: It has been difficult to ap-
ply gradient descent learning directly to spik-

optimization methods that go beyond first order derivatives (Martens and Sutskever, 2011). This suggests the
need for specialized systems and structures in the brain to mitigate problems of temporal credit assignment.

12. Interestingly, the hippocampus seems to “time stamp” memories by encoding them into ensembles with cellular
compositions and activity patterns that change gradually as a function of time on the scale of days (Rubin et al.,
2015; Cai et al., 2016), and may use “time cells” to mark temporal positions within episodes on a timescale of
seconds (Kraus et al., 2013).

13. Control theory concepts also appear to be useful for simplifying optimization problems in certain other set-
tings (Todorov, 2009; Hennequin et al., 2014).

14. In one intriguing study of interval timing, single neurons exhibited response patterns over time which were scaled
to the interval duration, and cooling the brain to slow down neural dynamics led to longer intervals being computed
by the brain (Xu et al., 2014).

15. Analogs of weight perturbation and node perturbation are known for spiking networks (Seung, 2003; Fiete and
Seung, 2006). Seung (2003) also discusses implications of gradient based learning algorithms for neuroscience,
echoing some of our considerations here.

16. A related, but more general, question is how to learn over many layers of non-differentiable structures. One option
is to perform updates via finite-sized rather than infinitesimal steps, e.g., via target-propagation (Bengio, 2014).
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ing neural networks1516, although there do exist
learning rules for doing so in specific representa-
tional contexts and network structures (Bekolay
et al., 2013). A number of optimization proce-
dures have been used to generate, indirectly, spik-
ing networks which can perform complex tasks,
by performing optimization on a continuous rep-
resentation of the network dynamics and em-
bedding variables into high-dimensional spaces
with many spiking neurons representing each
variable (Abbott et al., 2016; DePasquale et al.,
2016; Komer and Eliasmith, 2016; Thalmeier
et al., 2015). The use of recurrent connections
with multiple timescales can remove the need for
backpropagation in the direct training of spik-
ing recurrent networks (Bourdoukan and Denève,
2015). Fast connections maintain the network in
a state where slow connections have local access
to a global error signal. While the biological re-
alism of these methods is still unknown, they all
allow connection weights to be learned in spiking
networks.

These and other novel learning procedures il-
lustrate the fact that we are only beginning to
understand the connections between the tempo-
ral dynamics of biologically realistic networks,
and mechanisms of temporal and spatial credit
assignment. Nevertheless, we argue here that ex-
isting evidence suggests that biologically plausi-
ble neural networks can solve these problems – in
other words, it is possible to efficiently optimize
complex functions of temporal history in the con-
text of spiking networks of biologically realistic
neurons. In any case, there is little doubt that
spiking recurrent networks using realistic popu-
lation coding schemes can, with an appropriate
choice of connection weights, compute compli-
cated, cognitively relevant functions17. The ques-
tion is how the developing brain efficiently learns
such complex functions.

2.3 Other principles for biological
learning

The brain has mechanisms and structures that
could support learning mechanisms different from
typical gradient-based optimization algorithms
employed in artificial neural networks.

2.3.1 Exploiting biological neural
mechanisms

The complex physiology of individual biological
neurons may not only help explain how some
form of efficient gradient descent could be imple-
mented within the brain, but also could provide
mechanisms for learning that go beyond back-
propagation. This suggests that the brain may
have discovered mechanisms of credit assignment
quite different from those dreamt up by machine
learning.

One such biological primitive is dendritic
computation, which could impact prospects for
learning algorithms in several ways. First, real
neurons are highly nonlinear (Antic et al., 2010),
with the dendrites of each single neuron imple-
menting18 something computationally similar to
a three-layer neural network (Mel, 1992)19. In-
dividual neurons thus should not be regarded
as single “nodes” but as multi-component sub-
networks. Second, when a neuron spikes, its ac-
tion potential propagates back from the soma
into the dendritic tree. However, it propagates
more strongly into the branches of the dendritic
tree that have been active (Williams and Stu-
art, 2000), potentially simplifying the problem
of credit assignment (Körding and König, 2000).
Third, neurons can have multiple somewhat in-
dependent dendritic compartments, as well as
a somewhat independent somatic compartment,
which means that the neuron should be thought
of as storing more than one variable. Thus,
there is the possibility for a neuron to store
both its activation itself, and the error deriva-
tive of a cost function with respect to its activa-
tion, as required in backpropagation, and biologi-

17. Eliasmith and others have shown (Eliasmith, 2013; Eliasmith and Anderson, 2004; Eliasmith et al., 2012) that
complex functions and control systems can be compiled onto such networks, using nonlinear encoding and linear
decoding of high-dimensional vectors.

18. Dendritic computation may also have other functions, e.g., competitive interactions between dendrites in a single
neuron could also allow neurons to contribute to multiple different ensembles (Legenstein and Maass, 2011).

19. Localized activity in dendrites drives localized plasticity, with inhibitory interneurons, and interactions between
inputs at different parts of the dendritic tree, controlling the local sign and spatial distribution of this plastic-
ity (Cichon and Gan, 2015; Sjöström and Häusser, 2006).
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cal implementations of backpropagation based on
this principle have been proposed (Körding and
König, 2001; Schiess et al., 2016)20. Overall, the
implications of dendritic computation for credit
assignment in deep networks are only beginning
to be considered21. But it is clear that the types
of bi-directional, non-linear, multi-variate inter-
actions that are possible inside a single neuron
could support gradient descent learning or other
powerful optimization mechanisms.

Beyond dendritic computation, diverse mech-
anisms (Marblestone and Boyden, 2014) like ret-
rograde (post-synaptic to pre-synaptic) signals
using cannabinoids (Wilson and Nicoll, 2001), or
rapidly-diffusing gases such as nitric oxide (Aran-
cio et al., 1996), are among many that could en-
able learning rules that go beyond conventional
conceptions of backpropagation. Harris has sug-
gested (Harris, 2008; Lewis and Harris, 2014)
how slow, retroaxonal (i.e., from the outgoing
synapses back to the parent cell body) transport
of molecules like neurotrophins could allow neu-
ral networks to implement an analog of an ex-
changeable currency in economics, allowing net-
works to self-organize to efficiently provide infor-
mation to downstream “consumer” neurons that
are trained via faster and more direct error sig-
nals. The existence of these diverse mechanisms
may call into question traditional, intuitive no-
tions of “biological plausibility” for learning al-
gorithms.

Another potentially important biological
primitive is neuromodulation. The same neu-
ron or circuit can exhibit different input-output
responses and plasticity depending on a global

circuit state, as reflected by the concentrations
of various neuromodulators like dopamine, sero-
tonin, norepinephrine, acetylcholine, and hun-
dreds of different neuropeptides such as opi-
ods (Bargmann and Marder, 2013; Bargmann,
2012). These modulators interact in complex
and cell-type-specific ways to influence circuit
function. Interactions with glial cells also play
a role in neural signaling and neuromodulation,
leading to the concept of “tripartite” synapses
that include a glial contribution (Perea et al.,
2009). Modulation could have many implications
for learning. First, modulators can be used to
gate synaptic plasticity on and off selectively in
different areas and at different times, allowing
precise, rapidly updated orchestration of where
and when cost functions are applied. Further-
more, it has been argued that a single neural
circuit can be thought of as multiple overlap-
ping circuits with modulation switching between
them (Bargmann and Marder, 2013; Bargmann,
2012). In a learning context, this could poten-
tially allow sharing of synaptic weight informa-
tion between overlapping circuits. Dayan (2012)
discusses further computational aspects of neu-
romodulation. Overall, neuromodulation seems
to expand the range of possible algorithms that
could be used for optimization.

2.3.2 Learning in the cortical sheet

A number of models attempt to explain corti-
cal learning on the basis of specific architectural
features of the 6-layered cortical sheet. These
models generally agree that a primary function
of the cortex is some form of unsupervised learn-

20. In the model of (Körding and König, 2001), single spikes are used to transmit activations and burst spikes are
used to transmit error information. In other models, including the dendritic voltage in a plasticity rule leads to
error-driven and predictive learning that can approximate backpropagation inside a single complex neuron (in
effect backpropagating from the net somatic output, through nonlinearities at the dendritic branch points, all the
way back to the individual input synaptic weights) and that generalize to a reinforcement learning context (Ur-
banczik and Senn, 2014; Schiess et al., 2016). Single neurons with active dendrites and many synapses may also
embody learning rules of greater complexity, such as the storage and recall of temporal patterns (Hawkins and
Ahmad, 2016).

21. Interestingly, some connectomic studies are finding more obvious connectivity structure at the level of dendritic
organization than at the cellular level (Morgan et al., 2016).

22. An interesting recent study explored this idea in the context of a model of modular cortical-column-like
units (Piekniewski et al., 2016). Local units are multi-layer perceptrons trained to minimize a prediction er-
ror by gradient descent. Within each unit, predictive autoencoders form a data compression in their middle
layers, which is then fed up to higher levels as well as laterally. This system is suggestive of the power of using
modular units of intermediate complexity, each of which minimizes a prediction error locally, e.g., in a local few-
layer network. The system currently uses a fixed format for transmission of vectors from one unit to another,
but ideally the inter-module connectons should also be trained by gradient descent as well or by reinforcement
learning rather than being fixed. The cortical-column-like modules could also be made more complex and could
be organized into higher-order structures like Minsky’s semantic networks, frames and K-lines (Minsky, 1988)
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ing via prediction (O’Reilly et al., 2014b; Brea
et al., 2016)22. Some cortical learning models are
explicit attempts to map cortical structure onto
the framework of message-passing algorithms for
Bayesian inference (George and Hawkins, 2009;
Dean, 2005; Lee and Mumford, 2003), while oth-
ers start with particular aspects of cortical neu-
rophysiology and seek to explain those in terms
of a learning function, or in terms of a computa-
tional function, e.g., hierarchical clustering (Ro-
driguez et al., 2004). For example, the nonlinear
and dynamical properties of cortical pyramidal
neurons – the principal excitatory neuron type
in cortex (Shepherd, 2014) – are of particular in-
terest here, especially because these neurons have
multiple dendritic zones that are targeted by dif-
ferent kinds of projections, which may allow the
pyramidal neuron to make comparisons of top-
down and bottom-up inputs23.

Other aspects of the laminar cortical archi-
tecture could be crucial to how the brain imple-
ments learning. Local inhibitory neurons target-
ing particular dendritic compartments of the L5
pyramidal could be used to exert precise con-
trol over when and how the relevant feedback
signals and associative mechanisms are utilized.
Notably, local inhibitory networks could also give
rise to competition (Petrov et al., 2010) between
different representations in the cortex, perhaps

allowing one cortical column to suppress others
nearby, or perhaps even to send more sophisti-
cated messages to gate the state transitions of
its neighbors (Bach and Herger, 2015). More-
over, recurrent connectivity with the thalamus,
structured bursts of spiking, and cortical oscil-
lations (not to mention other mechanisms like
neuromodulation) could control the storage of in-
formation over time, to facilitate learning based
on temporal prediction. These concepts begin
to suggest preliminary, exploratory models for
how the detailed anatomy and physiology of the
cortex could be interpreted within a machine-
learning framework that goes beyond backpropa-
gation. But these are early days: we still lack de-
tailed structural/molecular and functional maps
of even a single local cortical microcircuit.

2.3.3 One-shot learning

Human learning is often one-shot: it can take just
a single exposure to a stimulus to never forget
it, as well as to generalize from it to new exam-
ples. One way of allowing networks to have such
properties is what is described by I-theory, in
the context of learning invariant representations
for object recognition (Anselmi et al., 2015). In-
stead of training via gradient descent, image tem-
plates are stored in the weights of simple-complex

rather than in simple hierarchies, or such an architecture could self-organize via reinforcement learning or other
mechanisms for defining inter-column connections. Such a system also needs connections with specific kinds of
memory and long-range information routing systems.

23. This idea has been used by Hawkins and colleagues to suggest mechanisms for continuous online sequence learn-
ing (Hawkins and Ahmad, 2016; Cui et al., 2015) and by Larkum and colleagues for comparison of top-down and
bottom-up signals (Larkum, 2013). The Larkum model focuses on the layer 5 (L5) pyramidal neuron type. The
cell body of this neuron lies in L5 but extends its “apical” dendritic tree all the way up to a tuft at the top of
the cortex in layer 1 (L1), which is a primary target of feedback projections. In the model, interactions between
local spiking in these different dendritic zones, which are targeted by different kinds of projections, are crucial
to the learning function. The model of Hawkins (Hawkins and Ahmad, 2016; Cui et al., 2015) also focused on
the unique dendritic structure of the L5 pyramidal neuron, and distinguishes internal states of the neuron, which
impact its responsiveness to other inputs, from activation states, which directly translate into spike rates. Three
integration zones in each neuron, and dendritic NMDA spikes (Palmer et al., 2014) acting as local coincidence
detectors (Shai et al., 2015), allow temporal patterns of dendritic input to impact the cell’s internal state. Intra-
column inhibition is also used in this model. Other cortical models pay less attention to the details of dendritic
computation, but still provide detailed interpretations of the inter-laminar projection patterns of the neocortex.
For example, in (O’Reilly et al., 2014b), an architecture is presented for continuous learning based on prediction
of the next input. Time is discretized into 100 millisecond bins via an alpha oscillation, and the deep vs. shallow
layers maintain different information during these time bins, with deep layers maintaining a record of the previous
time step, and shallow layers representing the current state. The stored information in the deep layers leads to
a prediction of the current state, which is then compared with the actual current state. Periodic bursting locked
to the oscillation provides a kind of clock that causes the current state to be shifted into the deep layers for
maintenance during the subsequent time step, and recurrent loops with the thalamus allow this representation to
remain stable for sufficiently long to be used to generate the prediction. Other theories utilize the biophysics of
dendritic computation and spike timing dependent plasticity to explain how neurons could learn to make predic-
tions (Brea et al., 2016) on a timescale of seconds using neurons with intrinsic plasticity time constants of a few
tens of milliseconds.
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cell networks while objects undergo transforma-
tions, similar to the use of stored templates in
HMAX (Serre et al., 2007). The theories then
aim to show that you can invariantly and discrim-
inatively represent objects using a single sample,
even of a new class (Anselmi et al., 2015)24.

Additionally, the nervous system may have a
way of quickly storing and replaying sequences
of events. This would allow the brain to move
an item from episodic memory into a long-term
memory stored in the weights of a cortical net-
work (Ji and Wilson, 2007), by replaying the
memory over and over. This solution effectively
uses many iterations of weight updating to fully
learn a single item, even if one has only been ex-
posed to it once. Alternatively, the brain could
rapidly store an episodic memory and then re-
trieve it later without the need to perform slow
gradient updates, which has proven to be useful
for fast reinforcement learning in scenarios with
limited available data (Blundell et al., 2016).

Finally, higher-level systems in the brain may
be able to implement Bayesian learning of se-
quential programs, which is a powerful means of
one-shot learning (Lake et al., 2015). This type of
cognition likely relies on an interaction between
multiple brain areas such as the prefrontal cortex
and basal ganglia.

These potential substrates of one-shot learn-
ing rely on mechanisms other than simple gra-
dient descent. It should be noted, though,
that recent architectural advances, including spe-

cialized spatial attention and feedback mecha-
nisms (Rezende et al., 2016), as well as special-
ized memory mechanisms (Santoro et al., 2016),
do allow some types of one-shot generalization to
be driven by backpropagation-based learning.

2.3.4 Active learning

Human learning is often active and deliberate.
It seems likely that, in human learning, actions
are chosen so as to generate interesting training
examples, and sometimes also to test specific hy-
potheses. Such ideas of active learning and “child
as scientist” go back to Piaget and have been
elaborated more recently (Gopnik et al., 2000).
We want our learning to be based on maximally
informative samples, and active querying of the
environment (or of internal subsystems) provides
a way route to this.

At some level of organization, of course, it
would seem useful for a learning system to de-
velop explicit representations of its uncertainty,
since this can be used to guide the system to
actively seek the information that would reduce
its uncertainty most quickly. Moreover, there
are population coding mechanisms that could
support explicit probabilistic computations (Ma
et al., 2006; Zemel and Dayan, 1997; Gershman
and Beck, 2016; Eliasmith and Martens, 2011;
Rao, 2004; Sahani and Dayan, 2003). Yet it is
unclear to what extent and at what levels the
brain uses an explicitly probabilistic framework,
or to what extent probabilistic computations are

24. I-theory can perhaps be viewed as a generalized alternative paradigm to the online optimization of cost functions
via multi-layer gradient descent, as used in deep learning. It exploits similar network architectures as conven-
tional deep learning, e.g., hierarchical convolutional networks for the case of feedforward vision, but rather than
backpropagating errors, it uses local circuits and learning rules to store templates against which new inputs are
compared. This relies on a theory of generalization in learning based on combinations of tuned units (Poggio
and Bizzi, 2004), which has been applied to both vision and motor control. Neurons with the required Gaussian-
like tunings to stored templates could be obtained through canonical, local, normalization-based circuits (Kouh
and Poggio, 2008), which can also be tweaked to implement other aspects of a vision architecture like softmax
operations and pooling.

25. One alternative picture that contrasts with straightforward cost function optimization emphasizes the types of
computation that appear most naturally suited to heterogeneous, stochastic, noisy, continually changing neural
circuitry (Maass). On this view, network plasticity is viewed as a sampling-based approximation to Bayesian in-
ference (Kappel et al., 2015) where transiently changing synapses sample from a posterior distribution of network
configurations, rather than as gradient descent on a cost function. This view emphasizes Monte-Carlo sampling
procedures, rather than cost function optimization.

26. Sampling based inference procedures are used widely in Bayesian statistics, and efforts have been made to connect
these procedures with circuit-based models of computations (Mansinghka and Jonas, 2014). It currently appears
difficult, however, to reconcile generic Marcov Chain Monte Carlo (MCMC) dynamics, which mix slowly, with the
fast time scales of human psychophysics. But Bayesian methods are powerful and come with a methodology for
model comparison (Ghahramani, 2005). In machine learning, variational Bayesian methods have recently become
popular precisely because they are capable of fast though approximate posterior inference (inferring causes from
observables), but seem to be powerful enough to create strong models. For example, stochastic gradient descent
optimization is beginning to be used for variational Bayesian inference (Kingma and Welling, 2013). Restricted
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emergent from other learning processes (Orhan
and Ma, 2016)2526.

Standard gradient descent does not incor-
porate any such adaptive sampling mechanism,
e.g., it does not deliberately sample data so as
to maximally reduce its uncertainty. Interest-
ingly, however, stochastic gradient descent can
be used to generate a system that samples adap-
tively (Bouchard et al., 2015; Alain et al., 2015).
In other words, a system can learn, by gradient
descent, how to choose its own input data sam-
ples in order to learn most quickly from them by
gradient descent.

Ideally, the learner learns to choose ac-
tions that will lead to the largest improvements
in its prediction or data compression perfor-
mance (Schmidhuber, 2010). In (Schmidhuber,
2010), this is done in the framework of reinforce-
ment learning, and incorporates a mechanisms
for the system to measure its own rate of learning.
In other words, it is possible to reinforcement-
learn a policy for selecting the most interest-
ing inputs to drive learning. Adaptive sampling
methods are also known in reinforcement learning
that can achieve optimal Bayesian exploration
of Markov Decision Process environments (Guez
et al., 2012; Sun et al., 2011).

These approaches achieve optimality in an ar-
bitrary, abstract environment. But of course,
evolution may also encode its implicit knowledge
of the organism’s natural environment, the be-
havioral goals of the organism, and the devel-
opmental stages and processes which occur in-
side the organism, as priors or heuristics27 which
would further constrain the types of adaptive
sampling that are optimal in practice. For ex-
ample, simple heuristics like seeking certain per-
ceptual signatures of novelty, or more complex
heuristics like monitoring situations that other
people seem to find interesting, might be good
ways to bias sampling of the environment so as to
learn more quickly. Other such heuristics might
be used to give internal brain systems the types

of training data that will be most useful to those
particular systems at any given developmental
stage.

We are only beginning to understand how ac-
tive learning might be implemented in the brain.
We speculate that multiple mechanisms, spe-
cialized to different brain systems and spatio-
temporal scales, could be involved. The above
examples suggest that at least some such mecha-
nisms could be understood from the perspective
of optimizing cost functions.

2.4 Differing biological requirements for
supervised and reinforcement
learning

We have suggested ways in which the brain could
implement learning mechanisms of comparable
power to backpropagation. But in many cases,
the system may be more limited by the available
training signals than by the optimization process
itself. In machine learning, one distinguishes su-
pervised learning, reinforcement learning and un-
supervised learning, and the training data limi-
tation manifests differently in each case.

Both supervised and reinforcement learning
require some form of teaching signal, but the na-
ture of the teaching signal in supervised learn-
ing is different from that in reinforcement learn-
ing. In supervised learning, the trainer provides
the entire vector of errors for the output layer
and these are back-propagated to compute the
gradient: a locally optimal direction in which to
update all of the weights of a potentially multi-
layer and/or recurrent network. In reinforcement
learning, however, the trainer provides a scalar
evaluation signal, but this is not sufficient to de-
rive a low-variance gradient. Hence, some form of
trial and error twiddling must be used to discover
how to increase the evaluation signal. Conse-
quently, reinforcement learning is generally much
less efficient than supervised learning.

Reinforcement learning in shallow networks is
simple to implement biologically. For reinforce-

Boltzmann Machines (RBMs) also achieve fast inference in shallow architectures – with only a small number of
iterations of mixing required – but they do not mix quickly when stacked into deep hierarchies as deep Boltzmann
machines. The greedy, layer-wise pre-training of a deep belief network (Hinton et al., 2006) provides a heuristic
way to stack the RBMs by auto-encoding, but these have achieved less competitive results than current variational
Bayesian models. The problem of fast inference in MCMC models is the subject of current research, including at
the interface with biologically plausible models (Bengio et al., 2016). When these models are made to perform fast
inference, they actually become somewhat similar to variational Bayesian methods, since they rely on feedforward
approximate inference, at least to initialize the system.

27. Heuristics are widely used to simplify motor planning and control, e.g., (McLeod and Dienes, 1996).
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ment learning of a deep network to be biologi-
cally plausible, however, we need a more pow-
erful learning mechanism, since we are learning
based on a more limited evaluation signal than
in the supervised case: we do not have the full
target pattern to train towards. Nevertheless, ap-
proximations of gradient descent can be achieved
in this case, and there are cases in which the
scalar evaluation signal of reinforcement learning
can be used to efficiently update a multi-layer
network by gradient descent. The “attention-
gated reinforcement learning” (AGREL) net-
works of (Stnior et al., 2013; Brosch et al., 2015;
Roelfsema and van Ooyen, 2005), and variants
like KickBack (Balduzzi, 2014), give a way to
compute an approximation to the full gradi-
ent in a reinforcement learning context using a
feedback-based attention mechanism for credit
assignment within the multi-layer network. The
feedback pathway, together with a diffusible re-
ward signal, together gate plasticity. For net-
works with more than three layers, this gives rise
to a model based on columns containing paral-
lel feedforward and feedback pathways (Roelf-
sema and van Ooyen, 2005), and for recurrent
networks that settle into attractor states it gives
a reinforcement-trained version (Brosch et al.,
2015) of the Almeida/Pineda recurrent backprop-
agation algorithm (Pineda, 1987). The process is
still not as efficient or generic as backpropaga-
tion, but it seems that this form of feedback can
make reinforcement learning in multi-layer net-
works more efficient than a naive node perturba-
tion or weight perturbation approach.

The machine-learning field has recently been
tackling the question of credit assignment in deep
reinforcement learning. Deep Q-learning (Mnih
et al., 2015) demonstrates reinforcement learning
in a deep network, wherein most of the network is
trained via backpropagation. In regular Q learn-
ing, we define a function Q, which estimates the
best possible sum of future rewards (the return) if
we are in a given state and take a given action. In

deep Q learning, this function is approximated by
a neural network that, in effect, estimates action-
dependent returns in a given state. The network
is trained using backpropagation of local errors
in Q estimation, using the fact that the return
decomposes into the current reward plus the dis-
counted estimate of future return at the next mo-
ment. During training, as the agent acts in the
environment, a series of loss functions is gener-
ated at each step, defining target patterns that
can be used as the supervision signal for back-
propagation. As Q is a highly nonlinear func-
tion of the state, tricks are needed to make deep
Q learning efficient and stable, including experi-
ence replay and a particular type of mini-batch
training. It is also necessary to store the outputs
from the previous iteration (or clone the entire
network) in evaluating the loss function for the
subsequent iteration28.

This process for generating learning targets
provides a kind of bridge between reinforcement
learning and efficient backpropagation-based gra-
dient descent learning29. Importantly, only tem-
porally local information is needed making the
approach relatively compatible with what we
know about the nervous system.

Even given these advances, a key remain-
ing issue in reinforcement learning is the prob-
lem of long timescales, e.g., learning the many
small steps needed to navigate from London to
Chicago. Many of the formal guarantees of rein-
forcement learning (Williams and Baird, 1993),
for example, suggest that the difference between
an optimal policy and the learned policy becomes
increasingly loose as the discount factor shifts to
take into account reward at longer timescales.
Although the degree of optimality of human be-
havior is unknown, people routinely engage in
adaptive behaviors that can take hours or longer
to carry out, by using specialized processes like
prospective memory to “remember to remem-
ber” relevant variables at the right times, permit-
ting extremely long timescales of coherent action.

28. Many other reinforcement learning algorithms, including REINFORCE (Williams, 1992), can be implemented
as fully online algorithms using “eligibility traces”, which accumulate the sensitivity of action distributions to
parameters in a temporally local manner (Sutton and Barto, 1998).

29. Zaremba and Sutskever (2015) also bridges reinforcement learning and backpropagation learning in the same
system, in the context of a neural network controlling discrete interfaces, and illustrates some of the challenges of
this approach: compared to an end-to-end backpropagation-trained Neural Turing Machine (Graves et al., 2014),
reinforcement based training allows training of only relatively simple algorithmic tasks. Special measures need to
be taken to make reinforcement efficient, including limiting the number of possible actions, subtracting a baseline
reward, and training the network using a curriculum schedule.
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Machine learning has not yet developed meth-
ods to deal with such a wide range of timescales
and scopes of hierarchical action. Below we dis-
cuss ideas of hierarchical reinforcement learning
that may make use of callable procedures and
sub-routines, rather than operating explicitly in
a time domain.

As we will discuss below, some form of deep
reinforcement learning may be used by the brain
for purposes beyond optimizing global rewards,
including the training of local networks based
on diverse internally generated cost functions.
Scalar reinforcement-like signals are easy to com-
pute, and easy to deliver to other areas, mak-
ing them attractive mechanistically. If the brain
does employ internally computed scalar reward-
like signals as a basis for cost functions, it seems
likely that it will have found an efficient means
of reinforcement-based training of deep networks,
but it is an open question whether an analog of
deep Q networks, AGREL, or some other mech-
anism entirely, is used in the brain for this pur-
pose. Moreover, as we will discuss further be-
low, it is possible that reinforcement-type learn-
ing is made more efficient in the context of spe-
cialized brain systems like short term memories,
replay mechanisms, and hierarchically organized
control systems. These specialized systems could
reduce reliance on a need for powerful credit as-
signment mechanisms for reinforcement learning.
Finally, if the brain uses a diversity of scalar
reward-like signals to implement different cost
functions, then it may need to mediate deliv-
ery of those signals via a comparable diversity of
molecular substrates. The great diversity of neu-
romodulatory signals, e.g., neuropeptides, in the
brain (Bargmann, 2012; Bargmann and Marder,
2013) makes such diversity quite plausible, and
moreover, the brain may have found other, as yet
unknown, mechanisms of diversifying reward-like
signaling pathways and enabling them to act in-
dependently of one another.

3. The cost functions are diverse
across brain areas and time

In the last section, we argued that the brain can
optimize functions. This raises the question of
what functions it optimizes. Of course, in the
brain, a cost function will itself be created (ex-
plicitly or implicitly) by a neural network shaped
by the genome. Thus, the cost function used to
train a given sub-network in the brain is a key in-
nate property that can be built into the system
by evolution. It may be much cheaper in biolog-
ical terms to specify a cost function that allows
the rapid learning of the solution to a problem
than to specify the solution itself.

In Hypothesis 2, we proposed that the brain
optimizes not a single “end-to-end” cost function,
but rather a diversity of internally generated cost
functions specific to particular brain functions30.
To understand how and why the brain may use
a diversity of cost functions, it is important to
distinguish the differing types of cost functions
that would be needed for supervised, unsuper-
vised and reinforcement learning. We can also
seek to identify types of cost functions that the
brain may need to generate from a functional per-
spective, and how each may be implemented as
supervised, unsupervised, reinforcement-based or
hybrid systems.

3.1 How cost functions may be
represented and applied

What additional circuitry is required to actually
impose a cost function on an optimizing network?
In the most familiar case, supervised learning
may rely on computing a vector of errors at the
output of a network, which will rely on some com-
parator circuitry31 to compute the difference be-
tween the network outputs and the target values.
This difference could then be backpropagated to
earlier layers. An alternative way to impose a
cost function is to “clamp” the output of the net-
work, forcing it to occupy a desired target state.
Such clamping is actually assumed in some of
the putative biological implementations of back-
propagation described above, such as XCAL and

30. This is distinct from a game-theoretic scenario in which multiple actors can achieve an equilibrium, e.g., (Gemp
and Mahadevan, 2015).

31. Single neurons act as comparators in the motor system, e.g., (Brownstone et al., 2015), and networks in the
retina adapt so as to report local differences in space or time rather than absolute values, a form of predictive
coding (Hosoya et al., 2005).
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target propagation. Alternatively, as described
above, scalar reinforcement signals are attractive
as internally-computed cost functions, but using
them in deep networks requires special mecha-
nisms for credit assignment.

In unsupervised learning, cost functions may
not take the form of externally supplied training
or error signals, but rather can be built into the
dynamics inherent to the network itself, i.e., there
may be no need for a separate circuit to com-
pute and impose a cost function on the network.
For example, specific spike-timing-dependent and
homeostatic plasticity rules have been shown to
give rise to gradient descent on a prediction error
in recurrent neural networks (Galtier and Wain-
rib, 2013). Thus, specific unsupervised objectives
could be implemented implicitly through specific
local network dynamics32 and plasticity rules in-
side a network without explicit computation of
cost function, nor explicit propagation of error
derivatives.

Alternatively, explicit cost functions could be
computed, delivered to an optimizing network,
and used for unsupervised learning, following a
variety of principles being discovered in machine
learning (e.g., (Radford et al., 2015; Lotter et al.,
2015)). These networks rely on backpropagation
as the sole learning rule, and typically find a way
to encode the desired cost function into the error
derivatives which are backpropagated. For exam-
ple, prediction errors naturally give rise to error
signals for unsupervised learning, as do recon-
struction errors in autoencoders, and these error
signals can also be augmented with additional
penalty or regularization terms that enforce ob-
jectives like sparsity or continuity, as described
below. Then these error derivatives can be propa-
gated throughout the network via standard back-
propagation. In such systems, the objective func-
tion and the optimization mechanism can thus be
mixed and matched modularly. In the next sec-
tions, we elaborate on these and other means of

specifying and delivering cost functions in differ-
ent learning contexts.

3.2 Cost functions for unsupervised
learning

There are many objectives that can be optimized
in an unsupervised context, to accomplish differ-
ent kinds of functions or guide a network to form
particular kinds of representations.

3.2.1 Matching the statistics of the
input data using generative models

In one common form of unsupervised learning,
higher brain areas attempt to produce samples
that are statistically similar to those actually
seen in lower layers. For example, the wake-sleep
algorithm (Hinton et al., 1995) requires the sleep
mode to sample potential data points whose dis-
tribution should then match the observed distri-
bution. Unsupervised pre-training of deep net-
works is an instance of this (Erhan and Manzagol,
2009), typically making use of a stacked auto-
encoder framework. Similarly, in target propaga-
tion (Bengio, 2014), a top-down circuit, together
with lateral information, has to produce data
that directs the local learning of a bottom-up cir-
cuit and vice-versa. Ladder autoencoders make
use of lateral connections and local noise injection
to introduce an unsupervised cost function, based
on internal reconstructions, that can be read-
ily combined with supervised cost functions de-
fined on the networks top layer outputs (Valpola,
2015). Compositional generative models gener-
ate a scene from discrete combinations of tem-
plate parts and their transformations (Wang and
Yuille, 2014), in effect performing a rendering of
a scene based on its structural description. Hin-
ton and colleagues have also proposed cortical
“capsules” (Tang et al., 2013, 2012; Hinton et al.,
2011) for compositional inverse rendering. The
network can thus implement a statistical goal

32. Beginning with Hopfield’s definition of an energy function for inference in certain classes of symmetric net-
work (Hopfield, 1982), researchers have discovered networks with inherent dynamics that implicitly optimizes
certain objectives even while the connection weights are fixed, such as statistical reconstruction of the input via
stochastic relaxation in Boltzmann machines (Ackley et al., 1985). Fast approximations of some of these infer-
ence procedures are perhaps biologically plausible and could rely on dendritic computation (Bengio et al., 2016).
Iterative local Hebbian-like learning rules are often used to train the weights of such networks, without explicitly
propagating error derivatives in the manner of backpropagation. In an appropriate network context, many other
combinations of network dynamics and plasticity rules can give rise to inference and learning procedures that
implicitly descend cost functions in activity space and/or weight space.

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/058545doi: bioRxiv preprint 

https://doi.org/10.1101/058545


that embodies some understanding of the way
that the world produces samples33.

Learning rules for generative models have his-
torically involved local message passing of a form
quite different from backpropagation, e.g., in a
multi-stage process that first learns one layer at a
time and then fine-tunes via the wake-sleep algo-
rithm (Hinton et al., 2006). Message-passing im-
plementations of probabilistic inference have also
been proposed as an explanation and generaliza-
tion of deep convolutional networks (Patel et al.,
2015; Chen et al., 2014). Various mappings of
such processes onto neural circuitry have been at-
tempted (Sountsov and Miller, 2015; George and
Hawkins, 2009; Lee and Yuille, 2011), and related
models (Makin et al., 2013, 2016) have been used
to account for optimal multi-sensory integration
in the brain. Feedback connections tend to ter-
minate in distinct layers of cortex relative to the
feedforward ones (Felleman and Van Essen, 1991;
Callaway, 2004) making the idea of separate but
interacting networks for recognition and genera-
tion potentially attractive34. Interestingly, such
sub-networks might even be part of the same neu-
ron and map onto “apical” versus “basal” parts
of the dendritic tree (Körding and König, 2001;
Urbanczik and Senn, 2014).

Generative models can also be trained via
backpropagation. Recent advances have shown
how to perform variational approximations to
Bayesian inference inside backpropagation-based
neural networks (Kingma and Welling, 2013),
and how to exploit this to create generative mod-
els (Eslami et al., 2016; Gregor et al., 2015;
Goodfellow et al., 2014a; Radford et al., 2015).

Through either explicitly statistical or gradient
descent based learning, the brain can thus ob-
tain a probabilistic model that simulates features
of the world.

3.2.2 Cost functions that approximate
properties of the world

A perceiving system should exploit statistical
regularities in the world that are not present in
an arbitrary dataset or input distribution. For
example, objects are sparse, at least in certain
representations: there are far fewer objects than
there are potential places in the world, and of all
possible objects there is only a small subset vis-
ible at any given time. As such, we know that
the output of an object recognition system must
have sparse activations. Building the assumption
of sparseness into simulated systems replicates a
number of representational properties of the early
visual system (Olshausen and Field, 1997; Rozell
et al., 2008), and indeed the original paper on
sparse coding obtained sparsity by gradient de-
scent optimization of a cost function (Olshausen
and Field, 1996). A range of unsupervised ma-
chine learning techniques, such as the sparse au-
toencoders (Le et al., 2011) used to discover cats
in YouTube videos, build sparseness into neu-
ral networks. Building in such spatio-temporal
sparseness priors should serve as an “inductive
bias” (Mitchell, 1980) that can accelerate learn-
ing.

But we know much more about the regular-
ities of objects. As young babies, we already
know (Bremner et al., 2015) that objects tend

33. Dreams arguably illustrate that the brain uses generative models which also involve selective recall and recombi-
nation of episodic memories.

34. Much is known about the architecture of cortical feedback vs. feedforward connections. For example, canonically,
feedforward connections project from superficial cortical layers to layer 4 of the recipient layer, while feedback
connections terminate outside layer 4 and often originate in deeper layers. These types of relationships can be
used anatomically to define the hierarchical organization of visual areas, as in (Felleman and Van Essen, 1991),
although the original studies were performed in primates and the precise generalization to rodent cortex is not
fully clear (Berezovskii et al., 2011), and there may be various alternate or overlapping anatomical pathways (Call-
away, 2004), e.g., with some pathways involved in specific functions like gain control, others routed through specific
gating mechanisms, and so forth. Advances in connectomics should allow this architecture to be studied more
directly. The study of receptive field properties in the visual cortical hierarchy has led to many insights into this
hierarchical system. For example, while each neuron in V1 has a classical local receptive field, neural responses at
a given location in V1 also depend on visual locations far from the classical receptive field, e.g., through various
forms of surround suppression. These studies have allowed an understanding of the spatial scales over which feed-
back connections operate in the early visual system (Angelucci et al., 2002). In particular, feedback connections
are invoked to account for longer-range receptive field interactions, whereas horizontal connections are invoked to
account for shorter-range receptive field interactions (Schwabe et al., 2006). Feedforward and feedback pathways
are also distinguished dynamically, e.g., by propagating different oscillatory frequencies (Van Kerkoerle et al.,
2014; Bastos et al., 2015), and moleculary, e.g., with NMDA receptors playing an important role in feedback
processing.
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to persist over time. The emergence or disap-
pearance of an object from a region of space
is a rare event. Moreover, object locations and
configurations tend to be coherent in time. We
can formulate this prior knowledge as a cost
function, for example by penalizing representa-
tions which are not temporally continuous. This
idea of continuity is used in a great number
of artificial neural networks and related mod-
els (Mobahi et al., 2009; Wiskott and Sejnowski,
2002; Földiák, 2008). Imposing continuity within
certain models gives rise to aspects of the vi-
sual system including complex cells (Körding
et al., 2004), specific properties of visual invari-
ance (Isik et al., 2012), and even other repre-
sentational properties such as the existence of
place cells (Wyss et al., 2006; Franzius et al.,
2007). Unsupervised learning mechanisms that
maximize temporal coherence or slowness are in-
creasingly used in machine learning35.

We also know that objects tend to undergo
predictable sequences of transformations, and it
is possible to build this assumption into unsu-
pervised neural learning systems (George and
Hawkins, 2009). The minimization of prediction
error explains a number of properties of the ner-
vous system (Friston and Stephan, 2007; Huang
and Rao, 2011), and biologically plausible theo-
ries are available for how cortex could learn using
prediction errors by exploiting temporal differ-
ences (O’Reilly et al., 2014b) or top-down feed-
back (George and Hawkins, 2009). In one imple-
mentation, a system can simply predict the next
input delivered to the system and can then use
the difference between the actual next input and
the predicted next input as a full vectorial er-
ror signal for supervised gradient descent. Thus,
rather than optimization of prediction error be-

ing implicitly implemented by the network dy-
namics, the prediction error is used as an ex-
plicit cost function in the manner of supervised
learning, leading to error derivatives which can
be back-propagated. Then, no special learning
rules beyond simple backpropagation are needed.
This approach has recently been advanced within
machine learning (Lotter et al., 2015, 2016). Re-
cently, combining such prediction-based learn-
ing with a specific gating mechanism has been
shown to lead to unsupervised learning of disen-
tangled representations (Whitney et al., 2016).
Neural networks can also be designed to learn to
invert spatial transformations (Jaderberg et al.,
2015b). Statistically describing transformations
or sequences is thus an unsupervised way of learn-
ing representations.

Furthermore, there are multiple modalities of
input to the brain. Each sensory modality is pri-
marily connected to one part of the brain36. But
higher levels of cortex in each modality are heav-
ily connected to the other modalities. This can
enable forms of self-supervised learning: with a
developing visual understanding of the world we
can predict its sounds, and then test those pre-
dictions with the auditory input, and vice versa.
The same is true about multiple parts of the same
modality: if we understand the left half of the
visual field, it tells us an awful lot about the
right. Indeed, we can use observations of one
part of a visual scene to predict the contents of
other parts (van den Oord et al., 2016; Noroozi
and Favaro, 2016), and optimize a cost func-
tion that reflects the discrepancy. Maximizing
mutual information is a natural way of improv-
ing learning (Becker and Hinton, 1992; Mohamed
and Rezende, 2015), and there are many other
ways in which multiple modalities or processing

35. Temporal continuity is exploited in Poggio (2015), which analyzes many properties of deep convolutional networks
with respect to their biological plausibility, including their apparent need for large amounts of supervised training
data, and concludes that the environment may in fact provide a sufficient number of “implicitly”, though not
explicitly, labeled examples to train a deep convolutional network for object recognition. Implicit labeling of
object identity, in this case, arises from temporal continuity: successive frames of a video are likely to have the
same objects in similar places and orientations. This allows the brain to derive an invariant signature of object
identity which is independent of transformations like translations and rotations, but which does not yet associate
the object with a specific name or label. Once such an invariant signature is established, however, it becomes
basically trivial to associate the signature with a label for classification (Anselmi et al., 2015). Poggio (2015) also
suggests specific means, in the context of I-theory (Anselmi et al., 2015), by which this training could occur via
the storage of image templates using Hebbian mechanisms among simple and complex cells in the visual cortex.
Thus, in this model, the brain has used its implicit knowledge of the temporal continuity of object motion to
provide a kind of minimal labeling that is sufficient to bootstrap object recognition. Although not formulated as
a cost function, this shows how usefully the assumption of temporal continuity could be exploited by the brain.

36. Although, some multi-sensory integration appears to occur even in the early sensory cortices (Murray et al., 2012).
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streams could mutually train one another. This
way, each modality effectively produces train-
ing signals for the others37. Evidence from psy-
chophysics suggests that some kind of training
via detection of sensory conflicts may be occur-
ring in children (Nardini et al., 2010).

3.3 Cost functions for supervised learning

In what cases might the brain use supervised
learning, given that it requires the system to “al-
ready know” the exact target pattern to train
towards? One possibility is that the brain can
store records of states that led to good outcomes.
For example, if a baby reaches for a target and
misses, and then tries again and successfully hits
the target, then the difference in the neural rep-
resentations of these two tries reflects the direc-
tion in which the system should change. The
brain could potentially use a comparator circuit
to directly compute this vectorial difference in
the neural population codes and then apply this
difference vector as an error signal.

Another possibility is that the brain uses su-
pervised learning to implement a form of “chunk-
ing”, i.e., a consolidation of something the brain
already knows how to do: routines that are ini-
tially learned as multi-step, deliberative proce-
dures could be compiled down to more rapid and
automatic functions by using supervised learning
to train a network to mimic the overall input-
output behavior of the original multi-step pro-
cess. Such a process is assumed to occur in cog-
nitive models like ACT-R (Servan-Schreiber and
Anderson, 1990), and methods for compressing
the knowledge in neural networks into smaller
networks are also being developed (Ba and Caru-
ana, 2014). Thus supervised learning can be used
to train a network to do in “one step” what would
otherwise require long-range routing and sequen-
tial recruitment of multiple systems.

3.4 Repurposing reinforcement learning
for diverse internal cost functions

Certain generalized forms of reinforcement learn-
ing may be ubiquitous throughout the brain.

Such reinforcement signals may be repurposed to
optimize diverse internal cost functions. These
internal cost functions could be specified at least
in part by genetics.

Some brain systems such as in the striatum
appear to learn via some form of temporal differ-
ence reinforcement learning (Tesauro, 1995; Fos-
ter et al., 2000). This is reinforcement learning
based on a global value function (O’Reilly et al.,
2014a) that predicts total future reward or util-
ity for the agent. Reward-driven signaling is not
restricted to the striatum, and is present even
in primary visual cortex (Chubykin et al., 2013;
Stnior et al., 2013). Remarkably, the reward sig-
naling in primary visual cortex is mediated in
part by glial cells (Takata et al., 2011), rather
than neurons, and involves the neurotransmit-
ter acetylcholine (Chubykin et al., 2013; Hangya
et al., 2015). On the other hand, some studies
have suggested that visual cortex learns the ba-
sics of invariant object recognition in the absence
of reward (Li and Dicarlo, 2012), perhaps using
reinforcement only for more refined perceptual
learning (Roelfsema et al., 2010).

But beyond these well-known global reward
signals, we argue that the basic mechanisms of re-
inforcement learning may be widely re-purposed
to train local networks using a variety of inter-
nally generated error signals. These internally
generated signals may allow a learning system to
go beyond what can be learned via standard un-
supervised methods, effectively guiding or steer-
ing the system to learn specific features or com-
putations (Ullman et al., 2012).

3.4.1 Cost functions for bootstrapping
learning in the human environment

Special, internally-generated signals are needed
specifically for learning problems where standard
unsupervised methods – based purely on match-
ing the statistics of the world, or on optimiz-
ing simple mathematical objectives like temporal
continuity or sparsity – will fail to discover prop-
erties of the world which are statistically weak
in an objective sense but nevertheless have spe-
cial significance to the organism (Ullman et al.,

37. Other brain-inspired unsupervised objectives are being developed for unsupervised visual learning. One recent
paper (Higgins et al., 2016) uses an objective function that seeks representations of statistically independent
factors in images, by introducing a regularization term that pushes the distribution of latent factors learned in
a generative model to be close to a unit Gaussian. This is based on a theory that the ventral visual stream is
optimized to disentangle factors of variation in images.
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2012). Indigo bunting birds, for example, learn a
template for the constellations of the night sky
long before ever leaving the nest to engage in
navigation-dependent tasks (Emlen, 1967). This
memory template is directly used to determine
the direction of flight during migratory periods,
a process that is modulated hormonally so that
winter and summer flights are reversed. Learn-
ing is therefore a multi-phase process in which
navigational cues are memorized prior to the ac-
quisition of motor control.

In humans, we suspect that similar multi-
stage bootstrapping processes are arranged to oc-
cur. Humans have innate specializations for so-
cial learning. We need to be able to read one an-
other’s expressions as indicated with hands and
faces. Hands are important because they allow
us to learn about the set of actions that can be
produced by agents (Ullman et al., 2012). Faces
are important because they give us insight into
what others are thinking. People have intentions
and personalities that differ from one another,
and their feelings are important. How could we
hack together cost functions, built on simple ge-
netically specifiable mechanisms, to make it eas-
ier for a learning system to discover such behav-
iorally relevant variables?

Some preliminary studies are beginning to
suggest specific mechanisms and heuristics that
humans may be using to bootstrap more sophis-
ticated knowledge. In a groundbreaking study,
Ullman et al. (2012) asked how could we explain
hands, to a system that does not already know
about them, in a cheap way, without the need
for labeled training examples? Hands are com-
mon in our visual space and have special roles
in the scene: they move objects, collect objects,
and caress babies. Building these biases into
an area specialized to detect hands could guide
the right kind of learning, by providing a down-
stream learning system with many likely positive
examples of hands on the basis of innately-stored,
heuristic signatures about how hands tend to
look or behave (Ullman et al., 2012). Indeed,
an internally supervised learning algorithm con-
taining specialized, hard-coded biases to detect
hands, on the basis of their typical motion prop-
erties, can be used to bootstrap the training of
an image recognition module that learns to rec-

ognize hands based on their appearance. Thus, a
simple, hard-coded module bootstraps the train-
ing of a much more complex algorithm for visual
recognition of hands.

Ullman et al. (2012) then further exploits a
combination of hand and face detection to boot-
strap a predictor for gaze direction, based on the
heuristic that faces tend to be looking towards
hands. Of course, given a hand detector, it also
becomes much easier to train a system for reach-
ing, crawling, and so forth. Efforts are underway
in psychology to determine whether the heuristics
discovered to be useful computationally are, in
fact, being used by human children during learn-
ing (Fausey et al., 2016; Yu and Smith, 2013).

Ullman refers to such primitive, inbuilt detec-
tors as innate “proto-concepts” (Ullman et al.,
2012). Their broader claim is that such pre-
specification of mutual supervision signals can
make learning the relevant features of the world
far easier, by giving an otherwise unsupervised
learner the right kinds of hints or heuristic biases
at the right times. Here we call these approx-
imate, heuristic cost functions “bootstrap cost
functions”. The purpose of the bootstrap cost
functions is to reduce the amount of data re-
quired to learn a specific feature or task, but at
the same time to avoid a need for fully unsuper-
vised learning.

Could the neural circuitry for such a boot-
strap hand-detector be pre-specified genetically?
The precedent from other organisms is strong:
for example, it is famously known that the frog
retina contains circuitry sufficient to implement
a kind of “bug detector” (Lettvin et al., 1959).
Ullman’s hand detector, in fact, operates via
a simple local optical flow calculation to de-
tect “mover” events. This type of simple, local
calculation could potentially be implemented in
genetically-specified and/or spontaneously self-
organized neural circuitry in the retina or early
dorsal visual areas (Biilthoff et al., 1989), per-
haps similarly to the frog’s “bug detector”.

How could we explain faces without any train-
ing data? Faces tend to have two dark dots in
their upper half, a line in the lower half and tend
to be symmetric about a vertical axis. Indeed,
we know that babies are very much attracted to
things with these generic features of upright faces

38. In the visual system, it is still unknown why a clustered spatial pattern of representational categories arises,
e.g., a physically localized “area” that seems to correspond to representations of faces (Kanwisher et al., 1997),
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starting from birth, and that they will acquire
face-specific cortical areas38 in their first few
years of life if not earlier (McKone et al., 2009).
It is easy to define a local rule that produces a
kind of crude face detector (e.g., detecting two
dots on top of a horizontal line), and indeed
some evidence suggests that the brain can rapidly
detect faces without even a single feed-forward
pass through the ventral visual stream (Crouzet
and Thorpe, 2011). The crude detection of hu-
man faces used together with statistical learn-
ing should be analogous to semi-supervised learn-
ing (Sukhbaatar et al., 2014) and could allow
identifying faces with high certainty.

Humans have areas devoted to emotional pro-
cessing, and the brain seems to embody prior
knowledge about the structure of emotional ex-
pressions and how they relate to causes in the
world: emotions should have specific types of
strong couplings to various other higher-level
variables such as goal-satisfaction, should be ex-
pressed through the face, and so on (Skerry
and Spelke, 2014; Lyons and Cheries, 2016; Bail-
largeon et al., 2016; Phillips et al., 2002). What
about agency? It makes sense to describe, when
dealing with high-level thinking, other beings as
optimizers of their own goal functions. It ap-
pears that heuristically specified notions of goals
and agency are infused into human psychological
development from early infancy and that notions
of agency are used to bootstrap heuristics for eth-
ical evaluation (Skerry and Spelke, 2014; Hamlin
et al., 2007). Algorithms for establishing more
complex, innately-important social relationships
such as joint attention are under study (Gao
et al., 2014), building upon more primitive proto-
concepts like face detectors and Ullman’s hand
detectors (Ullman et al., 2012). The brain can
thus use innate detectors to create cost functions
and training procedures to train the next stages
of learning. This prior knowledge, encoded into
brain structure via evolution, could allow learn-

ing signals to come from the right places and to
appear developmentally at the right times.

It is intuitive to ask whether this type of boot-
strapping poses a kind of “chicken and egg” prob-
lem: if the brain already has an inbuilt heuris-
tic hand detector, how can it be used to train
a detector that performs any better than those
heuristics? After all, isn’t a trained system only
as good as its training data? The work of Ull-
man et al. (2012) illustrates why this is not the
case. First, the “innate detector” can be used to
train a downstream detector that operates based
on different cues: for example, based on the spa-
tial and body context of the hand, rather than its
motion. Second, once multiple such pathways of
detection come into existence, they can be used
to improve each other. In Ullman et al. (2012),
appearance, body context, and mover motion are
all used to bootstrap off of one another, creating
a detector that is better than any of its train-
ing heuristics. In effect, the innate detectors are
used not as supervision signals per se, but rather
to guide or steer the learning process, enabling it
to discover features that would otherwise be diffi-
cult. If such affordances can be found in other do-
mains, it seems likely that the brain would make
extensive use of them to ensure that developing
animals learn the precise patterns of perception
and behavior needed to ensure their later survival
and reproduction.

Thus, generalizing previous ideas (Ullman
et al., 2012; Poggio, 2015), we suggest that the
brain uses optimization with respect to internally
generated heuristic39 detection signals to boot-
strap learning of biologically relevant features
which would otherwise be missed by an unsuper-
vised learner. In one possible implementation,
such bootstrapping may occur via reinforcement
learning, using the outputs of the innate detec-
tors as local reinforcement signals, and perhaps
using mechanisms similar to (Stnior et al., 2013;
Rombouts et al., 2015; Brosch et al., 2015; Roelf-

another area for representations of visual word forms (McCandliss et al., 2003), and so on. It is also unknown why
this spatial pattern seems to be largely reproducible across individuals. Some theories are based on bottom-up
correlation-based clustering or neuronal competition mechanisms, which generate category-selective regions as a
byproduct. Other theories suggest a computational reason for this organization, in the context of I-theory (Anselmi
et al., 2015), involving the limited ability to generalize transformation-invariances learned for one class of objects
to other classes (Leibo et al., 2015b). Areas for abstract culture-dependent concepts, like the visual word form
area, suggest that the decomposition cannot be “purely genetic”. But it is conceivable that these areas could at
least in part reflect different local cost functions.

39. Psychologists have postulated other innate heuristics, e.g., in the context of object tracking (Franconeri et al.,
2012). That infant object concepts are trainable but only along certain dimensions (Scholl, 2004) also suggests
the notion of a heuristically “guided” or “bootstrapped” learning process in this context.
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sema and van Ooyen, 2005) to perform reinforce-
ment learning through a multi-layer network. It
is also possible that the brain could use such
internally generated heuristic detectors in other
ways, for example to bias the inputs delivered to
an unsupervised learning network towards enti-
ties of interest to humans via an attentional pro-
cess (Joscha Bach, personal communication), to
bias hippocampal replay (Kumaran et al., 2016)
or other aspects of memory access, or to directly
train simple classifiers (Ullman et al., 2012).

3.4.2 Cost functions for learning by
imitation and through social
feedback

It has been widely observed that the capacity for
imitation and social learning may be a feature
that is uniquely human, and that enables other
human traits Ramachandran (2000). Humans
need to learn more from the environment by than
trial and error can provide for, and more than ge-
netically orchestrated internal bootstrapping sig-
nals can effectively guide. Hence, babies spend a
long time watching adults, especially adults they
are attached to (Meltzoff, 1999), and later use
specific kinds of social cues from their parents
to shape their development. Babies and chil-
dren learn about cause and effect through mod-
els based on goals, outcomes and agents, not just
pure statistical inference. For example, young
children make inferences about causality selec-
tively in situations where a human is trying to
achieve an outcome (Meltzoff et al., 2012, 2013).
Minsky (2006) discusses how we derive not just
skills but also goals from our attachment figures,
through socially induced emotions like pride and
shame. To do all this requires a powerful infras-
tructure of mental abilities: we must attribute
social feedback to particular aspects of our goals
or actions, and hence we need to signal to each
other positively and negatively, to draw atten-
tion to these aspects. Minsky speculates (Min-
sky, 2006) that the development of such “learn-
ing by being told” led to language by selecting for
the development of increasingly precise parsing of
synatatic structures in relation to our represen-
tations of agents and action-plans.

How does this connect with cost functions?
The idea of goals is central here, as we need to
be able to identify the goals of others, update our

own goals based on feedback, and measure the
success of actions relative to goals. It has been
proposed that human intrinsically use a model
based on abstract goal and costs to underpin
learning about the social world (Jara-Ettinger
et al., 2016). Perhaps we even learn about our
“selves” by inferring a model of our own goals and
cost functions. Relatedly, machine learning in
some settings can infer their cost functions from
samples of behavior (Ho and Ermon, 2016).

3.4.3 Cost functions for story
generation and understanding

It has been widely noticed in cognitive science
and AI that the generation and understanding
of stories are crucial to human cognition. Re-
searchers such as Winston have framed story
understanding as the key to human-like intelli-
gence (Winston, 2011). Stories consist of a linear
sequence of episodes, in which one episode refers
to another through cause and effect relationships,
with these relationships often involving the im-
plicit goals of agents. Many other cognitive fac-
ulties, such as conceptual grounding of language,
could conceivably emerge from an underlying in-
ternal representation in terms of stories.

Perhaps the ultimate series of bootstrap cost
functions would be those which would direct the
brain to utilize its learning networks and special-
ized systems so as to construct representations
that are specifically useful as components of sto-
ries, to spontaneously chain these representations
together, and to update them through experi-
ence and communication. How could such cost
functions arise? One possibility is that they are
bootstrapped through imitation and communica-
tion, where a child learns to mimic the story-
telling behavior of others. Another possibility
is that useful representations and primitives for
stories emerge spontaneously from mechanisms
for learning state and action chunking in hierar-
chical reinforcement learning and planning. Yet
another is that stories emerge from learned pat-
terns of saliency-directed memory storage and re-
call (e.g., (Xiong et al., 2016)). In addition, priors
that direct the developing child’s brain to learn
about and attend to social agency seem to be
important for stories.

In this section, we have seen how cost func-
tions can be specified that could lead to the learn-
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ing of increasingly sophisticated mental abilities
in a biologically plausible manner. Importantly,
however, cost functions and optimization are not
the whole story. To achieve more complex forms
of optimization, e.g., for learning to understand
complex patterns of cause and effect over long
timescales, to plan and reason prospectively, or
to effectively coordinate many widely distributed
brain resources, the brain seems to invoke special-
ized, pre-constructed data structures, algorithms
and communication systems, which in turn fa-
cilitate specific kinds of optimization. More-
over, optimization occurs in a tightly orches-
trated multi-stage process, and specialized, pre-
structured brain systems need to be invoked to
account for this meta-level of control over when,
where and how each optimization problem is set
up. We now turn to how these pre-specialized
systems may orchestrate and facilitate optimiza-
tion.

4. Optimization occurs in the
context of specialized structures

Optimization of initially unstructured “blank
slate” networks is not sufficient to generate com-
plex cognition in the brain, we argue, even given
a diversity of powerful genetically-specified cost
functions and local learning rules, as we have
posited above. Instead, in Hypothesis 3, we
suggest that specialized, pre-structured architec-
tures are needed for at least two purposes.

First, pre-structured architectures are needed
to allow the brain to find efficient solutions to
certain types of problems. When we write com-
puter code, there are a broad range of algo-
rithms and data structures employed for differ-
ent purposes: we may use dynamic program-
ming to solve planning problems, trees to ef-
ficiently implement nearest neighbor search, or
stacks to implement recursion. Having the right
kind of algorithm and data structure in place
to solve a problem allows it to be solved effi-
ciently, robustly and with a minimum amount of
learning or optimization needed. This observa-
tion is concordant with the increasing use of pre-
specialized architectures and specialized compu-

tational components in machine learning (Graves
et al., 2014; Weston et al., 2014; Neelakantan
et al., 2015). In particular, to enable the learn-
ing of efficient computational solutions, the brain
may need pre-specialized systems for planning
and executing sequential multi-step processes, for
accessing memories, and for forming and manip-
ulating compositional and recursive structures40.

Second, the training of optimization modules
may need to be coordinated in a complex and
dynamic fashion, including delivering the right
training signals and activating the right learning
rules in the right places and at the right times.
To allow this, the brain may need specialized sys-
tems for storing and routing data, and for flexi-
bly routing training signals such as target pat-
terns, training data, reinforcement signals, at-
tention signals, and modulatory signals. These
mechanisms may need to be at least partially in
place in advance of learning.

Looking at the brain, we indeed seem to find
highly conserved structures, e.g., cortex, where
it is theorized that a similar type of learning
and/or computation is happening in multiple
places (Douglas and Martin, 2004; Braitenberg
and Schutz, 1991). But we also see a large num-
ber of specialized structures, including thalamus,
hippocampus, basal ganglia and cerebellum (So-
lari and Stoner, 2011). These structures evolu-
tionarily pre-date (Lee et al., 2015) the cortex,
and hence the cortex may have evolved to work
in the context of such specialized mechanisms.
For example, the cortex may have evolved as a
trainable module for which the training is orches-
trated by these older structures.

Even within the cortex itself, microcircuitry
within different areas may be specialized: tin-
kered variations on a common ancestral micro-
circuit scaffold could potentially allow different
cortical areas, such as sensory areas vs. pre-
frontal areas, to be configured to adopt a num-
ber of qualitatively distinct computational and
learning configurations (Marcus et al., 2014a,b;
Yuste et al., 2005), even while sharing a com-
mon gross physical layout and communication in-
terface. Within cortex, over forty distinct cell
types – differing in such aspects as dendritic or-

40. Of course, specialized architecture also enters the picture at the level of the pre-structuring of trainable/optimizable
modules themselves. Just as in deep learning, convolutional networks, LSTMs, residual networks and other specific
architectures are used to make learning efficient and fast, even though more generic architectures like multilayer
perceptrons or generally RNNs are universal function approximators.
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ganization, distribution throughout the six cor-
tical layers, connectivity pattern, gene expres-
sion, and electrophysiological properties – have
already been found (Zeisel et al., 2015; Markram
et al., 2015). Central pattern generator circuits
provide an example of the kinds of architec-
tures that can be pre-wired into neural microcir-
cuitry, and may have evolutionary relationships
with cortical circuits (Yuste et al., 2005). Thus,
while the precise degree of architectural speci-
ficity of particular cortical regions is still under
debate (Marcus et al., 2014a,b), various mecha-
nisms could offer pre-specified heterogeneity.

In this section, we explore the kinds of com-
putational problems for which specialized struc-
tures may be useful, and attempt to map these to
putative elements within the brain. Our prelimi-
nary sketch of a functional decomposition can be
viewed as a summary of suggestions for special-
ized functions that have been made throughout
the computational neuroscience literature, and is
influenced strongly by the models of O’Reilly,
Eliasmith, Grossberg, Marcus, Hayworth and
others (O’Reilly, 2006; Eliasmith et al., 2012;
Marcus, 2001; Grossberg, 2013; Hayworth, 2012).
The correspondence between these models and
actual neural circuitry is, of course, still the sub-
ject of extensive debate.

Many of the computational and neural con-
cepts sketched here are preliminary and will
need to be made more rigorous through fu-
ture study. Our knowledge of the functions
of particular brain areas, and thus our pro-
posed mappings of certain computations onto
neuroanatomy, also remains tentative. Finally,
it is still far from established which processes
in the brain emerge from optimization of cost

functions, which emerge from other forms of self-
organization, which are pre-structured through
genetics and development, and which rely on an
interplay of all these mechanisms41. Our discus-
sion here should therefore be viewed as a sketch
of potential directions for further study.

4.1 Structured forms of memory

One of the central elements of computation is
memory. Importantly, multiple different kinds
of memory are needed (Squire, 2004). For exam-
ple, we need memory that is stored for a long
period of time and that can be retrieved in a
number of ways, such as in situations similar to
the time when the memory was first stored (con-
tent addressable memory). We also need memory
that we can keep for a short period of time and
that we can rapidly rewrite (working memory).
Lastly, we need the kind of implicit memory that
we cannot explicitly recall, similar to the kind of
memory that is classically learned using gradient
descent on errors, i.e., sculpted into the weight
matrix of a neural network.

4.1.1 Content addressable memories

Content addressable memories42 are classic mod-
els in neuroscience (Hopfield, 1982). Most sim-
ply, they allow us to recognize a situation simi-
lar to one that we have seen before, and to “fill
in” stored patterns based on partial or noisy in-
formation, but they may also be put to use as
sub-components of many other functions. Recent
research has shown that including such memo-
ries allows deep networks to learn to solve prob-
lems that previously were out of reach, even
of LSTM networks that already have a simpler

41. It is interesting to consider how standard neural network models of vision would fit into this categorization.
Consider convolutional neural networks, for example, with the convolutional filters optimized via supervised
backpropagation. This is by no means a completely unstructured prior to backpropagation-based training. In-
deed, these networks typically contain max-pooling and normalization layers with fixed computations that are
not altered during learning, as well as fixed architectural features such as number and arrangement of layers, size
and stride of the sliding window, and so forth. Likewise “hierarchical max-pooling” (HMAX) models (Serre et al.,
2007) of the ventral stream are so-named because of these fixed architectural aspects. Thus, in a hypothetical
biological implementation of such systems, these aspects would be pre-structured by genetics even if the convolu-
tional weights would be trained via some kind of gradient descent optimization. There are some plausible neural
circuits that would implement these standardized normalization and max pooling operations (Kouh and Poggio,
2008). Moreover, in a biological implementation, the machinery necessary to carry out the optimization itself
would need to be embodied by appropriate, genetically structured circuitry.

42. Attractor models of memory in neuroscience tend to have the property that only one memory can be accessed at a
time (although a brain can have many such memories that can be accessed in parallel). Recent machine learning
systems, however, have constructed differentiable addressable memory (Graves et al., 2014) and gating (Whitney
et al., 2016) systems by allowing weighted superpositions of memory registers or gates to be queried – it is unclear
whether the brain uses such mechanisms.
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form of local memory and are already capable of
learning long-term dependencies (Weston et al.,
2014; Graves et al., 2014). Hippocampal area
CA3 may act as an auto-associative memory43

capable of content-addressable pattern comple-
tion, with pattern separation occurring in the
dentate gyrus (Rolls, 2013). If no similar pattern
is available, an unfamiliar input will be stored as
a new memory (Kumaran et al., 2016). Such sys-
tems could permit the retrieval of complete mem-
ories from partial cues, enabling networks to per-
form operations similar to database retrieval or
to instantiate lookup tables of historical stimulus-
response mappings, among numerous other pos-
sibilities.

Of course, memory systems may be organized
– through cost function optimization or other
mechanisms – into higher-order structures. Cost
functions might be used to bias memory repre-
sentations to adopt particular structures, e.g., to
be organized into data structures like like Min-
skys frames and trans-frames (Minsky, 2006).

4.1.2 Working memory buffers

Cognitive science has long characterized proper-
ties of the working memory. Its capacity is some-
what limited, with the old idea being that verbal
working memory has a capacity of “seven plus or
minus two” (Miller, 1956), while visual working
memory has a capacity of four (Luck and Vogel,
1997) (or, other authors defend, one). There are
many models of working memory (Wang, 2012;
Singh and Eliasmith, 2006; O’Reilly and Frank,
2006; Buschman and Miller, 2014; Warden and
Miller, 2007), some of which attribute it to per-
sistent, self-reinforcing patterns of neural activa-
tion (Goldman et al., 2003) in the recurrent net-
works of the prefrontal cortex. Prefrontal work-
ing memory appears to be made up of multi-
ple functionally distinct subsystems (Markowitz
et al., 2015). Neural models of working mem-
ory can store not only scalar variables (Seung,
1998), but also high-dimensional vectors (Elia-

smith and Anderson, 2004; Eliasmith et al., 2012)
or sequences of vectors (Choo and Eliasmith,
2010). Working memory buffers seem crucial for
human-like cognition, e.g., reasoning, as they al-
low short-term storage while also – in conjunc-
tion with other mechanisms – enabling general-
ization of operations across anything that can fill
the buffer.

4.1.3 Storing state in association with
saliency

Saliency, or interestingness, measures can be
used to tag the importance of a memory (Gon-
zalez Andino and Grave de Peralta Menendez,
2012). This can allow removal of the boring
data from the training set, allowing a mechanism
that is more like optimal experimentation. More-
over, saliency can guide memory replay or sam-
pling from generative models, to generate more
training data drawn from a distribution useful
for learning (Mnih et al., 2015; Ji and Wilson,
2007). Conceivably, hippocampal replay could
allow a batch-like training process, similar to
how most machine learning systems are trained,
rather than requiring all training to occur in an
online fashion. Plasticity mechanisms in memory
systems which are gated by saliency are starting
to be uncovered in neuroscience (Dudman et al.,
2007). Importantly, the notions of “saliency”
computed by the brain could be quite intricate
and multi-faceted, potentially leading to com-
plex schemes by which specific kinds of memo-
ries would be tagged for later context-dependent
retrieval. As a hypothetical example, representa-
tions of both timing and importance associated
with memories could perhaps allow retrieval only
of important memories that happened within a
certain window of time (MacDonald et al., 2011;
Kraus et al., 2013; Rubin et al., 2015). Stor-
ing and retrieving information selectively based
on specific properties of the information itself,
or of “tags” appended to that information, is a
powerful computational primitive that could en-

43. Computational analogies have also been drawn between associative memory storage and object recognition (Leibo
et al., 2015a), suggesting the possibility of closely related computations occurring in parts of neocortex and
hippocampus. Indeed, the hippocampus and olfactory cortex (a more ancient and simpler structure than the
neocortex (Shepherd, 2014; Fournier et al., 2015)) are few-layer structures described in comparative anatomy as
“allocortex”, as opposed to the six-layered “neocortex”, and both types of cortex have some anatomical similar-
ities (particularly for CA1 and subiculum, though less so for CA3 and dentate gyrus) such as the presence of
pyramidal neurons. It has been suggested that the hippocampus can be thought of as the top of the cortical
hierarchy (Hawkins and Blakeslee, 2007), responsible for handling and remembering information that could not
be fully explained by lower levels of the hierarchy. These computational connections are still tentative.
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able learning of more complex tasks. Relatedly,
we know that certain pathways become associ-
ated with certain kinds of memories, e.g., specific
pathways for fear-related memory in mice.

4.2 Structured routing systems

To use its information flexibly, the brain needs
structured systems for routing data. Such sys-
tems need to address multiple temporal and spa-
tial scales, and multiple modalities of control.
Thus, there are several different kinds of infor-
mation routing systems in the brain which oper-
ate by different mechanisms and under different
constraints.

4.2.1 Attention

If we can focus on one thing at a time, we may
be able to allocate more computational resources
to processing it, make better use of scarce data
to learn about it, and more easily store and re-
trieve it from memory44. Notably in this con-
text, attention allows improvements in learning:
if we can focus on just a single object, instead
of an entire scene, we can learn about it more
easily using limited data. Formal accounts in a
Bayesian framework talk about attention reduc-
ing the sample complexity of learning (Chikkerur
et al., 2010). Likewise, in models, the processes of
applying attention, and of effectively making use
of incoming attentional signals to appropriately
modulate local circuit activity, can themselves
be learned by optimizing cost functions (Mnih
et al., 2014; Jaramillo and Pearlmutter, 2004).
The right kinds of attention make processing and
learning more efficient, and also allow for a kind
of programmatic control over multi-step percep-
tual tasks.

How does the brain determine where to allo-
cate attention, and how is the attentional signal
physically mediated? Answering this question is
still an active area of neuroscience. Higher-level
cortical areas may be specialized in allocating at-
tention. The problem is made complex by the

fact that there seem to be many different types
of attention – such as object-based, feature-based
and spatial attention in vision – that may be me-
diated by interactions between different brain ar-
eas. The frontal eye fields (area FEF), for exam-
ple, are important in visual attention, specifically
for controlling saccades of the eyes to attended lo-
cations. Area FEF contains “retinotopic” spatial
maps whose activation determines the saccade
targets in the visual field. Other prefrontal areas
such as the dorsolateral prefrontal cortex and in-
ferior frontal junction are also involved in main-
taining representations that specify the targets
of certain types of attention. Certain forms of
attention may require a complex interaction be-
tween brain areas, e.g., to determine targets of at-
tention based on higher-level properties that are
represented across multiple areas, like the iden-
tity and spatial location of a specific face (Bal-
dauf and Desimone, 2014).

There are many proposed neural mechanisms
of attention, including the idea that synchrony
plays a role (Baldauf and Desimone, 2014), per-
haps by creating resonances that facilitate the
transfer of information between synchronously
oscillating neural populations in different ar-
eas45. Other proposed mechanisms include spe-
cific circuits for attention-dependent signal rout-
ing (Anderson and Van Essen, 1987; Olshausen
et al., 1993). Various forms of attention also
have specific neurophysiological signatures, such
as enhancements in synchrony among neural
spikes and with the ambient local field potential,
changes in the sharpness of neural tuning curves,
and other properties. These diverse effects and
signatures of attention may be consequences of
underlying pathways that wire up to particular
elements of cortical microcircuits to mediate dif-
ferent attentional effects (Bobier et al., 2014).

4.2.2 Buffers

One possibility is that the brain uses distinct
groups of neurons, which we can call “buffers”, to

44. Attention also arguably solves certain types of perceptual binding problem (Reynolds and Desimone, 1999).
45. The precise roles of synchrony in information routing and other processes, and when it should be viewed as a

causal factor versus as an epiphenomenon of other mechanisms, is still being worked out. In some theories, oscil-
lations occur as consequences of certain recurrent processing loops, e.g., thalamo-cortico-striatal loops (Eliasmith
et al., 2012). In other models, so-called “dynamic circuit motifs”, involving specific combinations of cellular
and synaptic sub-types, both generate synchronies (e.g., in part via intrinsically rhythmic pacemaker neurons)
and exploit them for specific computational roles, particularly in the rapid dynamic formation of communication
networks (Womelsdorf et al., 2014).
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store distinct variables, such as the subject or ob-
ject in a sentence (Frankland and Greene, 2015).
Having memory buffers allows the abstraction of
a variable.

Once we establish that the brain has a num-
ber of memory buffers, we need ways for those
buffers to interact. We need to be able to take
a buffer, do a computation on its contents and
store the output into another buffer. But if the
representations in each of two groups of neurons
are learned, and hence are coded differently, how
can the brain “copy and paste” information be-
tween these groups of neurons? Malsburg argued
that such a system of separate buffers is impos-
sible because the neural pattern for “chair” in
buffer 1 has nothing in common with the neural
pattern for “chair” in buffer 2 – any learning that
occurs for the contents of buffer 1 would not au-
tomatically be transferable to buffer 2. Various
mechanisms have been proposed to allow such
transferability, which focus on ways in which all
buffers could be trained jointly and then later
separated so that they can work independently
when they need to46.

4.2.3 Discrete gating of information
flow between buffers

Dense connectivity is only achieved locally, but
it would be desirable to have a way for any two
cortical units to talk to one another, if needed, re-
gardless of their distance from one another, and
without introducing crosstalk47. It is therefore
critical to be able to dynamically turn on and
off the transfer of information between different
source and destination regions, in much the man-
ner of a switchboard. Together with attention,

such dedicated routing systems can make sure
that a brain area receives exactly the informa-
tion it needs. Such a discrete routing system is,
of course, central to cognitive architectures like
ACT-R (Anderson, 2007). The key feature of
ACT-R is the ability to evaluate the IF clauses of
tens of thousands of symbolic rules (called “pro-
ductions”), in parallel, approximately every 50
milliseconds. Each rule requires equality com-
parisons between the contents of many constant
and variable memory buffers, and the execution
of a rule leads to the conditional routing of infor-
mation from one buffer to another.

What controls which long-range routing oper-
ations occur when, i.e., where is the switchboad
and what controls it? Several models, includ-
ing ACT-R, have attributed such parallel rule-
based control of routing to the action selection
circuitry (Gurney et al., 2001; Terrence Stew-
art, 2010) of the basal ganglia (BG) (Stocco
et al., 2010; O’Reilly and Frank, 2006), and its
interaction with working memory buffers in the
prefrontal cortex. In conventional models of
thalamo-cortico-striatal loops, competing actions
of the direct and indirect pathways through the
basal ganglia can inhibit or disinhibit an area of
motor cortex, thereby gating a motor action48.
Models like (Stocco et al., 2010; O’Reilly and
Frank, 2006; Terrence Stewart, 2010) propose fur-
ther that the basal ganglia can gate not just
the transfer of information from motor cortex
to downstream actuators, but also the transfer
of information between cortical areas. To do so,
the basal ganglia would dis-inhibit a thalamic re-
lay (Sherman, 2005, 2007) linking two cortical ar-
eas. Dopamine-related activity is thought to lead

46. One idea for achieving such transferability is that of a partitionable (Hayworth, 2012) or annexable (Bostrom,
1996) network. These models posit that a large associative memory network links all the different buffers. This
large associative memory network has a number of stable attractor states. These are called “global” attractor
states since they link across all the buffers. Forcing a given buffer into an activity pattern resembling that of its
corresponding “piece” of an attractor state will cause the entire global network to enter that global attractor state.
During training, all of the connections between buffers are turned on, so that their learned contents, though not
identical, are kept in correspondence by being part of the same attractor. Later, the connections between specific
buffers can be turned off to allow them to store different information. Copy and paste is then implemented by
turning on the connections between a source buffer and a destination buffer (Hayworth, 2012). Copying between
a source and destination buffer can also be implemented, i.e., learned, in a deep learning system using methods
similar to the addressing mechanisms of the Neural Turing Machine (Graves et al., 2014).

47. Micro-stimulation experiments, in which an animal learns to behaviorally report stimulation of electrode chan-
nels located in diverse cortical regions, suggest that many areas can be routed or otherwise linked to behavioral
“outputs” (Histed et al., 2013), although the mechanisms behind this – e.g., whether this stimulation gives rise
to a high-level percept that the animal then uses to make a decision – are unclear. Likewise, it is possible to
reinforcement-train an animal to control the activity of individual neurons (Fetz, 1969, 2007).

48. Conventionally, models of the basal ganglia involve all or none gating of an action, but recent evidence suggests
that the basal ganglia may also have continuous, analog outputs (Yttri and Dudman, 2016).
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to temporal difference reinforcement learning of
such gating policies in the basal ganglia (Frank
and Badre, 2012). Beyond the basal ganglia,
there are also other, separate pathways involved
in action selection, e.g., in the prefrontal cor-
tex (Daw et al., 2006). Thus, multiple systems
including basal ganglia and cortex could control
the gating of long-range information transfer be-
tween cortical areas, with the thalamus perhaps
largely constituting the switchboard itself.

How is such routing put to use in a learning
context? One possibility is that the basal gan-
glia acts to orchestrate the training of the cor-
tex. The basal ganglia may exert tight control49

over the cortex, helping to determine when and
how it is trained. Indeed, because the basal gan-
glia pre-dates the cortex evolutionarily, it is pos-
sible that the cortex evolved as a flexible, train-
able resource that could be harnessed by exist-
ing basal ganglia circuitry. All of the main re-
gions and circuits of the basal ganglia are con-
served from our common ancestor with the lam-
prey more than five hundred million years ago.
The major part of the basal ganglia even seems
to be conserved from our common ancestor with
insects (Strausfeld and Hirth, 2013). Thus, in ad-
dition to its real-time action selection and routing
functions, the basal ganglia may sculpt how the
cortex learns.

4.3 Structured state representations to
enable efficient algorithms

Certain algorithmic problems benefit greatly
from particular types of representation and trans-
formation, such as a grid-like representation of
space. In some cases, rather than just waiting for
them to emerge via gradient descent optimization
of appropriate cost functions, the brain may be
pre-structured to facilitate their creation.

4.3.1 Continuous predictive control

We often have to plan and execute complicated
sequences of actions on the fly, in response to a
new situation. At the lowest level, that of mo-
tor control, our body and our immediate envi-
ronment change all the time. As such, it is im-
portant for us to maintain knowledge about this
environment in a continuous way. The deviations
between our planned movements and those move-
ments that we actually execute continuously pro-
vide information about the properties of the envi-
ronment. Therefore it seems important to have a
specialized system, optimized for high-speed con-
tinuous processing, that takes all our motor er-
rors and uses them to update a dynamical model
of our body and our immediate environment that
can predict the delayed sensory results of our mo-
tor actions (McKinstry et al., 2006).

It appears that the cerebellum is such a struc-
ture, and lesions to it abolish our way of deal-
ing successfully with a changing body. Inciden-
tally, the cerebellum has more connections than
the rest of the brain taken together, apparently
in a largely feedforward architecture, and the
tiny cerebellar granule cells, which may form a
randomized high-dimensional input representa-
tion (Marr, 1969; Jacobson and Friedrich, 2013),
outnumber all other neurons. The brain clearly
needs a dedicated way of quickly and continu-
ously correcting movements to minimize errors,
without needing to rely on slow and complex as-
sociation learning in the neocortex in order to do
so.

Newer research shows that the cerebellum
is involved in a broad range of cognitive prob-
lems (Moberget et al., 2014) as well, potentially
because they share computational problems with
motor control. For example, when subjects es-
timate time intervals, which are naturally im-
portant for movement, it appears that the brain

49. It has been suggested that the basic role of the BG is to provide tonic inhibition to other circuits (Grillner et al.,
2005). Release of this inhibition can then activate a “discrete” action, such as a motor command. A core function
of the BG is thus to choose, based on patterns detected in its input, which of a finite set of actions to initiate via
such release of inhibition. In many models of the basal ganglias role in cognitive control, the targets of inhibition
are thalamic relays (Sherman, 2005), which are set in a default “off” state by tonic inhibition from the basal
ganglia. Upon disinhibition of a relay, information is transferred from one cortical location to another – a form of
conditional “gating” of information transfer. For example, the BG might be able to selectively “clamp” particular
groups of cortical neurons in a fixed state, while leaving others free to learn and adapt. It could thereby enforce
complex training routines, perhaps similar to those used to force the emergence of disentangled representations
in (Kulkarni et al., 2015). The idea that the basal ganglia can train the cortex is not new, and already appears
to have considerable experimental and anatomical support (Ashby et al., 2007, 2010; Pasupathy and Miller, 2005;
Turner and Desmurget, 2010).
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uses the cerebellum even if no movements are in-
volved (Gooch et al., 2010). Even individual cere-
bellar Purkinjie cells may learn to generate pre-
cise timings of their outputs (Johansson et al.,
2014). The brain also appears to use inverse
models to rapidly predict motor activity that
would give rise to a given sensory target (Giret
et al., 2014; Hanuschkin et al., 2013). Such mech-
anisms could be put to use far beyond motor
control, in bootstrapping the training of a larger
architecture by exploiting continuously changing
error signals to update a real-time model of the
system state.

4.3.2 Hierarchical control

Importantly, many of the control problems we
appear to be solving are hierarchical. We have a
spinal cord, which deals with the fast signals com-
ing from our muscles and proprioception. Within
neuroscience, it is generally assumed that this
system deals with fast feedback loops and that
this behavior is learned to optimize its own cost
function. The nature of cost functions in motor
control is still under debate. In particular, the
timescale over which cost functions operate re-
mains unclear: motor optimization may occur via
real-time responses to a cost function that is com-
puted and optimized online, or via policy choices
that change over time more slowly in response to
the cost function (Körding, 2007). Nevertheless,
the effect is that central processing in the brain
has an effectively simplified physical system to
control, e.g., one that is far more linear. So the
spinal cord itself already suggests the existence
of two levels of a hierarchy, each trained using
different cost functions.

However, within the computational motor
control literature (see e.g., (DeWolf and Elia-
smith, 2011)), this idea can be pushed far fur-
ther, e.g., with a hierarchy including spinal cord,
M1, PMd, frontal, prefrontal areas. A low level
may deal with muscles, the next level may deal
with getting our limbs to places or moving ob-
jects, a next layer may deal with solving simple
local problems (e.g., navigating across a room)
while the highest levels may deal with us plan-
ning our path through life. This factorization of
the problem comes with multiple aspects: First,
each level can be solved with its own cost func-
tions, and second, every layer has a characteristic

timescale. Some levels, e.g., the spinal cord, must
run at a high speed. Other levels, e.g., high-level
planning, only need to be touched much more
rarely. Converting the computationally hard op-
timal control problem into a hierarchical approx-
imation promises to make it dramatically easier.

Does the brain solve control problems hierar-
chically? There is evidence that the brain uses
such a strategy (Botvinick and Weinstein, 2014;
Botvinick et al., 2009), beside neural network
demonstrations (Wayne and Abbott, 2014). The
brain may use specialized structures at each hi-
erarchical level to ensure that each operates effi-
ciently given the nature of its problem space and
available training signals. At higher levels, these
systems may use an abstract syntax for combin-
ing sequences of actions in pursuit of goals (Allen
et al., 2010). Subroutines in such processes could
be derived by a process of chunking sequences of
actions into single actions (Botvinick and Wein-
stein, 2014; Graybiel, 1998). Some brain areas
like Broca’s area, known for its involvement in
language, also appear to be specifically involved
in processing the hierarchical structure of behav-
ior, as such, as opposed to its detailed temporal
structure (Koechlin and Jubault, 2006).

At the highest level of the decision making
and control hierarchy, human reward systems re-
flect changing goals and subgoals, and we are
only beginning to understand how goals are ac-
tually coded in the brain, how we switch between
goals, and how the cost functions used in learn-
ing depend on goal state (O’Reilly et al., 2014b;
Buschman and Miller, 2014; Pezzulo et al., 2014).
Goal hierarchies are beginning to be incorporated
into deep learning (Kulkarni et al., 2016).

Given this hierarchical structure, the opti-
mization algorithms can be fine-tuned. For the
low levels, there is sheer unlimited training data.
For the high levels, a simulation of the world may
be simple, with a tractable number of high-level
actions to choose from. Finally, each area needs
to give reinforcement to other areas, e.g., high
levels need to punish lower levels for making plan-
ning complicated. Thus this type of architecture
can simplify the learning of control problems.

Progress is being made in both neuroscience
and machine learning on finding potential mech-
anisms for this type of hierarchical planning
and goal-seeking. This is beginning to reveal
mechanisms for chunking goals and actions and
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for searching and pruning decision trees (Bala-
guer et al., 2016; Krishnamurthy et al., 2016;
Tamar et al., 2016; O’Reilly et al., 2014a; Huys
et al., 2015). The study of model-based hi-
erarchical reinforcement learning and prospec-
tive optimization (Sejnowski and Poizner, 2014),
which concerns the planning and evaluation of
nested sequences of actions, implicates a net-
work coupling the dorsolateral prefontral and or-
bitofrontal cortex, and the ventral and dorsolat-
eral striatum (Botvinick et al., 2009). Hierar-
chical RL relies on a hierarchical representation
of state and action spaces, and it has been sug-
gested that error-driven learning of an optimal
such representation in the hippocampus50 gives
rise to place and grid cell properties (Stachen-
feld, 2014), with goal representations themselves
emerging in the amygdala, prefrontal cortex and
other areas (O’Reilly et al., 2014a).

The question of how control problems can
be successfully divided into component problems
remains one of the central questions in neuro-
science (Wolpert and Flanagan, 2016) and ma-
chine learning (Kulkarni et al., 2016), and the
cost functions involved in learning to create such
decompositions are still unknown. These consid-
erations may begin to make plausible, however,
how the brain could not only achieve its remark-
able feats of motor learning – such as generating
complex “innate” motor programs, like walking
in the newborn gazelle almost immediately after
birth – but also the kind of planning that allows
a human to prepare a meal or travel from London
to Chicago.

4.3.3 Spatial planning

Spatial planning requires solving shortest-path
problems subject to constraints. If we want to
get from one location to another, there are an ar-
bitrarily large number of simple paths that could
be taken. Most naive implementations of such
shortest paths problems are grossly inefficient. It
appears that, in animals, the hippocampus aids
– at least in part through “place cell” and “grid
cell” systems – in efficient learning about new

environments and in targeted navigation in such
environments (Brown et al., 2016). Interestingly,
once an environment becomes familiar, it appears
that areas of the neocortex can take over the role
of navigation (Hasselmo and Stern, 2015).

In some simple models, targeted navigation
in the hippocampus is achieved via the dynam-
ics of “bump attractors” or propagating waves
in a place cell network with Hebbian plasticity
and adaptation (Buzsáki and Moser, 2013; Hop-
field, 2009; Ponulak and Hopfield, 2013), which
allows the network to effectively chart out a path
in the space of place cell representations. Other
navigation models make use of the grid cell sys-
tem. The place cell network may51 take input
from a grid cell network that computes precise
distances and directions, perhaps by integrating
head direction and velocity signals – grid cells
fire when the animal is on any node of a regu-
larly spaced hexagonal grid. Different parts of
the entorhinal cortex contain grid cells with dif-
ferent grid spacings, and place cells may combine
information from multiple such grids in order to
build up responses to particular single positions.
These systems are highly structured temporally,
e.g., containing nested gamma and theta oscil-
lation structures that are phased locked to se-
quences of place-cell responses, interfering oscil-
lators frequency-shifted by the animal’s motion
velocity (Zilli and Hasselmo, 2010), tuned cellular
resonances (Buzsáki, 2010; Giocomo et al., 2007),
and other neural phenomena that lie far outside
a conventional artificial neural network descrip-
tion. It seems that an intricate interplay of spa-
tial and temporal network structures may be es-
sential for encoding sequences of spatiotemporal
events across multiple scales, and using them to
drive multiple forms of learning, e.g., supporting
forward and reverse sequence replay with various
temporal compression factors (Buzsáki, 2010).

Higher-level cognitive tasks such as prospec-
tive planning appear to share computational
sub-problems with path-finding (Hassabis and
Maguire, 2009)52. Interaction between hip-
pocampus and prefrontal cortex could perhaps
support a more abstract notion of “navigation”

50. Like many brain areas, the hippocampus is richly innervated by a variety of reward-related and other neuromod-
ulatory systems (Hasselmo and Wyble, 1997; Verney et al., 1985; Colino and Halliwell, 1987).

51. It remains unclear whether place cells take input from the grid cell system or vice versa (Hasselmo, 2015).
52. Other spatial problems such as mental rotation may require learning architectures specialized for geometric coordi-

nate transformations (Hinton et al., 2011; Jaderberg et al., 2015a) or binding mechanisms that support structural,
compositional, parametric descriptions of a scene (Hayworth et al., 2011).
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in a space of goals and sub-goals. Interestingly,
there is preliminary evidence from fMRI that
abstract concepts are also represented accord-
ing to grid-cell-like hexagonal grid structures in
humans (Constantinescu et al., 2016), as well
as preliminary evidence that social relationships
may also be represented through a hippocampal
map (Tavares et al., 2015). Having specialized
structures for path-finding could thus simplify
a variety of computational problems at different
levels of abstraction.

4.3.4 Variable binding

Language and reasoning appear to present a
problem for neural networks (Minsky, 1991;
Hadley, 2009; Marcus, 2001): we seem to be
able to apply common grammatical rules to sen-
tences regardless of the content of those sen-
tences, and regardless of whether we have ever
seen even remotely similar sentences in the train-
ing data. While this is achieved automatically
in a computer with fixed registers, location ad-
dressable memories, and hard-coded operations,
how it could be achieved in a biological brain, or
emerge from an optimization algorithm, has been
under debate for decades.

As the putative key capability underlying
such operations, variable binding has been de-
fined as “the transitory or permanent tying to-
gether of two bits of information: a variable
(such as an X or Y in algebra, or a placeholder
like subject or verb in a sentence) and an arbi-
trary instantiation of that variable (say, a sin-
gle number, symbol, vector, or word)” (Marcus
et al., 2014a,b). A number of potential biolog-
ically plausible binding mechanisms (Hayworth,
2012; Kriete et al., 2013; Eliasmith et al., 2012;
Goertzel, 2014) are reviewed in (Marcus et al.,
2014a,b). Some, such as vector symbolic archi-
tectures53, which were proposed in cognitive sci-
ence (Eliasmith, 2013; Plate, 1995; Stewart and
Eliasmith, 2009), are also being considered in
the context of efficiently-trainable artificial neu-

ral networks (Danihelka et al., 2016) – in effect,
these systems learn how to use variable binding.

Variable binding could potentially emerge
from simpler memory systems. For example, the
Scrub-Jay can remember the place and time of
last visit for hundreds of different locations, e.g.,
to determine whether high-quality food is cur-
rently buried at any given location (Clayton and
Dickinson, 1998). It is conceivable that such
spatially-grounded memory systems enabled a
more general binding mechanism to emerge dur-
ing evolution, perhaps through integration with
routing systems or other content-addressable or
working memory systems.

4.3.5 Hierarchical syntax

Fixed, static hierarchies (e.g., the hierarchi-
cal organization of cortical areas (Felleman and
Van Essen, 1991)) only take us so far: to deal
with long chains of arbitrary nested references,
we need dynamic hierarchies that can implement
recursion on the fly. Human language syntax
has a hierarchical structure, which Berwick et al
described as “composition of smaller forms like
words and phrases into larger ones” (Berwick
et al., 2012; Miyagawa et al., 2013). The ex-
tent of recursion in human language and thought
may be captured by a class of automata known as
higher-order pushdown automata, which can be
implemented via finite state machines with ac-
cess to nested stacks (Rodriguez and Granger,
2016). Specific fronto-temporal networks may be
involved in representing and generating such hi-
erarchies (Dehaene et al., 2015), e.g., with the
hippocampal system playing a key role in imple-
menting some analog of a pushdown stack (Ro-
driguez and Granger, 2016)54.

Little is known about the underlying circuit
mechanisms for such dynamic hierarchies, but it
is clear that specific affordances for representing
such hierarchies in an efficient way would be ben-
eficial. This may be closely connected with the
issue of variable binding, and it is possible that

53. There is some direct fMRI evidence for anatomically separate registers representing the contents of different sen-
tence roles in the human brain (Frankland and Greene, 2015), which is suggestive of a possible anatomical binding
mechanism, but also consistent with other mechanisms like vector symbolic architectures. More generally, the
substrates of symbolic processing in the brain may bear an intimate connection with the representation of objects
in working memory in the prefrontal cortex, and specifically with the question of how the PFC represents multiple
objects in working memory simultaneously. This question is undergoing extensive study in primates (Warden and
Miller, 2007, 2010; Siegel et al., 2009; Rigotti et al., 2013).

54. There is controversy around claims that recursive syntax is also present in songbirds (Van Heijningen et al., 2009).
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operations similar to pointers could be useful in
this context, in both the brain and artificial neu-
ral networks (Kriete et al., 2013; Kurach et al.,
2015). Augmenting neural networks with a differ-
entiable analog of a push-down stack is another
such affordance being pursued in machine learn-
ing (Joulin and Mikolov, 2015).

4.3.6 Mental programs and imagination

Humans excel at stitching together sub-actions
to form larger actions (Sejnowski and Poizner,
2014; Acuna et al., 2014; Verwey, 1996). Struc-
tured, serial, hierarchical probabilistic programs
have recently been shown to model aspects of
human conceptual representation and composi-
tional learning (Lake et al., 2015). In par-
ticular, sequential programs were found to en-
able one-shot learning of new geometric/visual
concepts (Lake et al., 2015). Generative pro-
grams have also been proposed in the context
of scene understanding (Battaglia et al., 2013).
The ability to deal with problems in terms of sub-
problems is central both in human thought and
in many successful algorithms.

One possibility is that the hippocampus sup-
ports the rapid construction and learning of se-
quential programs, e.g., in multi-step planning.
An influential idea – known as the “comple-
mentary learning systems hypothesis” – is that
the hippocampus plays a key role in certain
processes where learning must occur quickly on
the basis of single episodes, whereas the cortex
learns more slowly by aggregating and integrat-
ing patterns across large amounts of data (Leibo
et al., 2015a; Herd et al., 2013; Blundell et al.,
2016; Kumaran et al., 2016). The hippocam-
pus appears to explore, in simulation, possible
future trajectories to a goal, even those involv-
ing previously unvisited locations (Ólafsdóttir
et al., 2015). Hippocampal-prefrontal interac-
tion has been suggested to allow rapid, subcon-
scious evaluation of potential action sequences
during decision-making, with the hippocampus
in effect simulating the expected outcomes of
potential actions that are generated and evalu-

ated in the prefrontal (Wang et al., 2015; Mushi-
ake et al., 2006). The role of the hippocampus
in imagination, concept generation (Kumaran
et al., 2009), scene construction (Hassabis and
Maguire, 2007), mental exploration and goal-
directed path planning (Ólafsdóttir et al., 2015;
Brown et al., 2016; Hopfield, 2009) suggests that
it could help to create generative models to un-
derpin more complex inference such as program
induction (Lake et al., 2015) or common-sense
world simulation (Battaglia et al., 2013). For ex-
ample, a sequential, programmatic process, me-
diated jointly by the basal ganglia, hippocam-
pus and prefrontal cortex might allow one-shot
learning of a new concept, as in the sequential
computations underlying a process like Bayesian
Program Learning (Lake et al., 2015).

Another related possibility is that the cor-
tex itself intrinsically supports the construction
and learning of sequential programs (Bach and
Herger, 2015). Recurrent neural networks have
been used for image generation through a se-
quential, attention-based process (Gregor et al.,
2015), although their correspondence with the
brain is unclear55.

4.4 Other specialized structures

Importantly, there are many other specialized
structures known in neuroscience, which ar-
guably receive less attention than they deserve,
even for those interested in higher cognition. In
the above, in addition to the hippocampus, basal
ganglia and cortex, we emphasized the key roles
of the thalamus in routing, of the cerebellum as
a fast and rapidly trainable control and modeling
system, of the amygdala and other areas as a po-
tential source of utility functions, of the retina or
early visual areas as a means to generate detec-
tors for motion and other features to bootstrap
more complex visual learning, and of the frontal
eye fields and other areas as a possible source of
attention control. We ignored other structures
entirely, whose functions are only beginning to
be uncovered, such as the claustrum (Crick and
Koch, 2005), which has been speculated to be im-

55. The above mechanisms are spontaneous and subconscious. In conscious thought, too, the brain can clearly visit
the multiple layers of a program one after the other. We make high-level plans that we fill with lower-level plans.
Humans also have memory for their own thought processes. We have some ability to put “on hold” our current
state of mind, start a new train of thought, and then come back to our original thought. We also are able to
ask, introspectively, whether we have had a given thought before. The neural basis of these processes is unclear,
although one may speculate that the hippocampus is involved.
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portant for rapidly binding together information
from many modalities. Our overall understand-
ing of the functional decomposition of brain cir-
cuitry still seems very preliminary.

4.5 Relationships with other cognitive
frameworks involving specialized
systems

A recent analysis (Lake et al., 2016) suggested
directions by which to modify and enhance ex-
isting neural-net-based machine learning towards
more powerful and human-like cognitive capabil-
ities, particularly by introducing new structures
and systems which go beyond data-driven opti-
mization. This analysis emphasized that systems
should construct generative models of the world
that incorporate compositionality (discrete con-
struction from re-usable parts), inductive biases
reflecting causality, intuitive physics and intu-
itive psychology, and the capacity for probabilis-
tic inference over discrete structured models (e.g.,
structured as graphs, trees, or programs) (Tervo
et al., 2016) to harness abstractions and enable
transfer learning.

We view these ideas as consistent with and
complementary to the framework of cost func-
tions, optimization and specialized systems dis-
cussed here. One might seek to understand how
optimization and specialized systems could be
used to implement some of the mechanisms pro-
posed in (Lake et al., 2016) inside neural net-
works. Lake et al. (2016) emphasize how incor-
porating additional structure into trainable neu-
ral networks can potentially give rise to systems
that use compositional, causal and intuitive in-
ductive biases and that “learn to learn” using
structured models and shared data structures.
For example, sub-dividing networks into units
that can be modularly and dynamically com-
bined, where representations can be copied and
routed, may present a path towards improved
compositionality and transfer learning (Andreas
et al., 2015). The control flow for recombining
pre-existing modules and representations could
be learned via reinforcement learning (Andreas
et al., 2016). How to implement the broad set of
mechanisms discussed in (Lake et al., 2016) is a
key computational problem, and it remains open
at which levels (e.g., cost functions and training
procedures vs. specialized computational struc-

tures vs. underlying neural primitives) architec-
tural innovations will need to be introduced to
capture these phenomena.

Primitives that are more complex than those
used in conventional neural networks – for in-
stance, primitives that act as state machines
with complex message passing (Bach and Herger,
2015) or networks that intrinsically implement
Bayesian inference (George and Hawkins, 2009)
– could potentially be useful, and it is plausible
that some of these may be found in the brain.
Recent findings on the power of generic opti-
mization also do not rule out the idea that the
brain may explicitly generate and use particular
types of structured representations to constrain
its inferences; indeed, the specialized brain sys-
tems discussed here might provide a means to
enforce such constraints. It might be possible to
further map the concepts of Lake et al. (2016)
onto neuroscience via an infrastructure of inter-
acting cost functions and specialized brain sys-
tems under rich genetic control, coupled to a
powerful and generic neurally implemented ca-
pacity for optimization. For example, it was re-
cently shown that complex probabilistic popula-
tion coding and inference can arise automatically
from backpropagation-based training of simple
neural networks (Orhan and Ma, 2016), without
needing to be built in by hand. The nature of
the underlying primitives in the brain, on top of
which learning can operate, is a key question for
neuroscience.

5. Machine learning inspired
neuroscience

Hypotheses are primarily useful if they lead to
concrete, experimentally testable predictions. As
such, we now want to go through the hypotheses
and see to which level they can be directly tested,
as well as refined, through neuroscience.

5.1 Hypothesis 1– Existence of cost
functions

There are multiple general strategies for address-
ing whether and how the brain optimizes cost
functions. A first strategy is based on observ-
ing the endpoint of learning. If the brain uses
a cost function, and we can guess its identity,
then the final state of the brain should be close
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to optimal for the cost function. We could thus
compare (Güçlü and van Gerven, 2015) recep-
tive fields that are optimized in a simulation, ac-
cording to a particular cost function, with the
measured receptive fields. Various techniques ex-
ist to carry out such comparisons in fRMI stud-
ies, including population receptive field estima-
tion (Güçlü and van Gerven, 2015; Dumoulin and
Wandell, 2008) and representational dissimilar-
ity matrices (Kriegeskorte et al., 2008; Khaligh-
Razavi and Kriegeskorte, 2014). This strategy is
only beginning to be used at the moment, per-
haps because it has been difficult to measure the
receptive fields or other representational proper-
ties across a large population of individual neu-
rons (fMRI operates at a much coarser level), but
this situation is beginning to improve technologi-
cally with the emergence of large-scale recording
methods (Hasselmo, 2015).

A second strategy could directly quantify how
well a cost function describes learning. If the dy-
namics of learning minimize a cost function then
the underlying vector field should have a strong
gradient descent type component and a weak ro-
tational component, i.e., weight changes will pri-
marily move down the gradient rather than drift-
ing in the nullspace. If we could somehow con-
tinuously monitor the synaptic strengths, while
externally manipulating them, then we could, in
principle, measure the vector field in the space
of synaptic weights, and calculate its divergence
as well as its rotation. For at least the subset
of synapses that are being trained via some ap-
proximation to gradient descent, the divergence
component should be strong relative to the rota-
tional component. This strategy has not been de-
veloped yet due to experimental difficulties with
monitoring large numbers of synaptic weights56.

A third strategy is based on perturbations:
cost function based learning should undo the ef-
fects of perturbations which disrupt optimality,
i.e., the system should return to local minima
after a perturbation, and indeed perhaps to the
same local minimum after a sufficiently small per-
turbation. If we change synaptic connections,
e.g., in the context of a brain machine interface,
we should be able to produce a reorganization
that can be predicted based on a guess of the rel-
evant cost function. This strategy is starting to
be feasible in motor areas.

Lastly, if we knew structurally which cell
types and connections mediated the delivery of
error signals vs. input data or other types of
connections, then we could stimulate specific con-
nections so as to impose a user-defined cost func-
tion. In effect, we would use the brain’s own net-
works as a trainable deep learning substrate, and
then study how the network responds to train-
ing. Brain machine interfaces can be used to set
up specific local learning problems, in which the
brain is asked to create certain user-specified rep-
resentations, and the dynamics of this process
can be monitored (Sadtler et al., 2014). Like-
wise, brain machine interfaces can be used to
give the brain access to new datastreams, and to
investigate how those datastreams are incorpo-
rated into task performance, and whether such
incorporation is governed by optimality princi-
ples (Dadarlat et al., 2015). In order to do this
kind of experiment fully and optimally, we must
first understand more about how the system is
wired to deliver cost signals. Much of the struc-
ture that would be found in connectomic circuit
maps, for example, would not just be relevant
for short-timescale computing, but also for cre-
ating the infrastructure that supports cost func-
tions and their optimization.

Many of the learning mechanisms that we
have discussed in this paper make specific pre-
dictions about connectivity or dynamics. For
example, the “feedback alignment” approach to
biological backpropagation suggests that corti-
cal feedback connections should, at some level
of neuronal grouping, be largely sign-concordant
with the corresponding feedforward connec-
tions, although not necessarily of concordant
weight (Liao et al., 2015), and feedback align-
ment also makes predictions for synaptic nor-
malization mechanisms (Liao et al., 2015). The
Kickback model for biologically plausible back-
propagation has a specific role for NMDA re-
ceptors (Balduzzi et al., 2014). Some models
that incorporate dendritic coincidence detection
for learning temporal sequences predict that a
given axon should make only a small number of
synapses on a given dendritic segment (Hawkins
and Ahmad, 2016). Models that involve STDP
learning will make predictions about the dynam-
ics of changing firing rates (Hinton, 2007, 2016;
Bengio et al., 2015a; Bengio and Fischer, 2015;

56. Fluorescent techniques like (Hayashi-Takagi et al., 2015) might be helpful.
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Bengio et al., 2015b), as well as about the par-
ticular network structures, such as those based
on autoencoders or recirculation, in which STDP
can give rise to a form of backpropagation.

It is critical to establish the unit of optimiza-
tion. We want to know the scale of the modules
that are trainable by some approximation of gra-
dient descent optimization. How large are the
networks which share a given error signal or cost
function? On what scales can appropriate train-
ing signals be delivered? It could be that the
whole brain is optimized end-to-end, in principle.
In this case we would expect to find connections
that carry training signals from each layer to the
preceding ones. On successively smaller scales,
optimization could be within a brain area, a mi-
crocircuit57, or an individual neuron (Körding
and König, 2000, 2001; Mel, 1992; Hawkins and
Ahmad, 2016). Importantly, optimization may
co-exist across these scales. There may be some
slow optimization end-to-end, with stronger op-
timization within a local area and very efficient
algorithms within each cell. Careful experiments
should be able to identify the scale of optimiza-
tion, e.g., by quantifying the extent of learning
induced by a local perturbation.

The tightness of the structure-function rela-
tionship is the hallmark of molecular and to some
extent cellular biology, but in large connection-
ist learning systems, this relationship can become
difficult to extract: the same initial network can
be driven to compute many different functions
by subjecting it to different training5859. It can

be hard to understand the way a neural network
solves its problems.

How could one tell the difference, then, be-
tween a gradient-descent trained network vs. un-
trained or random networks vs. a network that
has been trained against a different kind of task?
One possibility would be to train artificial neu-
ral networks against various candidate cost func-
tions, study the resulting neural tuning proper-
ties (Todorov, 2002), and compare them with
those found in the circuit of interest (Zipser and
Andersen, 1988). This has already been done to
aid the interpretation of the neural dynamics un-
derlying decision making in the PFC (Sussillo,
2014), working memory in the posterior parietal
cortex (Rajan et al., 2016) and object or action
representation in the visual system (Yamins and
DiCarlo, 2016b,a; Tacchetti et al., 2016). Some
have gone on to suggest a direct correspondence
between cortical circuits and optimized, appro-
priately regularized (Sussillo et al., 2015), recur-
rent neural networks (Liao and Poggio, 2016).
In any case, effective analytical methods to re-
verse engineer complex machine learning sys-
tems (Jonas and Kording, 2016), and methods
to reverse engineer biological brains, may have
some commonalities.

Does this emphasis on function optimization
and trainable substrates mean that we should
give up on reverse engineering the brain based
on detailed measurements and models of its spe-
cific connectivity and dynamics? On the con-
trary: we should use large-scale brain maps to

57. The use of structured microcircuits rather than individual neurons as the units of learning can ease the burden on
the learning rules possessed by individual neurons, as exemplified by a study implementing Helmholtz machine
learning in a network of spiking neurons using conventional plasticity rules (Sountsov and Miller, 2015; Roudi
and Taylor, 2015). As a simpler example, the classical problem of how neurons with only one output axon could
communicate both activation and error derivatives for backpropagation ceases to be a problem if the unit of
optimization is not a single neuron. Similar considerations hold for the issue of weight symmetry, or approximate
sign-concordance in the case of feedback alignment (Liao et al., 2015).

58. Within this framework, networks that adhere to the basic statistics of neural connectivity, electrophysiology and
morphology, such as the initial cortical column models from the Blue Brain Project (Markram et al., 2015), would
recapitulate some properties of the cortex, but – just like untrained neural networks – would not spontaneously
generate complex functional computation without being subjected to a multi-stage training process, naturalistic
sensory data, signals arising from other brain areas and action-driven reinforcement signals.

59. Not only in applied machine learning, but also in today’s most advanced neuro-cognitive models such as
SPAUN (Eliasmith, 2013; Eliasmith et al., 2012), the detailed local circuit connectivity is obtained through
an optimization process of some kind to achieve a particular functionality. In the case of modern machine learn-
ing, training is often done via end-to-end backpropagation through an architecture that is only structured at the
level of higher-level “blocks” of units, whereas in SPAUN each block is optimized (Eliasmith and Anderson, 2004)
separately according to a procedure that allows the blocks to subsequently be stitched together in a coherent way.
Technically, the Neural Engineering Framework (Eliasmith and Anderson, 2004) used in SPAUN uses singular
value decomposition, rather than gradient descent, to compute the connections weights as optimal linear decoders.
This is possible because of a nonlinear mapping into a high-dimensional space, in which approximating any desired
function can be done via a hyperplane regression (Tapson and van Schaik, 2013).
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try to better understand a) how the brain imple-
ments optimization, b) where the training signals
come from and what cost functions they embody,
and c) what structures exist, at different levels
of organization, to constrain this optimization to
efficiently find solutions to specific kinds of prob-
lems. The answers may be influenced by diverse
local properties of neurons and networks, such
as homeostatic rules of neural structure, gene
expression and function (Marder and Goaillard,
2006), the diversity of synapse types, cell-type-
specific connectivity (Jiang et al., 2015), patterns
of inter-laminar projection, distributions of in-
hibitory neuron types, dendritic targeting and lo-
cal dendritic physiology and plasticity (Markram
et al., 2015; Bloss et al., 2016; Sandler et al., 2016;
Morgan et al., 2016) or local glial networks (Perea
et al., 2009). They may also be influenced by
the integrated nature of higher-level brain sys-
tems, including mechanisms for developmental
bootstrapping (Ullman et al., 2012), information
routing (Gurney et al., 2001; Stocco et al., 2010),
attention (Buschman and Miller, 2010) and hier-
archical decision making (Lee et al., 2015). Map-
ping these systems in detail is of paramount im-
portance to understanding how the brain works,
down to the nanoscale dendritic organization of
ion channels and up to the real-time global co-
ordination of cortex, striatum and hippocampus,
all of which are computationally relevant in the
framework we have explicated here. We thus ex-
pect that large-scale, multi-resolution brain maps
would be useful in testing these framework-level
ideas, in inspiring their refinements, and in using
them to guide more detailed analysis.

5.2 Hypothesis 2– Biological
fine-structure of cost functions

Clearly, we can map differences in structure,
dynamics and representation across brain ar-
eas. When we find such differences, the ques-
tion remains as to whether we can interpret these
as resulting from differences in the internally-
generated cost functions, as opposed to differ-
ences in the input data, or from differences that
reflect other constraints unrelated to cost func-

tions. If we can directly measure aspects of the
cost function in different areas, then we can also
compare them across areas. For example, meth-
ods from inverse reinforcement learning60 might
allow backing out the cost function from observed
plasticity (Ng and Russell, 2000).

Moreover, as we begin to understand the
“neural correlates” of particular cost functions
– perhaps encoded in particular synaptic or neu-
romodulatory learning rules, genetically-guided
local wiring patterns, or patterns of interaction
between brain areas – we can also begin to under-
stand when differences in observed neural circuit
architecture reflect differences in cost functions.

We expect that, for each distinct learning rule
or cost function, there may be specific molecu-
larly identifiable types of cells and/or synapses.
Moreover, for each specialized system there may
be specific molecularly identifiable developmental
programs that tune it or otherwise set its param-
eters. This would make sense if evolution has
needed to tune the parameters of one cost func-
tion without impacting others.

How many different types of internal training
signals does the brain generate? When think-
ing about error signals, we are not just talking
about dopamine and serotonin, or other classi-
cal reward-related pathways. The error signals
that may be used to train specific sub-networks in
the brain, via some approximation of gradient de-
scent or otherwise, are not necessarily equivalent
to reward signals. It is important to distinguish
between cost functions that may be used to drive
optimization of specific sub-circuits in the brain,
and what are referred to as “value functions” or
“utility functions”, i.e., functions that predict the
agent’s aggregate future reward. In both cases,
similar reinforcement learning mechanisms may
be used, but the interpretation of the cost func-
tions is different. We have not emphasized global
utility functions for the animal here, since they
are extensively studied elsewhere (e.g., (O’Reilly
et al., 2014a; Bach, 2015)), and since we argue
that, though important, they are only a part of
the picture, i.e., that the brain is not solely an
end-to-end reinforcement trained system.

60. There is a rich tradition of trying to estimate the cost function used by human beings (Ng and Russell, 2000; Finn
et al., 2016; Ho and Ermon, 2016). The idea is that we observe (by stipulation) behavior that is optimal for the
human’s cost function. We can then search for the cost function that makes the observed behavior most probable
and simultaneously makes the behaviors that could have been observed, but were not, least probable. Extensions
of such approaches could perhaps be used to ask which cost functions the brain is optimizing.

39

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/058545doi: bioRxiv preprint 

https://doi.org/10.1101/058545


Progress in brain mapping could soon allow us
to classify the types of reward signals in the brain,
follow the detailed anatomy and connectivity of
reward pathways throughout the brain, and map
in detail how reward pathways are integrated into
striatal, cortical, hippocampal and cerebellar mi-
crocircuits. This program is beginning to be car-
ried out in the fly brain, in which twenty spe-
cific types of dopamine neuron project to dis-
tinct anatomical compartments of the mushroom
body to train distinct odor classifiers operating
on a set of high-dimensional odor representa-
tions (Aso et al., 2014a,b; Caron et al., 2013;
Cohn et al., 2015). It is known that, even within
the same system, such as the fly olfactory path-
way, some neuronal wiring is highly specific and
molecularly programmed (Hong and Luo, 2014;
Hattori et al., 2007), while other wiring is effec-
tively random (Caron et al., 2013), and yet other
wiring is learned (Aso et al., 2014a). The in-
terplay between such design principles could give
rise to many forms of “division of labor” between
genetics and learning. Likewise, it is believed
that birdsong learning is driven by reinforcement
learning using a specialized cost function that re-
lies on comparison with a memorized version of
a tutor’s song (Fiete et al., 2007), and also that
it involves specialized structures for controlling
song variability during learning (Aronov et al.,
2011). These detailed pathways underlying the
construction of cost functions for vocal learning
are beginning to be mapped (Mandelblat-Cerf
et al., 2014). Starting with simple systems, it
should become possible to map the reward path-
ways and how they evolved and diversified, which
would be a step on the way to understanding how
the system learns.

These types of mapping efforts would be a
first step towards the ability to create a con-
crete model of the brain’s optimization architec-
ture. Our discussion here has focused on try-
ing to anticipate, based on known neuroscience
knowledge and on approaches becoming success-
ful in machine learning, the kinds of local cost
functions that the brain may rely on, and how
specialized brain systems may enable efficient so-
lutions to optimization problems. However, this
framework-level discussion is not a formal speci-
fication, either of the architecture, or of a notion
of biologically applied cost function that could
be directly measured based on neural data. In

order to move towards a more formal specifica-
tion of the kind of model we are proposing here,
it would be useful to map the architecture of
the brains reward systems and to identify other
biological pathways that may mediate the gen-
eration and delivery of error signals. Based on
such maps, one could identify regions which are
proposed to be subject to a single cost function.
Otherwise, the problem of inference of the cost
function, e.g., based on neural dynamics becomes
ill-posed: one can define a local cost function for
an arbitrary dynamics by integrating the trajec-
tory of the system, but this approach in general
lacks explanatory power and also, crucially, lacks
any circuit-level relationship with the brains ac-
tual neural mechanisms of optimization, i.e., such
a defined cost function does not necessarily cor-
respond to the cost functions that the biological
machinery is actually organized to optimize. No-
tably, some of the relevant biological pathways
mediating cost functions and error signals may
involve key biomolecular or gene expression as-
pects, not just real-time patterns of neural activ-
ity.

Another related consideration, in trying to
formalize this type approach and to infer cost
functions from neural measurements, is that not
all neurons in the circuit may be subject to opti-
mization: after all, some neurons may be needed
to generate the error signals themselves, or to me-
diate the optimization process for other neurons,
or to perform other unrelated functions. Further-
more, within a given region, there may be multi-
ple sub-circuits subject to different optimization
pressures. It is the claim that the brain actually
has structured biological machinery to generate,
route and apply specific cost functions that gives
substance to our proposal, over and above the
trivial claim that many kinds of dynamics can
be viewed as optimizations, but our knowledge
of this machinery is still limited. This is not to
mention the difficulties involved in inferring cost
functions in the presence of noise or constraints
on the dynamics. Thus, one cannot blindly col-
lect the neurons in an arbitrary region, measure
their dynamics, and hope to infer their cost func-
tion by solving an inverse problem – instead, a
rich interplay between structural mapping, dy-
namic mapping, hypothesis generation, modeling
and perturbation is likely to be necessary in or-
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der to gain a detailed knowledge of which cost
functions the brain uses and how it does so.

5.3 Hypothesis 3– Embedding within a
pre-structured architecture

If different brain structures are performing dis-
tinct types of computations with a shared goal,
then optimization of a joint cost function will
take place with different dynamics in each area.
If we focus on a higher level task, e.g., maximiz-
ing the probability of correctly detecting some-
thing, then we should find that basic feature de-
tection circuits should learn when the features
were insufficient for detection, that attentional
routing structures should learn when a different
allocation of attention would have improved de-
tection and that memory structures should learn
when items that matter for detection were not
remembered. If we assume that multiple struc-
tures are participating in a joint computation,
which optimizes an overall cost function (but see
Hypothesis 2), then an understanding of the
computational function of each area leads to a
prediction of the measurable plasticity rules.

6. Neuroscience inspired machine
learning

Machine learning may be equally transformed
by neuroscience. Within the brain, a myriad of
subsystems and layers work together to produce
an agent that exhibits general intelligence. The
brain is able to show intelligent behavior across
a broad range of problems using only relatively
small amounts of data. As such, progress at un-
derstanding the brain promises to improve ma-
chine learning. In this section, we review our
three hypotheses about the brain and discuss how
their elaboration might contribute to more pow-
erful machine learning systems.

6.1 Hypothesis 1– Existence of cost
functions

A good practitioner of machine learning should
have a broad range of optimization methods at
their disposal as different problems ask for dif-
ferent approaches. The brain, we have argued,
is an implicit machine learning mechanism which
has been evolved over millions of years. Conse-

quently, we should expect the brain to be able to
optimize cost functions efficiently, across many
domains and kinds of data. Indeed, across dif-
ferent animal phyla, we even see convergent evo-
lution of certain brain structures (Shimizu and
Karten, 2013; Güntürkün and Bugnyar, 2016),
e.g., the bird brain has no cortex yet has devel-
oped homologous structures which – as the lin-
guistic feats of the African Grey Parrot demon-
strate – can give rise to quite complex intelli-
gence. It seems reasonable to hope to learn how
to do truly general-purpose optimization by look-
ing at the brain.

Indeed, there are multiple kinds of optimiza-
tion that we may expect to discover by looking
at the brain. At the hardware level, the brain
clearly manages to optimize functions efficiently
despite having slow hardware subject to molecu-
lar fluctuations, suggesting directions for improv-
ing the hardware of machine learning to be more
energy efficient. At the level of learning rules,
the brain solves an optimization problem in a
highly nonlinear, non-differentiable, temporally
stochastic, spiking system with massive numbers
of feedback connections, a problem that we ar-
guably still do not know how to efficiently solve
for neural networks. At the architectural level,
the brain can optimize certain kinds of functions
based on very few stimulus presentations, oper-
ates over diverse timescales, and clearly uses ad-
vanced forms of active learning to infer causal
structure in the world.

While we have discussed a range of theo-
ries (Hinton, 2007, 2016; Bengio et al., 2015a;
Balduzzi et al., 2014; Roelfsema et al., 2010;
O’Reilly, 1996; O’Reilly et al., 2014a; Körding
and König, 2001; Lillicrap et al., 2014) for how
the brain can carry out optimization, these the-
ories are still preliminary. Thus, the first step
is to understand whether the brain indeed per-
forms multi-layer credit assignment in a manner
that approximates full gradient descent, and if
so, how it does this. Either way, we can ex-
pect that answer to impact machine learning.
If the brain does not do some form of back-
propagation, this suggests that machine learning
may benefit from understanding the tricks that
the brain uses to avoid having to do so. If, on
the other hand, the brain does do backpropa-
gation, then the underlying mechanisms clearly
can support a very wide range of efficient opti-
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mization processes across many domains, includ-
ing learning from rich temporal data-streams and
via unsupervised mechanisms, and the architec-
tures behind this will likely be of long-term value
to machine learning61. Moreover, the search for
biologically plausible forms of backpropagation
has already led to interesting insights, such as
the possibility of using random feedback weights
(feedback alignment) in backpropagation (Lilli-
crap et al., 2014), or the unexpected power of in-
ternal FORCE learning in chaotic, spontaneously
active recurrent networks (Sussillo and Abbott,
2009). This and other findings discussed here
suggest that there are still fundamental things
we don’t understand about backpropagation –
which could potentially lead not only to more bi-
ologically plausible ways to train recurrent neural
networks, but also to fundamentally simpler and
more powerful ones.

6.2 Hypothesis 2– Biological
fine-structure of cost functions

A good practitioner of machine learning has ac-
cess to a broad range of learning techniques and
thus implicitly is able to use many different cost
functions. Some problems ask for clustering, oth-
ers for extracting sparse variables, and yet oth-
ers for prediction quality to be maximized. The
brain also needs to be able to deal with many dif-
ferent kinds of datasets. As such, it makes sense
for the brain to use a broad range of cost func-
tions appropriate for the diverse set of tasks it
has to solve to thrive in this world.

Many of the most notable successes of deep
learning, from language modeling (Sutskever

et al., 2011), to vision (Krizhevsky et al., 2012),
to motor control (Levine et al., 2015), have been
driven by end-to-end optimization of single task
objectives. We have highlighted cases where ma-
chine learning has opened the door to multiplici-
ties of cost functions that shape network modules
into specialized roles. We expect that machine
learning will increasingly adopt these practices
in the future.

In computer vision, we have begun to see re-
searchers re-appropriate neural networks trained
for one task (e.g., ImageNet classification) and
then deploy them on new tasks other than the
ones they were trained for or for which more lim-
ited training data is available (Yosinski et al.,
2014; Oquab et al., 2014; Noroozi and Favaro,
2016). We imagine this procedure will be gen-
eralized, whereby, in series and in parallel, di-
verse training problems, each with an associated
cost function, are used to shape visual represen-
tations. For example, visual data streams can
be segmented into elements like foreground vs.
background, objects that can move of their own
accord vs. those that cannot, all using diverse un-
supervised criteria (Ullman et al., 2012; Poggio,
2015). Networks so trained can then be shared,
augmented, and retrained on new tasks. They
can be introduced as front-ends for systems that
perform more complex objectives or even serve
to produce cost functions for training other cir-
cuits (Watter et al., 2015). As a simple exam-
ple, a network that can discriminate between im-
ages of different kinds of architectural structures
(pyramid, staircase, etc.) could act as a critic for
a building-construction network.

61. Successes of deep learning are already being used, speculatively, to rationalize features of the brain. It has been
suggested that large networks, with many more neurons available than are strictly needed for the target compu-
tation, make learning easier (Goodfellow et al., 2014b). In concordance with this, visual cortex appears to be a
100-fold over-complete representation of the retinal output (Lewicki and Sejnowski, 2000). Likewise, it has been
suggested that biological neurons stabilized (Turrigiano, 2012) to operate far below their saturating firing rates
mirror the successful use of rectified linear units in facilitating the training of artificial neural networks (Roudi
and Taylor, 2015). Hinton and others have also suggested a biological motivation (Roudi and Taylor, 2015) for
“dropout” regularization (Srivastava et al., 2014), in which a fraction of hidden units is stochastically set to zero
during each round of training: such a procedure may correspond to the noisiness of neural spike trains, although
other theories interpret spikes as sampling in probabilistic inference (Buesing et al., 2011), or in many other ways.
Randomness of spiking has some support in neuroscience (Softky and Koch, 1993), although recent experiments
suggest that spike trains in certain areas may be less noisy than previously thought (Hires et al., 2015). The key
role of proper initialization in enabling effective gradient descent is an important recent finding (Saxe et al., 2013;
Sutskever and Martens, 2013) which may also be reflected by biological mechanisms of neural homeostasis or self-
organization that would enforce appropriate initial conditions for learning. Retinal fixation has been tentatively
connected with robustness of convolutional networks to adversarial perturbations in images (Luo et al., 2015).
But making these speculative claims of biological relevance more rigorous will require researchers to first evaluate
whether biological neural circuits are performing multi-layer optimization of cost functions in the first place.
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Scientifically, determining the order in which
cost functions are engaged in the biological brain
will inform machine learning about how to con-
struct systems with intricate and hierarchical
behaviors via divide-and-conquer approaches to
learning problems, active learning, and more.

6.3 Hypothesis 3– Embedding within a
pre-structured architecture

A good practitioner of machine learning should
have a broad range of algorithms at their dis-
posal. Some problems are efficiently solved
through dynamic programming, others through
hashing, and yet others through multi-layer back-
propagation. The brain needs to be able to solve
a broad range of learning problems without the
luxury of being reprogrammed. As such, it makes
sense for the brain to have specialized structures
that allow it to rapidly learn to approximate a
broad range of algorithms.

The first neural networks were simple single-
layer systems, either linear or with limited non-
linearities (Rashevsky, 1939). The explosion
of neural network research in the 1980s (Mc-
Clelland et al., 1986) saw the advent of mul-
tilayer networks, followed by networks with
layer-wise specializations as in convolutional net-
works (Fukushima, 1980; LeCun and Bengio,
1995). In the last two decades, architectures
with specializations for holding variables stable in
memory like the LSTM (Hochreiter and Schmid-
huber, 1997), the control of content-addressable
memory (Weston et al., 2014; Graves et al.,
2014), and game playing by reinforcement learn-
ing (Mnih et al., 2015) have been developed.
These networks, though formerly exotic, are now
becoming mainstream algorithms in the toolbox
of any deep learning practitioner. There is no
sign that progress in developing new varieties of
structured architectures is halting, and the het-
erogeneity and modularity of the brain’s circuitry
suggests that diverse, specialized architectures
are needed to solve the diverse challenges that
confront a behaving animal.

The brain combines a jumble of specialized
structures in a way that works. Solving this prob-

lem de novo in machine learning promises to be
very difficult, making it attractive to be inspired
by observations about how the brain does it. An
understanding of the breadth of specialized struc-
tures, as well as the architecture that combines
them, should be quite useful.

7. Did evolution separate cost
functions from optimization
algorithms?

Deep learning methods have taken the field of
machine learning by storm. Driving the success is
the separation of the problem of learning into two
pieces: (1) An algorithm, backpropagation, that
allows efficient distributed optimization, and (2)
Approaches to turn any given problem into an op-
timization problem, by designing a cost function
and training procedure which will result in the
desired computation. If we want to apply deep
learning to a new domain, e.g., playing Jeopardy,
we do not need to change the optimization algo-
rithm – we just need to cleverly set up the right
cost function. A lot of work in deep learning,
perhaps the majority, is now focused on setting
up the right cost functions.

We hypothesize that the brain also acquired
such a separation between optimization mecha-
nisms and cost functions. If neural circuits, such
as in cortex, implement a general-purpose op-
timization algorithm, then any improvement to
that algorithm will improve function across the
cortex. At the same time, different cortical areas
solve different problems, so tinkering with each
area’s cost function is likely to improve its per-
formance. As such, functionally and evolutionar-
ily separating the problems of optimization and
cost function generation could allow evolution
to produce better computations, faster. For ex-
ample, common unsupervised mechanisms could
be combined with area-specific reinforcement-
based or supervised mechanisms and error sig-
nals, much as recent advances in machine learn-
ing have found natural ways to combine super-
vised and unsupervised objectives in a single sys-
tem (Rasmus and Berglund, 2015).

62. It would be interesting to study these questions in specific brain systems. The primary visual cortex, for example,
is still only understood very incompletely (Olshausen and Field, 2004). It serves as a key input modality to both
the ventral and dorsal visual pathways, one of which seems to specialize in object identity and the other in motion
and manipulation. Higher-level areas like STP draw on both streams to perform tasks like complex action recog-
nition. In some models (e.g., (Jhuang et al., 2007)), both ventral and dorsal streams are structured hierarchically,
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This suggests interesting questions62: When
did the division between cost functions and opti-
mization algorithms occur? How is this separa-
tion implemented? How did innovations in cost
functions and optimization algorithms evolve?
And how do our own cost functions and learning
algorithms differ from those of other animals?

There are many possibilities for how such a
separation might be achieved in the brain. Per-
haps the six-layered cortex represents a common
optimization algorithm, which in different cor-
tical areas is supplied with different cost func-
tions. This claim is different from the claim that
all cortical areas use a single unsupervised learn-
ing algorithm and achieve functional specificity
by tuning the inputs to that algorithm. In that
case, both the optimization mechanism and the
implicit unsupervised cost function would be the
same across areas (e.g., minimization of predic-
tion error), with only the training data differing
between areas, whereas in our suggestion, the op-
timization mechanism would be the same across
areas but the cost function, as well as the train-
ing data, would differ. Thus the cost function
itself would be like an ancillary input to a corti-
cal area, in addition to its input and output data.
Some cortical microcircuits could then, perhaps,
compute the cost functions that are to be de-
livered to other cortical microcircuits. Another
possibility is that, within the same circuitry, cer-
tain aspects of the wiring and learning rules spec-
ify an optimization mechanism and are relatively
fixed across areas, while others specify the cost
function and are more variable. This latter pos-
sibility would be similar to the notion of corti-
cal microcircuits as molecularly and structurally
configurable elements, akin to the cells in a field-
programmable gate array (FPGA) (Marcus et al.,
2014a,b), rather than a homogenous substrate.

The biological nature of such a separation, if any
exists, remains an open question. For example,
individual parts of a neuron may separately deal
with optimization and with the specification of
the cost function, or different parts of a microcir-
cuit may specialize in this way, or there may be
specialized types of cells, some of which deal with
signal processing and others with cost functions.

8. Conclusions

Due to the complexity and variability of the
brain, pure “bottom up” analysis of neural
data faces potential challenges of interpreta-
tion (Robinson, 1992; Jonas and Kording, 2016).
Theoretical frameworks can potentially be used
to constrain the space of hypotheses being evalu-
ated, allowing researchers to first address higher-
level principles and structures in the system, and
then “zoom in” to address the details. Pro-
posed “top down” frameworks for understanding
neural computation include entropy maximiza-
tion, efficient encoding, faithful approximation
of Bayesian inference, minimization of prediction
error, attractor dynamics, modularity, the abil-
ity to subserve symbolic operations, and many
others (Bialek, 2002; Bialek et al., 2006; Fris-
ton, 2010; Knill and Pouget, 2004; Marcus, 2001;
Pinker, 1999). Interestingly, many of the “top
down” frameworks boil down to assuming that
the brain simply optimizes a single, given cost
function for a single computational architecture.
We generalize these proposals assuming both a
heterogeneous combination of cost functions un-
folding over development, and a diversity of spe-
cialized sub-systems.

Much of neuroscience has focused on the
search for “the neural code”, i.e., it has asked
which stimuli are good at driving activity in in-

but the ventral stream primarily makes use of the spatial filtering properties of V1, whereas the dorsal stream
primarily makes use of its spatio-temporal filtering properties, e.g., temporal frequency filtering by the space-time
receptive fields of V1 neurons. Given this, we can ask interesting questions about V1. Within a framework of mul-
tilayer optimization, do both dorsal and ventral pathways impose cost functions that help to shape V1’s response
properties? Or is V1 largely pre-structured by genetics and local self-organization, with different optimization
principles in the ventral and dorsal streams only having effects at higher levels of the hierarchy? Or, more likely,
is there some interplay between pre-structuring of the V1 circuitry and optimization according to multiple cost
functions? Relatedly, what establishes the differing roles of the downstream ventral vs. dorsal cortical areas, and
can their differences be attributed to differing cost functions? This relates to ongoing questions about the basic
nature of cortical circuitry. For example, DiCarlo et al. (2012) suggests that visual cortical regions containing
on the order of 10000 neurons are locally optimized to perform disentangling of the manifolds corresponding to
their local views of the transformations of an object, allowing these manifolds to be linearly separated by readout
areas. Yet, DiCarlo et al. (2012) also emphasizes the possibility that certain computations such as normalization
are pre-initialized in the circuitry prior to learning-based optimization.
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dividual neurons, regions, or brain areas. But,
if the brain is capable of generic optimization
of cost functions, then we need to be aware
that rather simple cost functions can give rise
to complicated stimulus responses. This poten-
tially leads to a different set of questions. Are
differing cost functions indeed a useful way to
think about the differing functions of brain ar-
eas? How does the optimization of cost functions
in the brain actually occur, and how is this differ-
ent from the implementations of gradient descent
in artificial neural networks? What additional
constraints are present in the circuitry that re-
main fixed while optimization occurs? How does
optimization interact with a structured architec-
ture, and is this architecture similar to what we
have sketched? Which computations are wired
into the architecture, which emerge through op-
timization, and which arise from a mixture of
those two extremes? To what extent are cost
functions explicitly computed in the brain, ver-
sus implicit in its local learning rules? Did the
brain evolve to separate the mechanisms involved
in cost function generation from those involved
in the optimization of cost functions, and if so
how? What kinds of meta-level learning might
the brain apply, to learn when and how to invoke
different cost functions or specialized systems,
among the diverse options available, to solve a
given task? What crucial mechanisms are left
out of this framework? A more in-depth dialog
between neuroscience and machine learning could
help elucidate some of these questions.

Much of machine learning has focused on find-
ing ever faster ways of doing end-to-end gradient
descent in neural networks. Neuroscience may
inform machine learning at multiple levels. The
optimization algorithms in the brain have under-
gone a couple of hundred million years of evolu-
tion. Moreover, the brain may have found ways of
using heterogeneous cost functions that interact
over development so as to simplify learning prob-
lems by guiding and shaping the outcomes of un-
supervised learning. Lastly, the specialized struc-
tures evolved in the brain may inform us about
ways of making learning efficient in a world that
requires a broad range of computational prob-
lems to be solved over multiple timescales. Look-
ing at the insights from neuroscience may help
machine learning move towards general intelli-

gence in a structured heterogeneous world with
access to only small amounts of supervised data.

In some ways our proposal is opposite to
many popular theories of neural computation.
There is not one mechanism of optimization but
(potentially) many, not one cost function but a
host of them, not one kind of a representation
but a representation of whatever is useful, and
not one homogeneous structure but a large num-
ber of them. All these elements are held together
by the optimization of internally generated cost
functions, which allows these systems to make
good use of one another. Rejecting simple unify-
ing theories is in line with a broad range of previ-
ous approaches in AI. For example, Minsky and
Papert’s work on the Society of Mind (Minsky,
1988) – and more broadly on ideas of genetically
staged and internally bootstrapped development
in connectionist systems (Minsky, 1977) – em-
phasizes the need for a system of internal mon-
itors and critics, specialized communication and
storage mechanisms, and a hierarchical organiza-
tion of simple control systems.

At the time these early works were written, it
was not yet clear that gradient-based optimiza-
tion could give rise to powerful feature represen-
tations and behavioral policies. One can view our
proposal as a renewed argument against simple
end-to-end training and in favor of a heteroge-
neous approach. In other words, this framework
could be viewed as proposing a kind of “society”
of cost functions and trainable networks, permit-
ting internal bootstrapping processes reminiscent
of the Society of Mind (Minsky, 1988). In this
view, intelligence is enabled by many computa-
tionally specialized structures, each trained with
its own developmentally regulated cost function,
where both the structures and the cost functions
are themselves optimized by evolution like the
hyperparameters in neural networks.
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balance allows local supervised learning in spiking
recurrent networks. In Advances in Neural Infor-
mation Processing Systems, pages 982–990, 2015.

V Braitenberg and A Schutz. Anatomy of the cortex:
studies of brain function, 1991.

Johanni Brea and Wulfram Gerstner. Does compu-
tational neuroscience need new synaptic learning
paradigms? Current Opinion in Behavioral Sci-
ences, 11:61–66, 2016.

Johanni Brea, Alexisz Tamás Gaál, Robert Ur-
banczik, and Walter Senn. Prospective coding
by spiking neurons. PLOS Comput Biol, 12(6):
e1005003, 2016.

J. Gavin Bremner, Alan M. Slater, and Scott P.
Johnson. Perception of Object Persistence: The
Origins of Object Permanence in Infancy. Child
Development Perspectives, 9(1):7–13, mar 2015.
ISSN 17508592. doi: 10.1111/cdep.12098. URL
http://doi.wiley.com/10.1111/cdep.12098.

Carlos SN Brito and Wulfram Gerstner. Non-
linear hebbian learning as a unifying princi-
ple in receptive field formation. arXiv preprint
arXiv:1601.00701, 2016.

Tobias Brosch, Heiko Neumann, and Pieter R Roelf-
sema. Reinforcement Learning of Linking and
Tracing Contours in Recurrent Neural Networks.
PLoS computational biology, 11(10):e1004489, oct

48

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/058545doi: bioRxiv preprint 

http://arxiv.org/abs/1502.04156
http://arxiv.org/abs/1502.04156
http://arxiv.org/abs/1509.05936
http://arxiv.org/abs/1509.05936
http://journal.frontiersin.org/article/10.3389/fnevo.2012.00005/abstract
http://journal.frontiersin.org/article/10.3389/fnevo.2012.00005/abstract
http://link.springer.com/chapter/10.1007/3-540-45701-1{_}12
http://link.springer.com/chapter/10.1007/3-540-45701-1{_}12
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4036045
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4036045
http://www.cell.com/article/S0896627316000544/fulltext
http://www.cell.com/article/S0896627316000544/fulltext
http://philpapers.org/rec/BOSCIP
http://rstb.royalsocietypublishing.org/content/369/1655/20130480
http://rstb.royalsocietypublishing.org/content/369/1655/20130480
http://www.sciencedirect.com/science/article/pii/S0010027708002059
http://www.sciencedirect.com/science/article/pii/S0010027708002059
http://doi.wiley.com/10.1111/cdep.12098
https://doi.org/10.1101/058545


2015. ISSN 1553-7358. doi: 10.1371/journal.pcbi.
1004489.

Thackery I. Brown, Valerie A. Carr, Karen F.
LaRocque, Serra E. Favila, Alan M. Gordon, Ben
Bowles, Jeremy N. Bailenson, and Anthony D.
Wagner. Prospective representation of naviga-
tional goals in the human hippocampus. Science,
352(6291):1323–1326, 2016. ISSN 0036-8075. doi:
10.1126/science.aaf0784. URL http://science.

sciencemag.org/content/352/6291/1323.
Robert M Brownstone, Tuan V Bui, and Nicolas Sti-

fani. Spinal circuits for motor learning. Current
opinion in neurobiology, 33:166–173, 2015.

Lars Buesing, Johannes Bill, Bernhard Nessler, and
Wolfgang Maass. Neural dynamics as sampling: a
model for stochastic computation in recurrent net-
works of spiking neurons. PLoS computational bi-
ology, 7(11):e1002211, nov 2011. ISSN 1553-7358.
doi: 10.1371/journal.pcbi.1002211.

D V Buonomano and M M Merzenich. Temporal in-
formation transformed into a spatial code by a neu-
ral network with realistic properties. Science (New
York, N.Y.), 267(5200):1028–30, feb 1995. ISSN
0036-8075. URL http://www.ncbi.nlm.nih.gov/

pubmed/7863330.
Timothy J Buschman and Earl K Miller. Shifting the

spotlight of attention: evidence for discrete com-
putations in cognition. Frontiers in human neu-
roscience, 4:194, jan 2010. ISSN 1662-5161. doi:
10.3389/fnhum.2010.00194.

Timothy J Buschman and Earl K Miller. Goal-
direction and top-down control. Philosophi-
cal transactions of the Royal Society of Lon-
don. Series B, Biological sciences, 369(1655), nov
2014. ISSN 1471-2970. doi: 10.1098/rstb.
2013.0471. URL http://www.ncbi.nlm.nih.gov/

pubmed/25267814.
Keith A Bush. An echo state model of non-markovian

reinforcement learning. 2007.
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