
A Polymer Model with Epigenetic Recolouring Reveals a Pathway for the de novo
Establishment and 3D organisation of Chromatin Domains

D. Michieletto1, E. Orlandini2 and D. Marenduzzo1

1 SUPA, School of Physics and Astronomy, University of Edinburgh,
Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

2 Dipartimento di Fisica e Astronomia and Sezione INFN,
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One of the most important problems in development is how epigenetic domains can
be first established, and then maintained, within cells. To address this question, we
propose a framework which couples 3D chromatin folding dynamics, to a “recolour-
ing” process modeling the writing of epigenetic marks. Because many intra-chromatin
interactions are mediated by bridging proteins, we consider a “two-state” model with
self-attractive interactions between two epigenetic marks which are alike (either active
or inactive). This model displays a first-order-like transition between a swollen, epige-
netically disordered, phase, and a compact, epigenetically coherent, chromatin globule.
If the self-attraction strength exceeds a threshold, the chromatin dynamics becomes
glassy, and the corresponding interaction network freezes. By modifying the epigenetic
read-write process according to more biologically-inspired assumptions, our polymer
model with recolouring recapitulates the ultrasensitive response of epigenetic switches
to perturbations, and accounts for long-lived multi-domain conformations, strikingly
similar to the topologically-associating-domains observed in eukaryotic chromosomes.

INTRODUCTION

The word “epigenetics” refers to heritable changes in gene
expression that occur without alterations of the underlying
DNA sequence [1, 2]. It is by now well established that such
changes often arise through biochemical modifications occur-
ring on histone proteins while these are bound to eukaryotic
DNA to form nucleosomes, the building blocks of the chro-
matin fiber [1]. These modifications, or “epigenetic marks”,
are currently thought of as forming a “histone-code” [3],
which ultimately regulates expression [4].

It is clear that this histone-code has to be established de
novo during cell development and inherited after each cell
cycle through major genetic events such as replication, mi-
tosis, or cell division [5]. A fundamental question in cell
biology and biophysics is, therefore, how certain epigenetic
patterns are established, and what mechanism can make
them heritable. One striking example of epigenetic imprint-
ing is the “X chromosome inactivation”, which refers to the
silencing of one of the two X chromosomes within the nu-
cleus of mammalian female cells – this is crucial to avoid
over-expression of the genes in the X chromosomes, which
would ultimately be fatal for the cell. While the choice of
which chromosome should be inactivated is stochastic within
embryonic stem cells, it is faithfully inherited in differenti-
ated cells [6]. The inactivation process is achieved, in prac-
tice, through the spreading of repressive histone modifica-
tions, which turn the chromosome into a transcriptionally
silenced Barr body [7–9]. This is an example of an “epige-
netic switch”, a term which generically refers to the up or
down-regulation of specific genes in response to, e.g., sea-
sonal changes [10–12], dietary restrictions [13], aging [14] or
parental imprinting [15].

Although one of the current paradigms of the field is that
the epigenetic landscape and 3D genome folding are inti-
mately related [16–24], most of the existing biophysical stud-

ies incorporating epigenetic dynamics have focused on 1-
dimensional (1D) or mean field models [25–34]. While these
models can successfully explain some aspects of the estab-
lishment, spreading, and stability of epigenetic marks, they
cannot fully capture the underlying 3-dimensional (3D) dy-
namic organisation of the chromatin. This may, though,
be a key aspect to consider: for instance, repressive epige-
netic modifications are thought to correlate with chromatin
compaction [1, 29], therefore it is clear that there must be
a strong feedback between the self-regulated organisation of
epigenetic marks and the 3D folding of chromatin. In light of
this, here we propose a polymer model of epigenetic switches,
which directly couples the 3D dynamics of chromatin folding
to the 1D dynamics of epigenetics spreading.

More specifically, we start from the observation that there
are enzymes which can either “read” or “write” epigenetic
marks (Fig. 1). The “readers” are multivalent proteins [17]
which bridge chromatin segments bearing the same his-
tone marks. The “writers” are enzymes that are respon-
sible for the establishment and propagation of a specific
epigenetic mark, perhaps while performing facilitated dif-
fusion along chromatin [35]. There is evidence that writ-
ers of a given mark are recruited by readers of that same
mark [12, 25, 26, 28, 29, 36–38], thereby creating a positive
feedback loop which can sustain epigenetic memory [26]. For
example, a region which is actively transcribed by an RNA
polymerase is rich in active epigenetic marks (such as the
H3K4-methylated marks) [36, 39]: the polymerase in this ex-
ample is “reader” which recruits the “writer” Set1/2 [39, 40].
Likewise, the de novo formation of centromeres in human nu-
clei occurs through the creation of the centromere-specific
nucleosome CENP-A (a modified histone, which can thus
be viewed as an “epigenetic mark”) via the concerted ac-
tion of the chaperone protein HJURP (the “writer”) and
the Mis18 complex (the “reader”) [38]. Other examples of
this read-write mechanism are shown in Fig. 1. This mech-
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Figure 1. A 3D polymer model with “recolouring” for
the propagation of epigenetic marks. (a)-(c) Multivalent
binding proteins, or “readers” (shaded spheres), bind to specific
histone modifications and bridge between similarly marked seg-
ments (distinguished here via their “colour”). Histone-modifying
enzymes, or “writers” (solid squares), are here assumed to be
chaperoned by the bridge proteins. The writing (or “recolour-
ing”) activity is a consequence of 3D contiguity (perhaps through
facilitated diffusion [35]) which is here modeled as a Potts-like in-
teraction between spatially proximate monomers [41] (a). The
positive feedback mechanism and competition between different
epigenetic marks results in a regulated spreading of the modifica-
tions (b) which, in turn, drives the overall folding of the polymer
(c). A sketch of a biological reading-writing machinery is shown
in (d). Heterochromatin binding protein HP1 is known to re-
cruit methyltransferase proteins (e.g., SUV39H1) which in turn
trimethylates lysine 9 on histone 3 (H3K9me3) [29, 39, 42]. Sim-
ilarly, the Polycomb Repressive Complex (PRC2) is known to
comprise histone H3 Lys 27 (H3K27) methyltransferase enzyme
EZH2 [12, 39, 43] while binding the same mark through the in-
teraction with JARID2 [43, 44].

anism creates a route through which epigenetic marks can
spread to spatially proximate regions on the chromatin, and
it is responsible for the coupling between the 3D folding and
1D epigenetic dynamics, addressed for the first time in this
work.

Here we find that, for the simplest case of only 2 epigenetic
states which symmetrically compete with each-other (e.g.,
corresponding to “active” or “inactive” chromatin [1]), our
model predicts a first-order-like phase transition between a
swollen, epigenetically disordered, phase, and a collapsed,
epigenetically coherent, one. The first-order nature of the
transition, within our model, is due to the coupling between
3D and 1D dynamics, and is important because it allows for
a bistable epigenetic switch, that can retain memory of its
state. When quenching the system to well below the tran-
sition point, we observe a faster 3D collapse of the model
chromatin; surprisingly, this is accompanied by a slower 1D

epigenetic dynamics. We call this regime a “glassy” phase,
which is characterized, in 3D, by a frozen network of strong
and short-ranged intra-chain interactions giving rise to dy-
namical frustration and the observed slowing down, and, in
1D, by a large number of short epigenetic domains.

If the change from one epigenetic mark into the other re-
quires going through an intermediate epigenetic state, we
find two main results. First, a long-lived metastable mixed
state (MMS), previously absent, is now observed: this is
characterized by a swollen configuration of the underlying
chain where all epigenetic marks coexist. Second, we find
that the MMS is remarkably sensitive to external local per-
turbations, while the epigenetically coherent states, once
established, still display robust stability against major re-
organisation events, such as replication. This behaviour
is reminiscent of the features associated with epigenetic
switches, and the “X-Chromosome Inactivation” (XIC).

We conclude our work by looking at the case in which
the epigenetic writing is an ATP-driven, and hence a non-
equilibrium process. In this case, detailed balance is ex-
plicitly broken and there is no thermodynamic mapping of
the underlying stochastic process. This case leads to a fur-
ther possible regime, characterized by the formation of a
long-lived multi-pearl structure, where each “pearl” (or chro-
matin domain) is associated with a distinct epigenetic do-
main. This regime is qualitatively different from the glassy
phase, as the domains reach a macroscopic size and a signif-
icant fraction of chain length. Finally, these self-organised
structures are reminiscent of “topologically associating do-
mains” (TADs), experimentally observed in chromosomal
contact maps [45].

MODELS AND METHODS

We model the chromatin fiber as a semi-flexible bead-and-
spring chain of M beads of size σ [17, 46–50]. For concrete-
ness, we consider σ = 3 kbp ' 30 nm, corresponding approx-
imately to 15 nucleosomes – this mapping is commonly used
when modeling chromatin dynamics [46, 47, 50]. To each
bead, we assign a “colour” q representing a possible epige-
netic state (mark). Here we consider q ∈ {1, 2, 3}, i.e. three
epigenetic marks such as methylated (inactive), unmarked
(intermediate) and acetylated (active).

In addition to the standard effective potentials to ensure
chain connectivity (through a harmonic potential between
consecutive beads) and bending rigidity (through a Kratky-
Porod potential [52]), we consider a repulsive/attractive in-
teraction mediated by the epigenetic marks (colours). This
is described by a truncated-and-shifted Lennard-Jones po-
tential, defined as follows,

UabLJ(x) =
4εab
N

[(σ
x

)12

−
(σ
x

)6

−
(

σ

xqaqbc

)12

+

(
σ

xqaqbc

)6
]

for x ≤ xqaqbc , (1)

whereas UabLJ(x) = 0 for x > xqaqbc . In Eq. (8), N is a normal-
ization constant and the parameter εab is set so that εab = ε
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Figure 2. The two-state model above the critical point evolves into an epigenetically coherent state via a symmetry-
breaking mechanism. Top row: typical snapshots of 3D configurations adopted by the polymers as a function of time for two choices
of α = ε/kBTL below and above the critical point αc ' 0.9 (for M = 2000, see SI). Middle row: time evolution of the total number of
beads of type q, Nb(q, t), for four independent trajectories (the dashed one corresponds to the trajectory from which the snapshots are
taken). Bottom row: time evolution of the colour of each polymer bead, viewed as a “kymograph” [51].By tuning α > αc the whole
polymer is taken over by one of the two self-attracting states via a symmetry-breaking mechanism. (see also Suppl. Movies M1-M2).

for qa = qb and εab = kBTL otherwise. The q-dependent
interaction cut-off xqaqbc is given by 21/6σ, to model steric
repulsion, or Ri > 21/6σ to model attraction. [Here, we con-
sider Ri = 1.8σ, which simultaneously ensures short-range
interaction and computational efficiency.] In what follows,
the cut-offs are chosen so that beads with different colours,
or with colour corresponding to no epigenetic marks (i.e.,
q = 3), interact via steric repulsion, whereas beads with the
same colour, and corresponding to a given epigenetic mark
(e.g., q = 1, or q = 2), self-attract, modeling interactions
mediated by a bridging protein, one of the “readers” [1, 17].

The time evolution of the system is obtained by coupling a
3D Brownian polymer dynamics at temperature TL, with a
recolouring Monte-Carlo dynamics of the beads which does
not conserve the number of monomer types. Recolouring
moves are proposed every τRec = 103τBr, where τBr is the
Brownian time associated with the dynamics of a single poly-
mer bead, and they are realized in practice by attempting
M changes of the beads colour. To compare between simu-
lation and physical time units, a Brownian time τBr is here
mapped to 10 milliseconds, corresponding to an effective nu-
cleoplasm viscosity η ' 150 cP. This is an intermediate and
conservative value within the range that can be estimated
from the literature [47, 53] and from a direct mapping with
the experimental data of Ref. [54] (see SI Fig. S1). With
this choice, the recolouring rate is ∼ 0.1 s−1 and a simu-
lation runtime of 106 Brownian times corresponds to 2.5-3
hours (see SI for more details on the mapping). Each colour
change is accepted according to the standard Metropolis ac-
ceptance ratio with effective temperature TRec and Potts-like
energy difference computed between beads that are spatially
proximate (i.e., within distance Ri in 3D). It is important
to notice that, whenever TL 6= TRec, detailed balance of the
full dynamics is broken, which may be appropriate if epi-
genetic spreading and writing depend on non-thermal pro-
cesses (e.g., if they are ATP-driven). More details on the

model, and values of all simulation parameters, are given in
the SI and Fig. S1 [55].

The model we use therefore couples an Ising-like (or Potts-
like) epigenetic recolouring dynamics, to the 3-dimensional
kinetics of polymer folding. In most simulations we consider,
for simplicity, TL = TRec, and we start from an equilibrated
chain configuration in the swollen phase (i.e., at very large
TL), where beads are randomly coloured with uniform prob-
ability. The polymer and epigenetic dynamics is then stud-
ied tuning the interaction parameter α = ε/kBTL to values
near or below the critical value αc for which we observe the
polymer collapse.

RESULTS

The “two-state” model displays a first-order-like
transition which naturally explains both epigenetic

memory and bistability

For simplicity, we focus here on the case in which three
states are present, but only two of them (q = 1, red and q =
2, blue) are self-attractive, while the third is a neutral state
that does not self-attract, but can participate to colouring
dynamics (q = 3, grey). Transition between any two of these
three states are possible in this model. Because we find
that the grey (unmarked) state rapidly disappears from the
polymer at the advantage of the self-attractive ones, we refer
to this as an effectively “two-state” model. This scenario
represents the case with two competing epigenetic marks
(e.g., an active acetylation mark and an inactive methylation
mark), while the third state represents unmarked chromatin.

Fig. 2 reports the polymer and epigenetic dynamics (start-
ing from the swollen and randomly coloured initial state), for
two different values of α = ε/kBTL below and above the crit-
ical point αc. The global epigenetic recolouring is captured
by Nb(q, t), the total number of beads in state q at time
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Figure 3. The “two-state” model displays a discontin-
uous transition at the critical point marked by coexis-
tence. Plot of the joint probability P (Rg, m̃) for a chain of
M = 50 beads, obtained from 100 independent simulations of
duration 106τBr each (1000 recolouring steps) at α = 1.15 (the
critical point for M = 50). Single trajectories are shown in the SI.
One can readily appreciate that the system displays coexistence
at the critical point, therefore suggesting it is a discontinuous,
first-order-like, transition (see SI Fig. S3 for plots of P (Rg, m̃) at
other values of α).

t; the local epigenetic dynamics is instead represented by a
“kymograph” [51], which describes the change in colour of
the polymer beads as time evolves (Fig. 2).

It is readily seen that above the critical point αc ' 0.9
(for M = 2000), the chain condenses fairly quickly into a
single globule and clusters of colours emerge and coarsen.
Differently-coloured clusters compete, and the system ul-
timately evolves into an epigenetically coherent globular
phase. This is markedly different from the case in which
α < αc where no collapse and epigenetic ordering occurs.
Because the red-red and blue-blue interactions are equal,
the selection of which epigenetic mark dominates is via
symmetry-breaking of the red↔blue (Z2) symmetry.

The transition between the swollen-disordered and
collapsed-coherent phases bears the hallmark of a discon-
tinuous, first-order-like transition [56, 57]: for instance, we
observe metastability of each of the two phases at α ' αc
as well as marked hysteresis (see SI, Figs. S2-S3). To better
characterize the transition, we perform a set of simulations
on a shorter polymer with M = 50 beads in order to en-
hance sampling. We average data from 100 simulations (see
SI, Fig. S4, for single trajectories), each 106 Brownian times
long, and calculate the joint probability P (Rg, m̃) of observ-
ing a state with a given value of gyration radius, Rg, and
signed “epigenetic magnetisation” [32],

m̃ ≡ 1

M
(Nb(q = 1)−Nb(q = 2)) . (2)

The result (see Fig. 3 and SI, Fig. S3) shows that the single
maximum expected for the swollen-disordered phase (large
Rg and small m̃) splits into two symmetric maxima cor-
responding to the collapsed-ordered phase (small Rg and

m̃ ' ±1). More importantly, at the critical point three
maxima are clearly visible suggesting the presence of phase
coexistence (see Fig. 3 and SI Fig. S2-S3).

The existence of a first-order-like transition in this model
provides a marked difference between our model and previ-
ous ones, which approximated the epigenetic (recolouring)
dynamics as a one-dimensional process, where nucleosome
recruitment was regulated by choosing an ad hoc long-range
interaction [25, 32]. These effectively 1D models display ei-
ther a second order transition [25, 58, 59], or a first-order
transition, but only in the mean-field (“all against all”)
case [32]. In our model the first-order-nature of the tran-
sition critically requires the coupling between the 3D poly-
mer collapse and the 1D epigenetic dynamics – in this sense,
the underlying physics is similar to that of magnetic poly-
mers [60].

The dynamical feedback between chromatin folding and
epigenetic recolouring can be appreciated by looking at
Suppl. Movies M1-M2, where it can be seen that local
epigenetic fluctuations trigger local chromatin compaction.
Suppl. Movies M1-M2 also show that the dynamics of the
transition from swollen to globular phase is, to some extent,
similar to that experienced by a homopolymer in poor sol-
vent conditions [61–68]. namely a formation of small com-
pact clusters along the chain (pearls) that eventually coa-
lesce into a single globule. Unlike the homopolymer case,
however, the pearls may be differently coloured giving rise
at intermediate or late times to frustrated dynamics, where
two or more globules of different colours compete through
strong surface tension effects. When several globules are
present, we observe cases in which two or more pearls of the
same colour, that are distant along the chain but close in
3D, merge by forming long-ranged loops (see snapshots in
Fig. 2, contact maps in SI and Suppl. Movies M1-M2).

Finally, we should like to stress that a first-order-like tran-
sition in this system is important for biological applications,
since it naturally provides a framework within which epige-
netic states can be established and maintained in the pres-
ence of external fluctuations. In particular it is well known
that when a gene is switched off, for instance after devel-
opment, it can very rarely be re-activated following further
cellular division. This is an example of epigenetic memory,
which is naturally explained within our model (as there is
hysteresis). At the same time, two cell lines might display
different patterns of active and inactive genes, therefore pro-
viding a clear example of epigenetic bistability, which is also
recovered within this model, due to the red-blue symmetry
breaking. All this strongly suggests that the features charac-
terising the above-mentioned “epigenetic switches” may be
inherited from an effective first-order-like transition driven
by the coupling between epigenetic dynamics and chromatin
folding as the one displayed by the model presented here.
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Figure 4. Within the two-state model, epigenetic dynamics slows down with increasing α. (a)-(b) These panels show
the kymographs and the number of beads in state q, Nb(q, t), for two values of α above the critical point (αc ' 0.9 for M = 2000).
Counter-intuitively, the symmetry breaking of the chain towards an epigenetically coherent state slows down with increasing interaction
strengths (compare also with Fig. 2). (c) This panel shows the time evolution of the gyration radius Rg of the polymer from the
moment the collapse starts. (d) This panel (see also Suppl. Movie M3) shows the behaviour of the epigenetic magnetisation (defined
in Eq. (3)) as a function of time. As expected, larger values of α therefore lead to a faster polymer collapse dynamics (faster decay
of Rg); surprisingly, however, this is accompanied by a slower recolouring dynamics towards the epigenetically coherent state (slower
growth of m(t)). The longevity of the epigenetic domains thereby formed can be quantified by looking at the growth of the epigenetic
magnetisation. For α = 5, m(t) can be extrapolated to reach, say 0.5 at about 3 107 τBr which corresponds to 5000 minutes of physical
time according to our time mapping (see Models and Methods).

Deep quenches into the collapsed phase leads to a
“topological freezing” which slows down epigenetic

dynamics

An intriguing feature observed in the dynamics towards
the symmetry-breaking is that quenching at different tem-
peratures affects non trivially the timescales of chromatin
condensation and epigenetic evolution towards a single co-
herent state (see also Suppl. Movie M3). The separation be-
tween these two timescales increases with α (i.e., for deeper
quenches), as can be readily seen in Fig 4, where we compare
the time evolution of the mean squared radius of gyration
of the chain R2

g(t) and the time-dependent (absolute) epige-
netic magnetisation

m(t) =
1

M
|Nb(q = 1, t)−Nb(q = 2, t)| , (3)

for different values of α.
While Rg decays exponentially with a timescale that de-

creases as α increases (Fig. 4(a)), the epigenetic magnetisa-
tion grows as m(t) ∼ tβ , where the dynamical exponent β
decreases from ' 2/3 to ' 1/3 as α increases. Note that
the value 2/3 has been reported in the literature as the one
characterizing the coarsening of pearls in the dynamics of

homopolymer collapse [63]. The fact that in our model this
exponent is obtained for low values of α suggests that in
this regime the timescales of polymer collapse and epige-
netic coarsening are similar. In this case, we expect m(t)
to scale with the size of the largest pearl in the polymer,
whose colour is the most likely to be selected for the final
domain – i.e., the dynamics is essentially determined by the
homopolymer case. Our data are instead consistent with an
apparent exponent smaller than 2/3 for larger α, signalling
a slower epigenetic dynamics.

The interesting finding that a fast collapse transition gives
rise to a slowing down of the recolouring dynamics can be
understood in terms of the evolution of the network of intra-
chain contacts. This can be monitored by defining the in-
teraction matrix

Pab(t) =

{
1, if dab(t) < Ri

0, otherwise

where a, b = 1, . . . ,M denote two monomers, and dab(t) =
|ra(t) − rb(t)|. From the interaction matrix we can readily
obtain useful informations on the network structure, such as
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Figure 5. The network of interactions is short ranged for fast collapsing coils. Snapshot of the network of bead-bead
contacts taken at t = 106τBr for two simulations with (left) ε = 1kBTL and (right) ε = 5kBTL. For clarity of visualization, each
node of the network coarse grains 10 beads along the chain. Node size and colour intensity encode the number of interactions within
the coarse-grained monomers. Edges are only drawn between nodes which contain interacting monomers, and their thickness is
proportional to the (normalized) number of contacts. To improve the visualization, only edges corresponding to a contact probabilities
between monomers in the top 30% are displayed. Snapshots of the respective 3D conformations are also shown. It is important to
notice that higher values of α lead to short-ranged networks, which translates in fewer edges but larger nodes in this coarse-grained
representation.

the average number of neighbours per bead,

Nn(t) =
1

M

∑
a6=b

Pab(t) (4)

or the average “spanning distance”, which quantifies
whether the network is short- or long-ranged (see SI for de-
tails). The contact probability between beads a and b can
also be simply computed, as the time average of Pab(t).

As expected, for larger values of α, Nn(t) saturates to
a maximum value (see SI, Fig. S9). On the other hand,
and more importantly, for higher values of the interaction
strength α, a dramatic change in the spanning distance is
observed. This effect is well captured by plotting a net-
work representation of the monomer-monomer contacts, as
reported in Fig. 5 (see SI, Figs. S6-S9 for a more quantitative
analysis). This figure shows that at large α there is a de-
pletion of the number of edges connecting distant monomers
along the chain, while short-ranged contacts are enhanced
(see caption of Fig. 5 for details; see also contact maps in SI
Fig. S5). Note that this finding is consistent with the frac-
tal, or crumpled, globule conjecture [46, 69, 70], for which a
globule obtained by a fast collapse dynamics is rich of local
contacts and poor in non-local ones. However, the present
system represents a novel instance of “annealed” collapsing
globule, whose segments are dynamically recoloured as it
folds.

Finally, in order to characterize the change in the kinetics
of the network, we quantify the “mobility” of the contacts, or
the “neighbour exchange rate”, following polymer collapse.

We therefore compute

κn(t) =
1

M

∑
a6=b

[1− δ(Pab(t), Pab(t−∆t))] , (5)

where ∆t = 103τBr = τRec is the gap between two measure-
ments. We find that above α = 3, the time-averaged value
of the neighbour exchange rate, normalized by the average
number of neighbours, 〈κn〉/〈Nn〉, sharply drops from val-
ues near unity, indicative of mobile rearranging networks, to
values close to zero, signalling a frozen network or contacts
(see SI Fig. S10).

The “topological freezing” (see also Suppl. Movie M3)
due to fast folding is also partially reflected by the strongly
aspherical shapes taken by the collapsed coils in the large α
regime (see snapshots in Fig. 2 and Fig. 5).

The emerging scenario is therefore markedly different from
the one suggested in models for epigenetic dynamics with
long-range [25, 58, 59] or mean-field interactions [32], where
any two beads in the chain would have a finite interaction
probability. Instead, in our case, this is only a valid approxi-
mation at small α, whereas at large α a given bead interacts
with only a subset of other beads (see Fig. S6), and it is
only by averaging over different trajectories and beads that
we get the power-law decay of the contact probability as-
sumed in those studies (see Fig. S7). This observation is,
once again, intimately related to the fact that we are ex-
plicitly taking into account the 3D folding together with the
epigenetic dynamics.

In this Section we have therefore shown that considering
large interaction strengths between the self-attracting marks
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Figure 6. The “two-state with intermediate state” model displays ultra-sensitive response to external signals such as
replication or chromosome inactivation. Time evolution of the system starting from a mixed metastable state (MMS) and for
ε = kBTL. At t = 0 a localised perturbation of the MMS is externally imposed by recolouring a segment of 200 beads (10% of polymer
length). This perturbation triggers the collapse of the whole chain into an epigenetically coherent state which is reached within about
4 105 Brownian times. At t = 4 105 τBr we next simulated semi-conservative replication of the collapsed chromatin fiber. This is
achieved by assigning a random colour to 50% of the beads all along the polymer. Following this extensive (i.e. non local) colour
perturbation, the polymer returns to the epigenetically ordered phase. These results show that the epigenetically coherent phase is
robust and stable with respect to extensive perturbations, in stark contrast with the much more sensitive MMS. Suppl. Movie M4
shows the whole dynamics. Contact maps are shown in SI Fig. S11.

(e.g. via strongly binding “readers”) leads to the formation
of long-lived and short-ranged domains (see Figs. 4-5 and
contact maps in Fig. S5); while these features might be akin
to the ones inferred from experimental contacts maps (Hi-
C) [45], both the network of interactions and the epigenetic
dynamics appear to be glassy and frozen (Figs. 4 and S6-
S10) on the timescales of our simulations (∼ 2.5-3 hours of
physical time).

Forcing the passage through the “unmarked” state
triggers ultrasensitive kinetic response while retaining

a first-order-like transition

Up until now, our model has been based on a simple
rule for the epigenetic dynamics, where each state can be
transformed into any other state. In general, a specific bio-
chemical pathway might be required to change an epigenetic
mark [1, 25]. Often, a nucleosome with a specific epigenetic
mark (corresponding to, say, the “blue” state), can be con-
verted into another state (say, the “red” one) only after the
first mark has been removed. This two-step re-writing mech-
anism can be described by considering a “neutral” or “in-
termediate” state (IS) through which any nucleosome has to
transit before changing its epigenetic state (say, from “blue”
to “red”) [25, 27, 30]. Previous studies, based on mean field
or ad hoc power law interaction rules for the recruitment
of epigenetic marks have shown that the presence of such
an intermediate unmakred state can enhance bistability and
create a long-lived mixed metastable state (MMS), in which

all epigenetic states coexist in the same system [30].

Differently from the simulations reported in the previous
Sections, where we never observed a long-lived mixed state,
as the “red” or “blue” beads rapidly took over the “grey”
beads, in this case we do observe that the mixed state is
metastable for a range of α & αc. The observed MMS has a
characteristic life-time is much longer than the one observed
for the disordered state in the “two-state” model when α &
αc (see SI, Fig. S12). The observed MMS is reminiscent
of the one found in Ref. [30], although a difference is the
absence of large ordered domains in our case.

A typical example of a mixed metastable state (MMS) is
reported in the early times of Fig. 6: one can see that it
is characterized by a swollen coil with no sign of epigenetic
domains, and all three states coexist in the same configu-
ration. To quantify the metastability of the mixed state,
we performed 30 independent simulations and found that
for α = 1 the MMS survives with probability 50% after 106

Brownian times. By analysing the survival probability of
the MMS as a function of time (see SI, Fig. S12), we fur-
ther quantified its characteristic decay time (again at α = 1)
as 1.3 106 τBr, corresponding to about 3 hours in physical
time according to our mapping. In contrast, we note that
for α ≥ 1.25 the MMS state is unstable and never observed.

In order to study the stability of the MMS against exter-
nal agents, we perturb the system by manually recolouring
(in a coherent fashion) a localized fraction (10%) of beads
along the chain. From Fig. 6 one can see that, after the per-
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turbation (performed at t = 0), the chain forms a nucleation
site around the artificially recoloured region that eventually
grows as an epigenetically coherent globule. The spreading
of the local epigenetic domain throughout the whole chain
can be followed from the kymograph in Fig. 6; it appears
that the spreading is approximately linear until the winning
mark (here red) takes over the whole chain. The spreading
may be linear because the nucleation occurs along an epige-
netically disordered swollen chain, so that the mark cannot
easily jump long distances along the polymer due to the
steep decay for long range contacts in the swollen phase (see
also Suppl. Movie M4 and contact maps in Fig. S11). [Note
that the argument for linear spreading also applies to spon-
taneous nucleation, triggered by a fluctuation rather than
by an external perturbation, see SI.] The spreading speed
can be estimated from the “wake” left in the kymograph: it
takes 0.4 106 Brownian times (about 1 hour of real time) to
cover 6 Mbp.

It is remarkable that, even if the spreading remained lin-
ear for a longer polymer, this speed would suffice to spread
a mark through a whole chromosome. For instance, the X-
chromosome (123 Mbp) could be “recoloured” within one
cell cycle (24 h). All this suggests that the model presented
in this Section may thus be relevant for the fascinating “X-
chromosome inactivation” in embryonic mammalian cells [9],
and, in more general terms, to the spreading of inactive het-
erochromatin along chromosomes [29].

It is also worth stressing that, in practice, for an in vivo
chromatin fiber, this local coherent recolouring perturbation
might be due to an increase in local concentration of a given
“writer” (or of a reader-writer pair): our results therefore
show that a localised perturbation can trigger an extensive
epigenetic response, or “epigenetic switch”, that might affect
a large chromatin region or even an entire chromosome.

To test the stability of the coherent globular state follow-
ing the symmetry breaking, we perform an extensive random
recolouring of the polymer where one of the three possible
states is randomly assigned to 50% of the beads. This per-
turbation is chosen because it qualitatively mimics [71] how
epigenetic marks may be semi-conservatively passed on dur-
ing DNA replication [25, 27, 72].

After this instantaneous extensive random recolouring
(performed at t = 4 105 τBr in Fig. 6), we observe that
the model chromatin returns to the same ordered state,
suggesting that the epigenetically coherent state, once se-
lected, is robust to even extensive perturbations such as
semi-conservative replication events (see also Suppl. Movie
M4).

The largely asymmetric response of the system against ex-
ternal perturbations, which has been shown to depend on its
instantaneous state, is known as “ultra-sensitivity” [26]. We
have therefore shown that forcing the passage through the
“unmarked” state triggers ultrasensitivity, while retaining
the discontinuous nature of the transition already captured
by the simpler “two state” model.

From a physics perspective, the results reported in this
Section and encapsulated in Figure 6 are of interest because
they show that the presence of the intermediate state do not

affect the robustness of the steady states or the nature of
the first-order-like transition, therefore the previously dis-
cussed main epigenetic features of our model, memory and
bistability, are maintained.

Another important remark is that ultrasensitivity is a
highly desirable feature in epigenetic switches and during
development. A striking example of this feature is the previ-
ously mentioned X-chromosome inactivation in mammalian
female embryonic stem cells. While the selection of the chro-
mosome copy to inactivate is stochastic at the embryonic
stage, it is important to note that the choice is then epige-
netically inherited in committed daughter cells [6]. Thus, in
terms of the model presented here, one may imagine that
a small and localised perturbation in the reading-writing
machinery may be able to trigger an epigenetic response
that drives a whole chromosome from a mixed metastable
state into an inactive heterochromatic state within one cell
cycle (e.g., an “all-red” state in terms on Fig. 6). When
the genetic material is then replicated, an extensive epige-
netic fluctuation may be imagined to take place on the whole
chromosome. In turn, this extensive (global) perturbation
decays over time, therefore leading to the same “red” hete-
rochromatic stable state, and ensuring the inheritance of the
epigenetic silencing.

Non-equilibrium recolouring dynamics creates a 3D
organisation resembling “topologically associating

domains”

In the previous Sections we have considered the case in
which the epigenetic read-write mechanism and the chro-
matin folding are governed by transition rules between dif-
ferent microstates that obey detailed balance and that can
be described in terms of an effective free energy. This is
certainly a simplification because the epigenetic writing is
in general a non-thermal, out-of-equilibrium process, which
entails biochemical enzymatic reactions with chromatin re-
modelling and ATP consumption [1]. Thus, it is important
to see what is the impact of breaking detailed balance in the
dynamics of our model.

We address this point by considering a recolouring temper-
ature TRec that differs from the polymer dynamics temper-
ature TL. When TRec 6= TL, one can readily show, through
the Kolmogorov criterion, that detailed balance is violated,
as there is a net probability flux along a closed loop through
some of the possible states of the system (see SI). In this case,
a systematic scan of the parameter space is computationally
highly demanding and outside the scope of the current work.
Here we focus on a specific case where the recolouring tem-
perature is very low, and fixed to TRec = 0.1ε/kBT , while
we vary TL: this case allows to highlight some key quali-
tative differences in the behaviour of the system which are
due to the non-equilibrium epigenetic dynamics. In what
follows, we first discuss some expectations based on some
general arguments, and then present results from computer
simulations.

First, imagine that the Langevin temperature TL → ∞.
In this limit, we expect the polymer to be in the swollen
disordered phase, whatever the value of TRec (no matter how
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Figure 7. Breaking Detailed Balance leads to the formation of TAD-like structures. Simulations correspond to M = 2000,
TRec = 0.1ε/kB , TL = 2ε/kB (i.e., α = ε/kBTL = 0.5, see SI for other cases). (a) Plot of the number of red (and blue) coloured beads
Nb(q, t) as a function of time. Notice that these curve do not seem to diverge within the simulation runtime, oppositely to the ones
reported in the previous Sections. (b) The kymograph of the system showing the presence of long-lived boundaries between distinct
epigenetic domains. (c) A contact map averaged over the last 2 105 Brownian times: the upper half shows the contact probability
between beads, the lower half is colour-coded to separately show the probability of red-red, blue-blue and mixed contacts. (d) A
snapshot of the 3D configuration. The visible TAD-like structures in the snapshot and in the contact map are enumerated as in the
kymograph, to ease comparison. Note that the TAD-like structures are long-lived but metastable, while coarsening on very long time
scales. More details are given in the text and SI, and other values of TL are given in Figs. S14-S15 as well as different initial conditions
in Fig. S16. See also Suppl. Movies.

low, as long as greater than zero). This is because a swollen
self-avoiding walk is characterized by an intra-chain contact
probability scaling as

Pc(m) ∼ m−c (6)

with c = (d+θ)ν > 2 [73, 74]. This value implies that the in-
teractions are too short-ranged to trigger a phase transition
in the epigenetic state, at least within the Ising-like models
considered in Ref. [58].

Consider then what happens as TL decreases. An im-
portant lengthscale characterizing order in our system is the
epigenetic correlation length, which quantifies the size of the
epigenetic domains along the chain. This lengthscale, ξ can
be defined through the exponential decay of the epigenetic
correlation function (see SI). A second important lengthscale
is the blob size. In particular, a homopolymer at temper-
ature TL > Θ, where Θ denotes the collapse temperature,
can be seen as a collection of transient de Gennes’ blobs with
typical size [61]

m∗ ∼ [(TL −Θ)/Θ]
−2
. (7)

Now, as TL decreases, remaining larger than Θ, the size of
the transient de Gennes’ blobs m∗ increases. However, these
will normally appear randomly along the chain and diffuse
over the duration of the simulation to leave no detectable
domain in contact maps. If, on the other hand, ξ ∼ m∗,
we expect states with one blob per epigenetic domain to be
favoured, as the epigenetic recolouring and chromatin fold-
ing would be maximally coupled. As a consequence, we may
expect the resulting recolouring dynamics to slow down sig-
nificantly: in this condition, chromatin domains may there-
fore form, and be long-lived. Finally, the last regime to
consider is when TL is small enough: in this case we expect

collapse into an epigenetically coherent globule, similarly to
the results from previous Sections.

To test these expectations, we now discuss computer sim-
ulations of the “two-state” model, where we varied TL while
keeping TRec = 0.1ε/kB . By starting from a swollen disor-
dered polymer (which as previously mentioned is expected
to be stable for TL →∞), at high enough TL, we find swollen
polymers which do not form domains in the simulated con-
tact map (see SI, this phase is also discussed more below).
For lower TL we reach the temperature range that allows
for transient blob formation. These are indeed stabilized by
the existence of distinct epigenetic domains which appear at
the beginning of the simulation; examples of this regime are
reported in Fig. 7 and in the SI (Fig. S15).

This is the most interesting regime as the chromatin
fiber displays a multi-pearl structure, reminiscent of the
topologically-associating-domains (TADs) found in Hi-C
maps [45]. These TADs lead to a “block-like” appearance
of the contact map (see Figure 7, [75]), not unlike the ones
reported in the literature [17, 50, 76]. Fig. 7 also shows the
number of beads in state q, Nb(q, t) along with the kymo-
graph tracking the system for 5 106 τBr timesteps (corre-
sponding to ∼ 14 hours of physical time according to our
mapping). These results show that the boundaries between
domains, once established, are long-lived as several are re-
tained throughout the simulation. This figure should be
compared and contrasted with Figures 2 and 4, where the
kymographs show either quickly disappearing domains, or
long-lived ones that are very small, when the dynamics is
glassy. In both those cases, the Nb(q, t) curves show that
the system is breaking the red-blue symmetry and the mag-
netisation is diverging. Here, instead, Nb(q, t) appears to
change much more slowly (or is kinetically arrested).
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While the TAD-like structure observed at intermediate
TL is long-lived, it might be only metastable, as choosing
a swollen but ordered (homopolymer) initial condition, we
find that, surprisingly, no domains appear, and the polymer
remains homogeneously coloured throughout the simulation
without collapsing into a globule. This is a signature of the
existence of a swollen but epigenetically ordered phase. We
recall that, remarkably, this phase cannot ever be found in
the equilibrium limit of the model, TL = TRec. This new
swollen and ordered regime may be due to the fact that,
when TL decreases, the effective contact exponent will no
longer be the one for self-avoiding polymers (c > 2), but it
may be effectively closer to the one for ideal (c = 3/2) or col-
lapsed polymers (c = 1), both of which allow for long-range
interactions between epigenetic segments, possibly trigger-
ing epigenetic ordering (see SI, Fig. S16, [77]).

Finally, by lowering TL further, below the theta point
for an homopolymer (TL ' 1.8ε/kB , see SI Fig. S13) one
achieves the point where the polymer collapses into a single
epigenetically ordered globule (see SI, Fig. S15-S16).

In this Section we have therefore shown that non-
equilibrium epigenetic dynamics creates new features in the
time evolution and steady state behaviour of the system, and
may be important to understand the biophysics of TAD es-
tablishment and maintenance. Besides this, we should also
mention that the domains emerging in the presented model
appear randomly along the chain (i.e. no two simulations
display the same epigenetic pattern); this is symptomatic
of the fact that, for simplicity, our model does not consider
structural and insulator elements such as CTCF, promoters,
or other architectural [1] and “bookmarking” [78] proteins
which may be crucial for the de novo establishment of epi-
genetic domains. Nonetheless, our model strongly suggests
that non-equilibrium processes can play a key role in shaping
the organisation of chromosomes. While it has been conjec-
tured for some time that genome regulation entails highly
out-of-equilibrium processes, we have here reported a con-
crete instance in which breaking detailed balance naturally
creates a pathway for generating a chromatin organisation
resembling the one observed in vivo chromosomes.

DISCUSSION AND CONCLUSIONS

In this work, we have studied a 3D polymer model with
epigenetic “recolouring”, which explicitly takes into account
the coupling between the 3D folding dynamics of a semi-
flexible chromatin fiber and the 1D “epigenetic” spread-
ing. Supported by several experimental findings and well-
established models [1, 17], we assume self-attractive interac-
tions between chromatin segments bearing the same epige-
netic mark, but not between unmarked or differently-marked
segments. We also assume a positive feedback between
“readers” (binding proteins aiding the folding) and “writ-
ers” (histone-modifying enzymes performing the recolour-
ing), which is supported by experimental findings and 1D
models [25, 26, 29, 39, 44, 79].

One important novel element of the presented model is

that the underlying epigenetic landscape is dynamic, while
most of the previous works studying the 3D organisation
of chromatin relied on a fixed, or static, epigenetic land-
scape [17, 20–23, 50, 80]. The dynamic nature of the epi-
genetic modifications is crucial to investigate the de novo
self-organised emergence of epigenetically coherent domains,
which is of broad relevance in development and after cell di-
vision [39].

In particular, the model presented here is able, for the
first time to our knowledge, to couple the dynamic underly-
ing epigenetic landscape to the motion of the chromatin in
3D. Furthermore, the synergy between the folding of chro-
matin and the spreading of histone modifications may be a
crucial aspect of nuclear organisation as these two processes
are very likely to occur on similar timescales. From a biolog-
ical perspective, one may indeed argue that the formation
of local TADs in a cell requires at least several minutes [1],
while the establishment of higher order, non-local contacts,
is even slower [80]; at the same time, histone-modifications,
such as acetylation or methylation, occur through enzymatic
reactions whose rate is of the order of inverse seconds or
minutes [39, 81]. For instance, active epigenetic marks are
deposited by a travelling polymerase during the ∼ 10 min-
utes over which it transcribes an average human gene of 10
kbp [82]. Similar considerations apply to our work as well:
while the microscopic recolouring dynamics takes place over
timescales of about 103 τBr ∼ 10s, the spreading of a coher-
ent mark (e.g. see kymographs in Fig. 2,4, 6 and 7) may
occur on timescales ranging from 5 105 τBr to 5 106 τBr which
are 5-50 times larger than the polymer re-orientation time
(about 105 τBr, see SI).

Furthermore, there are examples of biological phenomena
in vivo which point to the importance of the feedback be-
tween 3D chromatin and epigenetic dynamics. A clear ex-
ample is the inactivation of an active and “open” [1] chro-
matin region which is turned into heterochromatin. In this
case, the associated methylation marks favour chromatin
self-attractive interactions [82] and these, in turn, drive the
formation of a condensed structure [1, 39] whose inner core
might be difficult to be reached by other freely diffusing re-
activating enzymes.

Rather fitting in this picture, we highlight that one of our
main results is that the coupling between conformational
and epigenetic dynamics can naturally drive the transition
between a swollen and epigenetically disordered phase at
high temperatures and a compact and epigenetically coher-
ent phase at low temperatures (Fig. 2), and that this tran-
sition is discontinuous, or first-order-like, in nature (Fig. 3).

While it is known that purely short-range interactions can-
not drive the system into a phase transition, effective (or ad
hoc) long-range interactions within an Ising-like framework
can induce a (continuous) phase transition in the thermody-
namic limit [58, 59]. In our case, importantly, the transition
is discontinuous (see Fig. 3), and this is intimately related
to the coupling between 3D and 1D dynamics. The physics
leading to a first-order-like transition is therefore reminiscent
of that at work for magnetic polymers [41] and hence fun-
damentally different with respect to previous works, which
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could not address the conformation-epigenetics positive feed-
back coupling.

It is especially interesting to notice that the discontinuous
nature of the transition observed in this model can naturally
account for bistability and hysteresis, which are both prop-
erties normally associated with epigenetic switches.

We note that the model reported here also displays a rich-
ness of physical behaviours. For instance, we intriguingly
find that by increasing the strength of self-attraction the
progress towards the final globular and epigenetically co-
herent phase is much slower (Fig. 4); we characterize this
glass-like dynamics by analysing the network of contacts
and identifying a dramatic slowing down in the exchange of
neighbours alongside a depletion of non-local contacts (see
Figs. 5). We argue that the physics underlying the emer-
gence of a frozen network of intra-chain interactions might
be reminiscent of the physics of spin glasses with quenched
disorder [56, 70, 83] (see Figs. 5 and SI Fig. S10).

We have also shown that the nature of the transition or the
long-time behaviour of the system is not affected by forcing
the passage through an intermediate (neutral or unmarked)
state during the epigenetic writing. In contrast, this restric-
tion in kinetic pathway produces major effects on the dy-
namics. Most notably, it allows for the existence of a long-
lived metastable mixed state (MMS) in which all three epige-
netic states coexist even above the critical point αc observed
for the simpler “two-state” model. This case is interesting
as it displays ultrasensitivity to external perturbations: the
MMS is sensitive to small local fluctuations which drive large
conformational and global changes, while the epigenetically
coherent states are broadly stable against major and exten-
sive re-organisation events such as semi-conservative chro-
matin replication (Fig. 6).

Like hysteresis and bistability, ultrasensitivity is impor-
tant in in vivo situations, in order to enable regulation of
gene expression and ensure heritability of epigenetic marks
in development. For instance, it is often that case that, dur-
ing development, a localized external stimulus (e.g., changes
in the concentration of a transcription factor or a mor-
phogen) is enough to trigger commitment of a group of cells
to develop into a cell type characterizing a certain tissue
rather than another [1]. On the other hand, once differenti-
ated, such cells need to display stability against intrinsic or
extrinsic noise. Ultrasensitivity similar to the one we report
within this framework would enable both types of responses,
depending on the instantaneous chromatin state.

A further captivating example of ultrasensitive response
is the previously mentioned case of the X-chromosome in-
activation. Also in that case, the selection of which of the
two X-chromosomes to silence is stochastic in female mam-
malian embryonic stem cells: specifically, it is suggested
that a localized increase in the level of some RNA tran-
scripts (XistRNA) can trigger heterochromatization of the
whole chromosome, which turns into the so-called Barr body,
by propagating repressive marks through recruitment of the
polycomb complex PRC2 [9]. Once the inactive X copy is se-
lected, the choice is then epigenetically inherited in daughter
cells [6], which therefore suggests robustness through disrup-

tive replication events.

Finally, we have studied the case in which the epigenetic
dynamics is subject to a different stochastic noise, with re-
spect to the 3D chromatin dynamics. This effectively “non-
equilibrium” case, where detailed balance of the underlying
dynamics is broken, leads to interesting and unique physical
behaviours. Possibly the most pertinent is that we observe,
and justify, the existence of a parameter range for which
a long-lived multi-pearl state consisting of several globular
domains coexist, at least for a time corresponding to our
longest simulation timescales which roughly compare to 14
hours of physical time (see Fig. 7 and Models and Methods
for the time mapping). This multi-pearl structure is qualita-
tively reminiscent of the topologically associated domains in
which a chromosome folds in vivo, and requires efficient epi-
genetic spreading in 1D, together with vicinity to the theta
point for homopolymer collapse in 3D.

Although one of the current paradigms of chromosome bi-
ology and biophysics is that the epigenetic landscape directs
3D genome folding [16–19, 22], an outstanding question is
how the epigenetic landscape is established in the first place
– and how this can be reset de novo after each cell divi-
sion. In this respect, our results suggest that the inherent
non-equilibrium (i.e., ATP-driven) nature of the epigenetic
read-write mechanism, can provide a pathway to enlarge the
possible breadth of epigenetic patterns which can be estab-
lished stochastically, with respect to thermodynamic models.

It is indeed becoming increasingly clear that ATP-driven
processes are crucial to regulate chromatin organisation [84,
85]; nonetheless how this is achieved remains largely ob-
scure [86]. The work presented here provides a concrete
example of how this may occur, and suggests that it would
be of interest to develop experimental strategies to perturb,
for instance, the interaction between reading and writing
machines (e.g., by targeting the recruitment between Set1/2
and RNA polymerase, or between EZH2 and PRC, etc.), in
order to determine what is the effect of the positive feedback
loop on the structure of epigenetic and chromatin domains,
and to what extent these require out-of-equilibrium dynam-
ics in order to be established.

Furthermore, we envisage that the “recolourable polymer
model” formalised in this work and aimed at studying the
interplay between 3D chromatin folding and epigenetic dy-
namics, might be extended in the future to take into account
more biologically detailed (although less general) cases. For
instance, one may introduce RNA polymerase as a special
“writer” of active marks, which can display specific inter-
actions with chromatin, e.g., promote looping [86]. More
generally, our framework can be used as a starting point
for a whole family of polymer models which can be used to
understand and interpret the outcomes of experiments de-
signed to probe the interplay between dynamic epigenetic
landscape and chromatin organisation.

To conclude, the model presented in this work can there-
fore be thought of as a general paradigm to study 3D chro-
matin dynamics coupled to an epigenetic read-write kinet-
ics in chromosomes. All our findings strongly support the
hypothesis that positive feedback is a general mechanism
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through which epigenetic domains, ultrasensitivity and epi-
genetic switches might be established and regulated in the
cell nucleus. We highlight that, within this model, the inter-
play between polymer conformation and epigenetics plays a
major role in the nature and stability of the emerging epi-
genetic states, which had not previously been appreciated,
and we feel ought to be investigated in future experiments.
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S. Sauer, C. Schöfer, K. Weipoltshammer, M. Pagani,
M. Lachner, A. Kohlmaier, S. Opravil, M. Doyle, M. Sibilia,
and T. Jenuwein, Cell 107, 323 (2001).

[43] G. Li, R. Margueron, M. Ku, P. Chambon, B. E. Bernstein,
and D. Reinberg, Genes Dev. 24, 368 (2010).

[44] S. Aranda, G. Mas, and L. Di Croce, Sci. Adv. 1, e1500737
(2015).

[45] E. Lieberman-Aiden, N. L. van Berkum, L. Williams,
M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. La-
joie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bern-
stein, M. A. Bender, M. Groudine, A. Gnirke, J. Stama-
toyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker,
Science 326, 289 (2009).

[46] L. A. Mirny, Chromosome Res. 19, 37 (2011).
[47] A. Rosa and R. Everaers, PLoS Comp. Biol. 4, 1 (2008).
[48] M. Barbieri, J. Fraser, M.-L. Lavitas, M. Chotalia, J. Dostie,

A. Pombo, and M. Nicodemi, Nucleus 4, 267 (2013).
[49] A. L. Sanborn, S. S. P. Rao, S.-C. Huang, N. C. Durand,

M. H. Huntley, A. I. Jewett, I. D. Bochkov, D. Chinnappan,
A. Cutkosky, J. Li, K. P. Geeting, A. Gnirke, A. Melnikov,
D. McKenna, E. K. Stamenova, E. S. Lander, and E. L.
Aiden, Proc. Natl. Acad. Sci. USA 112, 201518552 (2015).

[50] C. A. Brackley, J. Johnson, S. Kelly, P. R. Cook, and
D. Marenduzzo, Nucleic Acids Res. (2016).

[51] D. R. Brumley, M. Polin, T. J. Pedley, R. E. Goldstein, and
R. E. Goldstein, J. R. Soc. Interface 12, 20141358 (2015).

[52] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
[53] M. Baum, F. Erdel, M. Wachsmuth, and K. Rippe, Nat.

Commun. 5, 4494 (2014).
[54] G. G. Cabal, A. Genovesio, S. Rodriguez-Navarro, C. Zim-

mer, O. Gadal, A. Lesne, H. Buc, F. Feuerbach-Fournier,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2016. ; https://doi.org/10.1101/058933doi: bioRxiv preprint 

https://doi.org/10.1101/058933
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

J.-C. Olivo-Marin, E. C. Hurt, and U. Nehrbass, Nature
441, 770 (2006).

[55] We should stress at this stage that the recolouring dynamics
of epigenetic marks differs from the “colouring” dynamics of
“designable” polymers considered in [87], where a chemical
irreversible patterning is applied for some time to a short
polymer in order to study its protein-folded-like conforma-
tions [87]. Here, the recolouring dynamics and the folding of
the chains evolve together at all times, and they affect one
another dynamically.

[56] A. Y. Grosberg, Biophysics 29, 621 (1984).
[57] E. E. Dormidontova, A. Y. Grosberg, and A. R. Khokhlov,

Macromol. Theory Simul. 1, 375 (1992).
[58] A. Colliva, R. Pellegrini, A. Testori, and M. Caselle, Phys.

Rev. E 91, 052703 (2015).
[59] F. Bouchet, S. Gupta, and D. Mukamel, Physica A 389,

4389 (2010).
[60] T. Garel and H. Orland, EPL (Europhysics Letters) 6, 307

(1988).
[61] P.-G. de Gennes, J. Phys. (France) Lett. 46, 639 (1985).
[62] Y. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson, J.

Chem. Phys. 103, 4807 (1995).
[63] A. Byrne, P. Kiernan, D. Green, and K. A. Dawson, J.

Chem. Phys. 102, 573 (1995).
[64] L. I. Klushin, J. Chem. Phys. 108, 7917 (1998).
[65] N. Kikuchi, A. Gent, and J. M. Yeomans, EPJ E 9, 63

(2002).
[66] N. Kikuchi, J. F. Ryder, C. M. Pooley, and J. M. Yeomans,

Phys. Rev. E 71, 1 (2005).
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SUPPLEMENTARY MATERIAL

COMPUTATIONAL DETAILS

The polymer is simulated as a semi-flexible [52] bead-
spring chain in which each bead has an internal degree of
freedom denoted by q = {1, 2, 3}.

The attraction/repulsion between the beads is regulated
by the truncated and shifted Lennard-Jones (LJ) potential
as described in the main text:

UabLJ(x) =
4εab
N

[(σ
x

)12

−
(σ
x

)6

−
(

σ

xqaqbc

)12

+

(
σ

xqaqbc

)6
]

for x ≤ xqaqbc (8)

and UabLJ(x) = 0 for x > xqaqbc . The q-dependent interac-
tion cut-off xqaqbc is set to: (i) 21/6σ, modelling only steric
interaction between beads with different colours, or with
colour corresponding to no epigenetic marks (i.e., q = 3);
(ii) R1 = 1.8σ between beads with the same colour, and
corresponding to a given epigenetic mark (e.g., q = 1, or
q = 2), modelling self-attraction, e.g., mediated by a bridg-
ing protein [1]. The free parameter εab is set so that εab = ε
for qa = qb = {1, 2} and εab = kBTL otherwise. Because the
potential is shifted to equal zero at the cut-off, we normalise
UabLJ(x) by N in order to set the minimum of the attractive
part to −ε (see also Fig. S1).

The connectivity is taken into account via a harmonic po-
tential between consecutive beads

Uabharm(x) =
kh
2

(x− x0)2(δb,a+1 + δb,a−1) (9)

where x0 = 21/6σ and kh = 200ε. The stiffness is modelled
via a Kratky-Porod term [52]

UabKP (x) =
kBTLlK

2σ

[
1− ta · tb
|ta||tb|

]
(δb,a+1 + δb,a−1) (10)

where ta and tb are the vectors joining monomers a,a+1 and
b,b + 1 respectively. The parameter lK/2 is identified with
the persistence length lP of the chain, here set to lP = 3σ.

The total potential Ua(x) experienced by each bead is
given by the sum over all the possible interacting pairs and
triplets, i.e.

Ua(x) =
∑
b 6=a

(
UabLJ(x) + Uabharm(x) + UabKP (x)

)
. (11)

The dynamics of each bead is evolved by means of a Brow-
nian Dynamics (BD) scheme, i.e. with implicit solvent. The
corresponding Langevin equation reads

m
d2ra
dt2

= −γ dra
dt
−∇Ua(x) + ξa (12)

where γ is the friction coefficient and ξa a stochastic
noise which obeys the fluctuation dissipation relationship
〈ξa,α(t)ξb,β(t′)〉 = 2γkBTLδa,bδ(t − t′)δα,β , where the Latin
indexes run over particles while Greek indexes over Carte-
sian components.

Using the Einstein relation we set

D =
kBTL
γ

=
kBTL
3πησ

, (13)

where η is the solution viscosity. The effective viscosity of
the nucleoplasm depends on particle size and timescales:
here we consider a bead size of σ = 30 nm, correspond-
ing to 3 kbp [17, 47]. A linear extrapolation from the data
in Ref. [53] would lead to η ∼ 5 − 10 cP for the early time
viscosity for a particle of size 30 nm – this is a lower bound
as the early time diffusion coefficient larger than the late
time value (equivalently, the early time effective viscosity is
lower than the late time value) [53]. The effective viscos-
ity can also be inferred indirectly from the mapping done in
Ref. [47] to fit yeast data; in this case it can be estimated to
be in the range η ' 100 − 200 cP. By using these numbers
and TL = 300K one can define a Brownian time

τBr = σ2/D =
3πησ3

kBTL
' 0.3− 12 ms (14)

as the time required for a bead to diffuse its own size. We
have also performed a direct mapping using the experimen-
tal data in yeast of Ref. [54] and the data obtained from
our simulations for polymer M = 2000 beads long and
ε = 0.9kBTL. Comparing the mean square displacement of
the monomers we found that, in agreement with the previous
discussion, the best match between the datasets is attained
for τBr ' 10−50 ms (see Fig. S1(B)). For definitiveness, and
using the worst-case scenario within this mapping strategy,
we will assume τBr = 10 ms throughout the rest of the work
(as in Ref. [47]). For comparison, it is also useful to mention
and to bear in mind that the typical re-orientation time for
a polymer with no attractive interactions and M = 2000
beads long is about 105 τBr within our numerical scheme.
The dynamics is then evolved using a velocity-Verlet inte-
gration within the LAMMPS engine in Brownian dynamics
mode (NVT ensemble). The simulation runtime typically
encompasses 106 τBr and is therefore comparable to 2.5− 3
hours of real time.

The systems are simulated in a box of linear size L and
in the dilute regime (assuming each monomer occupies a
cylindrical volume πσ3/4 one can estimate the volume frac-
tion as ρ = Mπσ3/4L3 ' 0.1%, for a number of monomers
M = 2000). The box is surrounded by a purely repul-
sive wall in order to avoid self-interactions through periodic
boundaries. The initial configuration is typically that of an
ideal random walk in which each bead assumes a random
value (colour) q. We then run 104 τBr timesteps in which
the only force field is an increasingly stronger steric soft re-
pulsion between every pair of beads, while their colour is left
unaltered. The explicit form of the soft potential we use is

U ijsoft(d) = A

[
1 + cos

πdij
dc

]
(15)

where dc = 21/6σ is the cutoff distance and A the maximum
of the potential at dij = 0.This “warm-up” equilibration run
transforms the ideal random walk conformations into one
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obeying self-avoiding statistics as it removes the overlaps
between monomers.

Following this equilibration, we start the main run, typi-
cally consisting of 106 τBr timesteps, in which M recolour-
ing moves are attempted every 103 τBr timesteps. Each
recolouring move is accepted or rejected using a Metropolis
algorithm, i.e. the acceptance probability is given by

p(q → q′) = min
(

1, e−∆E/kBTRec

)
, (16)

where ∆E is the difference between the new energy (after re-
colouring) and the old one (before recolouring). The energy
appearing in Eq. (16) is computed from Eq. (15). In par-
ticular, upon recolouring any one bead, the only part of the
energy function that changes is the LJ potential (Eq. (8) and
Fig. S1), as same coloured beads interact through an attrac-
tive potential while differently coloured ones only through
the repulsive part of the potential. It is important to note
that the temperature appearing in the exponent is the “re-
colouring” temperature TRec, which is not necessarily iden-
tical to TL, the temperature used in the Langevin equation
for the stochastic noise.

The total polymer length is taken M = 2000σ ' 6 104

nm or 6 Mbp at the 3 kbp per bead resolution which we use.
When probing the nature of the phase transition of the “two
state” model we decrease the length to M = 50 and perform
100 independent simulations of 106 τBr in order to enhance
sampling (as these short chain equilibrate quickly).

THE DETAILED BALANCE IS BROKEN WHEN
TP 6= TL.

According to the Kolmogorov criterion, in a stochastic dy-
namics satisfying detailed balance the product of the tran-
sition rates over any closed loop over some states of the
system must not depend on the sense along which we go
through the loop [88]. This is not in general the case
when TRec 6= TLangevin. To see why this is so, let us
imagine a simple case where two loose beads initially of
the same colour interact only with the LJ potential, with-
out any chain in between. Imagine further than the beads
are initially close to each other and are then moved apart
by a thermal fluctuation. This happens with probability
pqnear→far = exp (−ε/kBTL). At this stage, a change in the
colour of the bead (q) occurs with probability 1, as there is
no energy penalty. When the beads have different colours,
they can come close to each other still with probability 1, as
there is now no attraction or penalty in being close together
(as long their distance is greater than 21/6σ). Once they are
back together, also the recolouring move that causes the two
beads to have the same q occurs with probability 1 as this
move is energetically favourable. Therefore we obtain

ploop = exp

(
− ε

kBTL

)
. (17)

By performing the loop in the reverse direction (i.e. change
q first, then separate the beads, change back q, and finally

Figure S1. Details of the model. (A) Shape of the trun-
cated and shifted LJ potential for cut-off x

qa,qb
c = 1.8σ (when

qa = qb) and x
qa,qb
c = 21/6σ (when qa 6= qb).(B) Direct time

mapping of the Brownian time obtained by overlaying simulation
data (computed as the mean squared displacement of a polymer
bead, averaged over beads and simulations) for ε = 0.9kBTL and
M = 2000, with experimental data obtained by tracking GAL
gene in Yeast [54] (either when it is close to the centre of the
nucleus or when localised near the periphery). The best value of
τBr that matches simulation and experimental data lies around
τBr ' 0.01− 0.05 seconds.

put the beads back in contact) one instead obtains

ploop−1 = exp

(
− ε

kBTRec

)
6= ploop. (18)

The two transition probabilities are equal only if TRec = TL.
In particular, if TL > TRec the “direct” loop is more likely to
happen than its reverse, while the opposite is true if TL <
TRec: detailed balance is therefore violated when TL 6= TRec.

SECOND VIRIAL COEFFICIENT

Given our interparticle potential, it is straightforward to
extract the second virial coefficient u2 by using the Mayer
relation and Eq. (8) [89]:

uab2 = −
∫
d3x

(
e−βU

ab
LJ (x) − 1

)
. (19)

We find that uab2 is positive (urep2 ) for qa 6= qb and negative
(uatt2 ) when qa = qb. In particular, we find that urep2 ' 4.396
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while uatt2 ranges from −9.3 (for ε = 1kBTL) to −400 (for
ε = 5kBTL).

FIRST-ORDER-LIKE NATURE OF THE
TRANSITION

We have investigated the nature of the transition from
swollen-disordered phase to the collapsed-ordered phase in
two ways: (i) by studying hysteresis cycles of a chain
with M = 2000 beads (5 runs) and (ii) by measuring the
joint probability P (Rg, m̃) from simulations with a well-
equilibrated chain with M = 50 beads (100 runs).

The results obtained from the first study, (i), are shown
in Fig. S2 (see also Suppl. Movie M7). This figure shows
that there is a region of the interaction parameter α ' 0.9−
1.0 for which the two phases (collapsed and swollen) are
both metastable. Specifically, α ' 1 is needed to collapse a
swollen chain (red curve), but a lower interaction parameter
α is required to send the chain back into the swollen phase,
once it is collapsed (blue curve). The curves are made by
slowly increasing and decreasing ε over a range of 0.3kBT
over 106 Brownian times.

The results from the second study, (ii), are reported in
Fig. S3. In this figure we show a series of plots representing
the joint probability distribution P (Rg, m̃), i.e. the proba-
bility of observing the system in a certain state with given
signed magnetisation m̃ and radius of gyration Rg. One may
notice that the system undergoes a transition from a swollen
(large Rg) and disordered (m̃ ∼ 0) phase to a compact (small
Rg) and ordered (coherent magnetisation m̃ ' ±1) one. In
particular, at the transition point αc = 1.15 (for M = 50)
the system shows the coexistence of both phases, i.e. the
probability has three maxima (as TL = TRec this is an equi-
librium model, hence, equivalently, the free energy has three
minima). To gain these results, we have sampled the phase
space near the critical point αc as broadly as possible by
performing 100 independent simulations for a polymer of
M = 50 beads and runtime 106 τBr each, from which we
obtain the joint probabilities reported in Fig. S3. Single tra-
jectories of some of the 100 runs are shown in Fig. S4 for the
same values of α used for the joint probability plots.

Finally, we highlight that we do not observe switching
between the two symmetric metastable states, i.e. m̃ = +1
and m̃ = −1, for a chain with M = 2000 beads, but only
for shorter chains (see Fig. S4 and Suppl. Movie M8). This
switching property was reported in literature for effectively
1D models [25, 30, 32], where a relatively small number of
nucleosomes were considered.

This result is due to the fact that switching occurs when
the system overcomes the energy barrier between the two
states. This barrier grows with both the interaction strength
ε, and the number of intrachain interactions, which increases
with M . In other words, the average first passage time from
one state to the other can be predicted by a Kramers for-
mula, so that it is proportional to the exponential of the free
energy barrier, which scales with M , so that switching time

increases exponentially with M (or equivalently the switch-
ing probability decays exponentially with M).

CONTACT MAPS – 2 STATE MODEL

In Fig. S5 we report a series of contact maps for the “two-
state” model, starting from the time at which the quench is
performed. One can notice that, while for high values of the
interaction parameter α, the folding dynamics of the poly-
mer, as well as the network of interactions, is frozen, for val-
ues of α closer to the transition point αc = 0.9, the contact
map evolves into a full checker-board interaction pattern.

DECAY OF THE RADIUS OF GYRATION

In this section we illustrate a simple physical reasoning
to rationalise the exponential decay of the gyration radius
during the collapse at the transition point. Although there
are some authors who argue that the collapse should be self-
similar in time, and therefore, following a power law [61, 90],
we have not found evidence of this self-similar collapse. This
fact is presumably due either to the finite size of the chain
used in our investigation, or to the initial condition. Indeed,
in our simulations we start from random configurations far
from a stretched coil, which is instead the situation often
considered in theoretical models [61]. Therefore in our case
the common assumption of neglecting long-ranged loops at
the early stages of the collapse [61] may not be appropriate.
Apart from the theory explored in Ref. [62], we have not
found in the literature a simple argument as to why the size
of the polymer should decrease exponentially in time during
the collapse. For this reason we illustrate a simple argument
below.

If one takes the growth (in number of monomers) of the
pearls at very early times as g ∼ tβ , with β unknown for the
moment, the volume of the pearls will grow as

Rdp ∼ gdν ∼ tβνd (20)

since each pearl is a crumpled globule ν = 1/d and hence

Rdp ∼ g ∼ tβ (21)

the total number of monomers in pearls is gNp (where Np
is the number of pearls), therefore the number of inter-pearl
monomers (not in the pearls) is

Nip = N − gNp ∼ N
(

1− gNp
N

)
(22)

∼ N
(

1− Np
N
tβ
)
∼ Ne−Npt

β/N (23)

as at early times gNp/N � 1 and t is small by definition
of “early-time”. When pearls begin to appear, they are sep-
arated by a 3D distance given by the average number of
inter-pearl monomers to the exponent ν and in particular
the 3D distance Rip is

Rip ∼
(
Nip
Np

)ν
∼
(
N

Np

)ν
e−νNpt

β/N . (24)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2016. ; https://doi.org/10.1101/058933doi: bioRxiv preprint 

https://doi.org/10.1101/058933
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

Figure S2. Metastability and hysteresis in the two-state model. (a-b) Snapshots corresponding to a chain of M = 2000 beads
in the swollen (a) and globular (b) phase, which are both metastable at the indicated temperature of ε = 0.9kBTL – a simulation
starting in one of these phases remain there during a whole run of 106 Brownian times. (c) Plot of the radius of gyration as a function
of the interaction strength ε which we slowly increase from ε = 0.8kBTL (below the transition) to ε = 1.1kBTL (above the transition)
in 106 Brownian times (red curve). From there, we decrease the interaction strength back to ε = 0.8kBTL in the same amount of time
(blue curve). We find that there is a hysteresis cycle, which supports our conclusion that the transition is first-order-like. The curves
in (c) are averages over 5 different runs.

Figure S3. First-order-like transition for the two-state model for a polymer with M = 50. (Bottom row, from left ro right)
Heat map representation of the joint probability distribution P (m̃,Rg) of a chain with M = 50 and having a radius gyration Rg and
a signed epigenetic magnetisation m̃. The four panels refer to the four indicated values of the interaction parameter α = ε/kBTL near
the critical point. (Top row, from left ro right) By integrating P (m̃,Rg) over Rg one obtains the corresponding reduced distribution
P (m̃). As one can see the change from a mono-stable to a bi-stable state below and above the transition point is separated by a state
where the distribution is roughly flat. Each of the plots is created by averaging over the dynamics of 100 independent simulations
each of duration 106 τBr (1000 recolouring steps). We stress here that due to finite size effects longer chains display lower values of
the critical point αc ' 0.90, although we did not thoroughly explore the phase space for the M = 2000 case (see previous figure).

For t = 0, Eq. (24) correctly predicts that the typical size
of inter-pearl distance is the whole polymer (as Np = 1).
For t 6= 0, it predicts a stretched exponential decay of the
gyration radius for β < 1, and a simple exponential, for
β = 1. Therefore our argument provides a reason for a non-
power-law decay of Rg.

We note that this argument is valid at very early times, or
when the chain is large enough that the number of monomers
belonging to the growing pearls Np is much smaller than
the number of monomers in the chain. It does not make
any assumption regarding the presence of long range loops,
while it makes the assumption that segments of the polymer
not in pearls are still in a self-avoiding walk conformation
(Rib ∼ Nν

ib). Although we have observed that the growing
of pearls introduce competing tensions along the chain, at
early times (or for very large chains), such forces do not

spread across the whole chain, therefore leaving intra-blobs
segments, tension-free.

Even if we cannot give an estimation for β within our rea-
soning, this is not needed to prove the non-power-law decay
of Rg in time during the collapse. This exponent might as-
sume values in between β = 1 for a mean-field dynamics of
a conserved order parameter [91] to β ' 0.66 as observed
numerically for the coarsening of pearls during a homopoly-
mer collapse [63]. A more detailed study of the early stages
of the collapse dynamics of a recolourable polymer might
shed some light into the precise value of β for this case, and
on the precise nature of the decay of the radius of gyration
(stretched versus simple exponential).
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Figure S4. Trajectories from simulations with M = 50 and switch-like behaviour. (a)-(c) Typical trajectories from
simulations of a polymer with M = 50 beads for three values of α near the critical point. (d) In agreement with previous findings
we also highlight that we observe a switch-like behaviour in the case of short polymers. In this panel we report a typical event for a
polymer M = 50 beads long and with interaction strength ε = 1.25kBTL (see also Suppl. Movie M8).

CONTACT PROBABILITY

In this Section we report the contact probabilities mea-
sured from our simulations (see Figs. S6 and S7). In order
to highlight the differences between our simulations and ef-
fectively 1D models we measured the contact probability of
a single bead (index b = 1000 along the chain, in Fig. S6).
While in effective 1D models one normally assumes a contact
probability Pc(m) ∼ m−c leading to long range interactions,
which are tuned by c, here we observe that within within
a single run the contact probability assumes a shape closer
to a sum of delta-functions. This suggests a strong prefer-
ential selection of certain contacts along the polymer within
that run, and a strong deviation from a “mean-field” view
where contacts are regulated via P (c) (which is an average
over many conformations). In Fig. S6 we report our findings
by showing (in the left hand side graphs), an “interaction
plot” which shows how the pattern of beads contacting bead
b = 1000 changes over time, for α = 1.25 − 5 kBTL. These
plots show that the “fuzziness” that characterises mobile
networks of contacts disappears when α ≥ 3kBTL. At these
values of interaction strength, the contacts between some
beads are present at all times and they never exchange.

The plots in Fig. S6 also show (on the right hand side) the
time averaged contact probability (again for bead b = 1000).
The graphs capture the strong departure from a mean-field-

like interactions for high interaction strengths as in fact
Pc(m) resemble a sum of delta-functions rather than a power
law. The picture that emerges is therefore similar to that
of spin-like variables interacting on a network, where the
edges are established by the collapse dynamics. When the
interaction parameters are higher than a certain value the
edges of the network are frozen in place, resembling a spin
glass. We finally stress, that although we observe this depar-
ture from the mean-field assumption, the average of Pc(m)
over many beads and many simulations gives a more “tra-
ditional” power-law decay as we show in Fig. S7. In partic-
ular, we find Pc(m) ∼ m−c with c ranging from 1/3 to 1/2
for different interaction strengths at the end of the collapse
dynamics (see Fig. S7), while they all start from a situation
where c & 2 compatible with a self-avoiding walk statistics
(an ideal random walk would have c = 1.5 in 3d).

CONNECTIVITY

In this section we introduce and compute several quanti-
ties to characterise the change in network connectivity. As
described in the main text, we track the average number of
neighbours Nn(t), and also the average spanning distance
∆s(t) defined as

∆s(t) =
1

M

∑
a6=b |a− b|Pab(t)∑

a6=b Pab(t)
, (25)
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Figure S5. Contact maps for the “two-state” model. In this figure we show contact maps and representative snapshots
corresponding to the dynamics of the system with two different values of α. As one can notice, while low α = ε/kBTL leads to a
checker-board contact map at large times, high values of α, or deep quenches, freeze the network of contacts. Each point in the contact
map is coloured red, blue or black if the entry in the matrix of contacts Cij is between two red beads, two blue beads, or a blue and a
read beads, respectively. This is represented in the figure as a colour bar. Since the contact maps correspond to individual snapshots
(i.e., they are not averaged over time), each bin is either coloured or empty. One can notice that high values of α (bottom row) leads
to rapid folding of the chain and to the appearance of many mixed contacts (black points) which are then slowly lost (in favour of
coloured contacts) over time.

where a and b denote polymer beads. The dynamical
changes of these quantities during the collapse in selected
runs (denoted with “RW” and the index of the simulation)
are reported in Fig. S8. From this figure it is important to
notice that while there is an evident increase in number of

neighbours and spanning distance for α = ε/kBTL = 1, the
same is not observed for higher interaction parameters. In
these cases, e.g., the case with α = 3, the network of interac-
tions is frozen, the number of neighbours quickly saturates
to the maximum value while the spanning distance arrests
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Figure S6. The folding of the polymer creates a quenched network of contacts. In this figure we show four pairs of graphs,
each corresponding to a different choice of α. For each pair, the left “interaction” plot is made by drawing a point for every bead i
which contacts bead b = 1000 at a certain time-step after the collapse. As one can notice, these plots are highly dynamic (or “fuzzy”)
at low α: this is because the network of contact is rearranging quickly during the simulation. Higher interaction strengths instead
induce the selection of a subset of all possible interactions and create a frozen network of contacts. The right plots use the same
information to show the time-averaged contact probability for the bead b = 1000. For large enough α, i.e. α > 3, these plots are
clearly very different from the power-law decay of the contact probability Pc(m) which is assumed in effectively 1D models (such a
curve can only be recovered after averaging over many different runs, and different monomers, see Fig. S7).

to achieve a smaller values in steady state with respect to
that for lower values of α.

The average of these quantities over different runs are
shown in Fig. S9(a)-(b). Once again, we can readily see that
while the number of neighbours increases and then plateaus
at large α, the spanning distance has a more complex depen-
dence on the interaction strength. In Fig. S9(c) we also show
the late time averaged values (taken after the collapse and
over the last 5 105 τBr) alongside the value of the radius of
gyration as a function of α. One can notice that both ∆s and
Rg are non-monotonic functions of α, therefore suggesting
the existence of a critical αc above which the response of the
system changes. In particular one can notice that for α ≥ 3
the spanning distance starts to decrease and the radius of
gyration to increase, corresponding to the formation of more
short ranged network and more frustrated configurations at
higher α.

Finally in Fig. S9(d) we report the value of the neigh-
bour exchange rate κn divided by the average number of
neighbours Nn at any time after the collapse: it can be seen
that κn/Nn always reaches a steady state. This steady state
value monotonically decreases and, in particular, undergoes
a sharp transition around αc ' 3 (see Fig. S10), above which
the network of interactions is virtually frozen.

DEPENDENCE ON INITIAL CONDITIONS
WITHIN THE “TWO-STATE” MODEL

We note that the quenched disordered state observed for
high values of α and identified as a “topologically frozen”
state in the main text cannot be produced in the case the
system was initialised as a uniformly coloured polymer (ho-
mopolymer). This initial condition would, in this case, lead
to a standard homopolymer collapse. Another possible ini-
tial condition is a globular polymer with random colouring.
This resembles the early stages of the collapse process shown
in Fig. S5 and Suppl. Movie M3 and we therefore expect that
the subsequent evolution is very similar to the one investi-
gated in the main text, where the polymer is initialised as
swollen and disordered.
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Figure S7. The contact probability averaged over independent replicas and beads leads to a power law statistics of
contacts. Here we show that a more standard contact probability curve emerges when it is averaged over different simulations, and
over different monomers. The initial configurations show a very steep decay compatible with the self-avoiding walk statistics c ' 2
(for an ideal random walk one would have c = 1.5 in 3d) while the collapsed states show c ' 0.5 for 1.0 ≥ ε/kBTL = α ≤ 1.5.
Higher interaction parameters lead to an enhancement of local contacts (c = 1/3) followed by a steeper decay c = 1 at longer ranges
compatible with the fractal globule conjecture.

Figure S8. Dynamics of the contact networks: individual runs. (a,b) From left to right, these panels show: the interaction
plot (see Fig. S6), the number of neighbours per bead over time, and the average spanning distance over time. The plots refer to
three choices of α and selected simulations (denoted by “RW” and the index of the simulation). The choices of α correspond to (a)
ε = kBTL and (b) ε = 3kBTL. This figure shows that long range contacts develop dynamically during the collapse for α near the
transition value αc, while for higher values of α the interactions are frozen (i.e., they do not evolve in time) and, although the number
of neighbours is larger, the spanning distance is shorter, ultimately leading to slower epigenetic dynamics (see main text).
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Figure S9. Dynamics of the contact networks: averages. (a) Number of neighbours per bead, Nn(t), averaged over different
simulations. (b) Average spanning distance ∆s(t) averaged over independent runs. (c) The values (averaged over last 5 105 τBr)
of the number of neighbours, 〈Nn〉, and spanning distance 〈∆s〉 plotted together with the average radius of gyration Rg(t)/σ as a
function of α. (d) Plot of the fraction of exchanged neighbours per Brownian time κn/Nn is here shown to achieve a steady state
after the collapse. It can be seen that at large interaction strength the network of contacts displays a slower, more glassy dynamics
than at low α; furthermore at large α there are more short range contacts.

Figure S10. The exchange of neighbours dramatically
slows down at high α’s. In this figure we report the behaviour
of κn/Nn as a function of α = ε/kBTL. Thus, we show the frac-
tion of neighbours exchanged per time-step on average by each
bead. One can readily note a dramatic change in the rate κn when
α ≥ 3kBTL, for which case it attains a value of almost zero. This
implies that the network of interactions is frozen, corresponding
to a glassy exchange dynamics.
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CONTACT MAPS – TWO-STATE MODEL WITH
INTERMEDIATE STATE

In this section we report, in Fig. S11, the contact maps for
the “two-state” model with intermediate state (IS) at differ-
ent times and during the local recolouring perturbation. We
started from the mixed metastable state (MMS) and then
forced the recoloured a small (10%) segment in the middle of
the chain. From Fig. S11 one can notice that this localised
perturbation quickly drives the system towards the epige-
netically coherent and globular state. As we show in the
main text, this ordered phase is instead robust against ma-
jor global reorganisation events such as a semi-conservative
replication. This ultra-sensitive response, i.e. a dramati-
cally different response of the system to an external stim-
ulus depending on the current state of the system, can be
appreciated by looking at the large re-organisation and phase
transition driven by such a small perturbation (Fig. S11 and
main text Fig. ??) in contrast to the preserved coherent state
even after a replication event (see main text Fig. ?? at late
time).

STABILITY OF METASTABLE MIXED STATE

In this section we aim to quantify the stability of the
metastable mixed state (MMS) whose existence was re-
ported in the main text in the “two-state” with interme-
diate state model. In order to do this we perform 30 sim-
ulations with a chain M = 2000 beads long and monitor
the (signed) epigenetic magnetisation as a function of time.
From this it is straightforward to obtain the survival proba-
bility of the MMS, i.e., the fraction of MMS which survives
as a function of time. The results are reported in Fig. S12
(for α = 1) where we show the behaviour of the signed epi-
genetic magnetisation m̃ for all 30 simulations (left) as well
as the survival probability (right). From the plot one can
readily notice that at the end of the simulation (which last
106 Brownian times, ∼ 3 hours of real time, see mapping in
Simulation Details) 50% of the replicas are still in the MMS.
The survival probability can be fitted by a simple exponen-
tial with a characteristic decay time ∼ 1.3 106 Brownian
times. It is also worth stressing that for the same value of
α, the simpler “two-state” model, shows instead that 100%
of the simulations end up in the collapsed and epigeneti-
cally coherent state before 106 Brownian times. This can be
seen from Fig. 4a of the main text where we plot the aver-
age epigenetic magnetisation as a function of time: this is
observed to saturate near unity at 106 Brownian times for
α = 1. We finally note that we observed that the MMS
is unstable in the case α ≥ 1.25, as all the 10 simulations
we performed collapse within few hundreds of recolouring
steps (103 Brownian times, not shown). On the other hand
we have not thoroughly explored the parameter space in or-
der to find the precise range of α for which the MMS is
metastable.

THETA POINT FOR A HOMOPOLYMER

In the main text we describe an argument for which our
“two-state” model with broken detailed balance leads to
long-lived TADs, i.e. a block-like pattern along the contact
map. As in this argument we use the value of the collapse
transition temperature, or Θ temperature, for a homopoly-
mer, here we estimate this approximately.

To do so, we study the behaviour of the radius of gyration
for a homopolymer with M = 2000 beads, for different tem-
peratures TL and starting from a swollen self-avoiding config-
uration (Fig. S13). The curves are averaged over 10 indepen-

dent simulations. We observe that for TL & 1.85ε/kB = T ∗,hL
the polymer is not smaller than its initial state, and there-
fore consider this temperature as roughly the theta-point for
the homopolymer (non-recolouring) case. At this stage it is
worth reminding that the critical point for an equally long
“recolourable” polymer is at T ∗,rL ' 1.11ε/kB .

DEPENDENCE ON INITIAL CONDITIONS AND
SEMI-CONSERVATIVE REPLICATION PROTOCOL

WITHIN THE “TWO-STATE WITH
INTERMEDIATE STATE” MODEL

The mixed metastable state (MMS) that is observed for
values of α close to the critical value αc is not observed for
higher values of α. This is most likely because this MMS
becomes unstable. Moreover, we have never observed the
MMS emerging from polymers which were initially homoge-
neously coloured (homopolymers). On the other hand, we
have observed the onset of MMS from a disordered and col-
lapsed polymer. Within the same “two-state with interme-
diate state” model, in the main text we also report a case in
which the polymer is stable against semi-conservative repli-
cations which turn 50% of the beads into a random colour.
We also studied (data not shown) the case in which 50%
of the monomers are turned grey (inactive). The collapsed
state is stable also against this type of perturbation. It is
a future challenge to investigate biologically-relevant repli-
cation strategies that might be overturn the dominant epi-
genetic mark and force an epigenetic switch in the system.

CONTACT MAPS – TWO-STATE MODEL WITH
BROKEN DETAILED BALANCE

In this section we report selected instantaneous contact
maps for the “two-state” model with broken detailed bal-
ance. As one can notice, the off-diagonal contacts are tem-
porary and very mobile. Averaging over such frames leads to
the “block-like” structure reported in the main text, which
is reminiscent of the TAD-like structures often reported by
capture experiments in eukaryotic cells.
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Figure S11. Contact maps and snapshots for the “two-state with intermediate state” model before and after the
perturbation. In this figure we report the evolution of the contact map for the two-state with intermediate state model during the
artificial recolouring. (a)-(c) refer to (a) 4 105 τBr before the perturbation while (b) and (c) show the contact map immediately
before and after the recolouring (in (c) (note the small red segment in the middle of the contact map). (d)-(f) refer to (d) 1 105 τBr,
(e) 2 105 τBr and (f) 4 105 τBr after the perturbation. The contact maps correspond to snapshots in time and each entry is coloured
red, blue or black accordingly to whether the contact is red-red, blue-blue or mixed (see colour-bar in figure). From this figure one
can readily appreciate the dramatic change in conformation (phase transition) driven by the localised artificial recolouring.
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Figure S12. The survival probability of the MMS. (left) Plot of the signed epigenetic magnetisation for the 30 simulations
performed. One can notice that a fraction of them (50%) are still in the MMS state at the end of our simulation. (right) The survival
probability can then be estimated by plotting the fraction of replicas still in the MMS at time t. This probability is here shown to
exponentially decrease with a characteristic decay time of 1.3 106 τBr.
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Figure S13. Theta-point for a non-recolouring homopoly-
mer M = 2000 beads long. This figure shows the behaviour
of the (squared) radius of gyration for a non-recolouring ho-
mopolymer starting from a self-avoiding swollen configuration.
The curves are averaged over 10 independent simulations of the
system. Temperatures above TL ' 1.85ε/kB do not appear to
drive the collapse of the polymer and we therefore interpret this
as an approximate estimate of the theta temperature of the sys-
tem (at M = 2000).

THE EPIGENETIC CORRELATION LENGTH

In analogy to the Ising 1D magnetic correlation length, the
“epigenetic correlation length”, can be measured by imag-
ining that each bead has a epigenetic state q that can take
any of the possible states: red, blue or grey. The epigenetic
correlation function can therefore be expressed in terms of
these variables as

g1D(m) ≡ 〈δq(0),q(m)〉 =

〈
1

M −m
∑
ij

δqiqjδ(|i− j| −m)

〉
,

(26)

and where the average is performed over independent sys-
tem configurations and over different (uncorrelated) times.
Since it is analogous to the 1D Ising (or Potts) magnetisation
correlation function, g1D(m) takes the functional form

g1D(m) ∼ e−m/ξ(TRec) (27)

where the correlation length ξ(TRec) diverges with M as the
system breaks the symmetry between red/blue epigenetic
states. When the system displays different coexisting epige-
netic states (multi-state regime), either in the glassy phase of
the simplest “two-state” model or in the stable “block-like”
organised regime of the model with broken detailed balance,
ξ(TRec) is finite.

This length-scale is clearly dependent on TRec: even if
the polymer were an immobile straight line, the correlation
length would increase with decreasing TRec and ultimately
diverge as TRec → 0 (as there is no transition in 1D Ising-
like models with short-range interactions). Furthermore, in
our model the dynamics of the polymer is coupled to the
epigenetic organisation, and therefore ξ(TRec) is expected to
depend more subtly on TRec (as well as TL).

OTHER REGIMES OF THE “TWO-STATE” MODEL
WITH BROKEN DETAILED BALANCE

In this Section we report other regimes that we observe in
the “two-state” model with broken detailed balance. In par-
ticular, we fix TRec = 0.1ε/kB and change the value of TL in
the range TL ∈ [1.5, 6]ε/kB . We observe that TL ≤ 1.75ε/kB
leads to a collapse of the coil into a single-state dominated
globule, similar to that observed in the standard “two-state”
model, but with a higher critical temperature (recall this is
1.11ε/kB for the case with TL = TRec). For the tempera-
ture range we considered, we found a transient, long-lived
regime, where the averaged contact map a characteristic
“block-like”. Here, higher temperatures TL lead to a smaller
size of the domains for fixed and small TRec (the domains
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Figure S14. Snapshots of the contact maps for the “two-state model” with broken detailed balance model. This figure
shows the instantaneous contact maps at different timesteps within the last 200 recolouring steps. The colour code for the maps is
based on the colours of the beads forming the contact: red, blue or black for red-red, blue-blue or mixed contacts, respectively (see
colour bar). From this figure one can appreciate the temporary aggregation of globules, whose underlying 1D epigenetic segment is
forming long-lived domains during the simulation. Temperatures were: TL = 1.75ε/kB , TRec = 0.1ε/kB .

are barely visible for TL = 6 ε/kB). The contact maps re-
ported in Fig. S15 show the average frequency of contacts
(upper triangle), and a weighted contact map (lower trian-
gle), where each entry is coloured based on the frequency of

contacts through the following method

Cij =

∑T
t=0 Θ(−rij(t) +Ri)F (qi, qj)∑T

t=0 Θ(−rij(t) +Ri)
.

In this equation, F (qi, qj) = 1 if qi = qj = 1 (blue),
F (qi, qj) = −1 if qi = qj = 2 (red) and F (qi, qj) = 0 if
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qi 6= qj ; while Θ(x) = 1 if x > 0 and 0 otherwise and
Ri = 1.8σ (see main text). By weighting the contacts in
this way, one can classify the entries of the contact matrix
based on the frequency of the interactions between same-
coloured beads; this helps distinguish the different epige-
netic domains along the polymer. In other words, entries
Cij in the contact map that are fully red (blue) indicate
that all observed contacts between i and j were between
red (blue) beads. The observed pattern is not trivial since
the underlying epigenetic landscape is dynamic, therefore in
principle a bead can become blue even though belonging to
a red domain. Note that by using the same normalisation as
for a standard contact map (maximum number of observed
contacts) would lead to less well defined (whiter) domains.
Thus, in Fig. S15 one can readily appreciate the existence of
epigenetically stable domains that show enhanced contacts
within themselves and little mixed interactions with nearest
neighbouring ones.

STABILITY OF THE EPIGENETIC DOMAINS IN
THE OUT-OF-EQUILIBRIUM LIMIT OF THE

MODEL

Here we comment on the stability of the epigenetic do-
mains that can be seen emerging in the out-of-equilibrium
limit of the “two-state” model when the (Langevin) tem-
perature is larger than the theta temperature at which the
polymer collapses when TP = 0.1ε/kB (about 1.75ε/kB).
Here we address the question of what happens when the ini-
tial configuration with different initial conditions, either col-
lapsed disordered (left in Fig. S16) or swollen ordered (right
in Fig. S16). For the first case, as in the main manuscript,
TAD-like long-lived domains form, and tend to coalesce on
a very long time-scale (corresponding to hours of physical
time). Starting from the swollen ordered phase, the sin-
gle epigenetic domain is stable and no other ones form over
the course of the simulations. As for the case of the ho-
mopolymer, the chain remains swollen for TL = 2ε/kB , and
eventually collapses for TL = 1.75ε/kB .
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Figure S15. Classification of the regimes in the “two-state” model with broken detailed balance. This figure shows
the observed regimes for the two-state model with broken detailed balance. Simulations are initialised with the system in the
swollen disordered phase. Here, we fix TRec = 0.1ε/kB and vary (from bottom to top) TL ∈ {1.5, 1.75, 2, 6}ε/kB . We observe that
TL ≤ 1.75ε/kB leads to a collapse of the coil into a single-state dominated globule, similar to that observed in the standard “two-state”
model, but with a higher critical temperature. On the other hand, setting TL > 1.75ε/kB eventually leads to a swollen ordered regime
in steady state (see Fig. S16). All simulations show an interesting long-lived transient regime, where local domains coexist along the
chain giving a characteristic “block-like” pattern to the averaged contact map.
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Figure S16. Stability of the epigenetic domains “two-state” model with broken detailed balance: effect of initial
conditions. (Left) Collapsed disordered initial condition. Here epigenetic domains form and coalesce slowly over time. The contact
maps show that the chain opens up significantly for the higher temperatures. (Right) Swollen ordered initial conditions. Here the
single domain is stable, and the polymer undergoes a standard homopolymer collapse transition.
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