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Abstract

If improvements are to be made in tuberculosis (TB) treatment, an increased understanding of disease in the lung is needed.
Studies have shown that bacteria in a less metabolically active state, associated with the presence of lipid bodies, are less susceptible
to antibiotics, and recent results have highlighted the disparity in concentration of different compounds into lesions. Treatment
success therefore depends critically on the responses of the individual bacteria that constitute the infection.

We propose a hybrid, individual-based approach that analyses spatio-temporal dynamics at the cellular level, linking the be-
haviour of individual bacteria and host cells with the macroscopic behaviour of the microenvironment. The individual elements
(bacteria, macrophages and T cells) are modelled using cellular automaton (CA) rules, and the evolution of oxygen, drugs and
chemokine dynamics are incorporated in order to study the effects of the microenvironment in the pathological lesion. We allow
bacteria to switch states depending on oxygen concentration, which affects how they respond to treatment. Using this multiscale
model, we investigate the role of bacterial cell state and of initial bacterial location on treatment outcome. We demonstrate that
when bacteria are located further away from blood vessels, a less favourable outcome is likely. We also show that in cases were bac-
teria remain at the end of simulations, the organisms tend to be slower-growing and are often located within granulomas, surrounded
by caseous material.
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1. Introduction

Although tuberculosis (TB) has long been both preventable
and curable, a person dies from tuberculosis approximately ev-
ery eighteen seconds (WHO Global Health Report 2011). Cur-
rent treatment requires at least six months of multiple antibi-
otics to ensure complete cure and more effective drugs are ur-
gently needed to shorten treatment. Recent clinical trials have
not resulted in a shortening of therapy and there is a need to
understand why these trials were unsuccessful and which new
regimen should be chosen for testing in the costly long-term
pivotal trial stage (Gillespie et al., 2014).

The current drug development pathway in tuberculosis is im-
perfect as standard preclinical methods may not capture the cor-
rect pharmacodynamics of the antibiotics. Using in vitro meth-
ods, it is difficult to accurately reproduce the natural physiolog-
ical environment of Mycobacterium tuberculosis (M. tuberculo-
sis) and the reliability of in vivo models may be limited in their
ability to mimic human pathophysiology.

When M. tuberculosis bacteria enter the lungs, a complex
immune response ensues. The outcome of infection is depen-
dent on how effective the host’s immune system is and on the

pathogenicity of the bacteria. The majority of patients will
be able to control infection and contain it within a granuloma,
which is a combination of immune cells that surrounds the bac-
teria. The centre of the granuloma may exhibit caseous necrosis
and have a cheese-like appearance (Canetti et al., 1955). Most
commonly, granulomas will undergo fibrosis or calcification
and the infection is contained and becomes latent (Canetti et al.,
1955; Grosset, 1980). In these cases, however, the individuals
are still at risk of future relapse. If the granulomas do not con-
tain the disease and infection continues, the bacteria can grow
extracellularly.

Although a minimum of six months of therapy is recom-
mended, it has long been recognised that the many patients re-
quire less and are culture negative in two months or less (Fox,
1981). Shortening treatment to four months or less results in un-
acceptably high relapse rates (Gillespie et al., 2014) and studies
12, 13 and 18 described in (Fox et al., 1999). It has recently
been shown that, for some patients who become culture neg-
ative in only a week, there is still a non-zero risk of relapse
(Phillips et al., 2016).

Figure 1 describes the estimates of tuberculosis containment
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versus progression to active disease in the general population.
In patients with established disease, the outcome is perhaps de-
termined by the ability of antibiotics to penetrate to the granu-
loma (Prideaux et al., 2015). In order to improve tuberculosis
treatment, it is therefore vital to ensure sufficient concentrations
of antibiotic reach the sites of infection (Via et al., 2015).

It is increasingly recognised that M. tuberculosis is able
to enter into a state in which it is metabolically less active.
Dormant bacteria have reduced susceptibility to antibiotics of
which cell wall inhibitors are most affected but the action of the
RNA polymerase inhibitor rifampicin and fluroquinolones act-
ing on DNA gyrase is also reduced (Wayne and Hayes, 1996).
A significant number of metabolic systems are down regulated
in response to dormancy inducing stresses (Keren et al., 2004,
2011). This slower-growing state, associated with the presence
of lipid bodies in the mycobacteria can increase resistance by 15
fold (Hammond et al., 2015). It has also recently been shown
that around 60% of bacteria in the lung are lipid rich (Baron
et al., 2017). Hence, it is very important to study and analyse
the heterogeneity of the bacteria and their spatial location so
more effective treatment protocols can be developed.

Multiple routes to dormancy have been reported and re-
viewed in detail (Lipworth et al., 2016). Oxygen concentra-
tion was one of the first mechanisms whereby dormancy could
be achieved and in vitro models have been developed to ex-
plore the antibiotic susceptibility and metabolism of organisms
in this slower-growing state (Wayne and Sramek, 1994). It has
been hypothesised by multiple authors that such lesions in tu-
berculosis are responsible for relapse (Grosset, 1980; Prideaux
et al., 2015).

Cellular automaton modelling (and individual-based mod-
elling in general) has been used to model other diseases,
most notably tumour development and progression in can-
cer (Alarcón et al., 2003; Gerlee and Anderson, 2007; Zhang
et al., 2009; Dormann and Deutsch, 2002; Swat et al., 2012;
Powathil et al., 2012). The granuloma has been simulated
previously through an agent-based model called ‘GranSim’
(Segovia-Juarez et al., 2004; Marino et al., 2011; Cilfone et al.,
2013; Pienaar et al., 2015), which aims to reconstruct the im-
munological processes involved in the development of a granu-
loma. (Pienaar et al., 2016) also map metabolite and gene-scale
perturbations. They find that slowly replicating phenotypes of
M. tuberculosis preserve the bacterial population in vivo by con-
tinuously adapting to dynamic granuloma microenvironments,
highlighting the importance for further study in this area. (Ser-
shen et al., 2016) also combines a physiological model of oxy-
gen dynamics with an agent-based model of cellular immune
response, where their study suggests that the dynamics of gran-
uloma organisation mediates oxygen availability and illustrates
the immunological contribution of this structural host response
to infection outcome.

In this paper, we build on previous models such as (Segovia-
Juarez et al., 2004), and report the development of a hybrid-
cellular automaton model. Our model combines oxygen dy-
namics and antibiotic treatment effects within a tuberculosis le-
sion, in order to investigate the role of bacterial cell state het-
erogeneity and bacterial position within the tuberculosis lesion

on the outcome of disease. This is a unique focus for this type
of model.

2. The hybrid multiscale mathematical model

The model simulates the interaction between TB bacteria, T
cells and macrophages. Immune responses to the bacterial in-
fection can lead to an accumulation of dead cells, creating ca-
seum. Oxygen diffuses into the system, which allows the bacte-
ria to switch between fast- and slow-growing phenotypes, and
chemokine molecules are secreted by the macrophages, which
direct the movement of the immune cells. We then investigate
the effect that antibiotics have on the infection.

Our spatial domain is a two dimensional computational grid,
where each grid point represents either a TB bacterium, a
macrophage, a T cell, caseum, the cross-section of a blood ves-
sel or the extracellular matrix which goes to make up the lo-
cal microenvironment. The spatial size of this computational
grid has been chosen so that each automaton element is ap-
proximately the same size as the largest element in the sys-
tem: the macrophage. This means that the model is biologi-
cally/physically realistic in terms of cell speed. At present we
allow each grid cell to be occupied by a maximum of one ele-
ment.

Our model is made up of five main components: (1) discrete
elements - the grid cell is occupied either by a TB bacterium,
a macrophage, a T cell, caseum or is empty. If the grid cell
is occupied, automaton rules control the outcome; (2) the local
oxygen concentration, whose evolution is modelled by a partial
differential equation; (3) chemokine concentrations, modelled
by a partial differential equation; (4) antibiotic concentrations,
modelled by a partial differential equation and (5) blood vessels
from where the oxygen and antibiotics are supplied within the
domain. A schematic overview of the model is given in Figure
2.

2.1. The blood vessel network

At the tissue scale, we consider oxygen and drug dynamics.
We introduce a network of blood vessels in the model, which
is then used as a source of oxygen and antibiotic within the
model. Following (Powathil et al., 2012), we assume blood
vessel cross sections are distributed throughout the two dimen-
sional domain, with density φd = Nv/N2, where Nv is the num-
ber of vessel cross sections (Figure 3). See Table 2 for values of
N and Nv. This is reasonable if we assume that the blood vessels
are perpendicular to the cross section of interest and there are
no branching points through the plane of interest (Patel et al.,
2001; Daşu et al., 2003). We ignore any temporal dynamics or
spatial changes of these vessels.

2.2. Oxygen dynamics

The oxygen dynamics are modelled using a partial differen-
tial equation with the blood vessels as sources, forming a con-
tinuous distribution within the simulation domain. If O(x, t)
denotes the oxygen concentration at position x at time t, then
its rate of change can be expressed as
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Figure 1: Schematic of population percentages of outcomes of TB disease. Data taken from (Ahmad, 2010) and references therein.
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Figure 2: Schematic describing the basic processes in the model
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(a) (b)

Figure 3: Plot illustrating (a) a fixed, uniform distribution of blood vessel cross
sections throughout the spatial domain used in the cellular automaton simula-
tions and (b) one outcome of a random distribution of the blood vessels.

∂O(x, t)
∂t

= ∇.(DO(x)∇O(x, t)) + rOm(x) − φOO(x, t)cell(x, t),

(1)

where DO(x) is the diffusion coefficient and φO is the rate of
oxygen consumption by a bacterium or immune cell at position
x at time t, with cell(x, t) = 1 if position x is occupied by a TB
bacterium or immune cell at time t and zero otherwise. Oxygen
consumption rates are different for each cell: φOb for the con-
sumption by bacteria, φOmr for resting macrophages, φOma for
active macrophages, φOmi for infected macrophages, φOmci for
chronically infected macrophages and φOt for T cells (see Ta-
ble 2 for these values). m(x) denotes the vessel cross section at
position x, with m(x) = 1 for the presence of blood vessel at
position x, and zero otherwise; the term rOm(x) therefore de-
scribes the production of oxygen at rate rO. We assume that the
oxygen is supplied through the blood vessel network, and then
diffuses throughout the tissue within its diffusion limit. At this
time, we assume a constant background oxygen level arising
from airways and focus on oxygen diffusion from the vascu-
lar system. Since it has been observed that when a vessel is
surrounded by caseous material, its perfusion and diffusion ca-
pabilities are impaired (Datta et al., 2015; Pienaar et al., 2016),
we have incorporated this by considering a lower diffusion and
supply rate in the granuloma structure as compared to the nor-
mal vessels, i.e.

DO =


DO

2.7
, inside a granuloma,

DO, elsewhere in the domain,

(2)

and

rO =


rO

4
, inside a granuloma,

rO, elsewhere in the domain.
(3)

The formulation of the model is then completed by prescribing
no-flux boundary conditions and an initial condition (Powathil
et al., 2012). Figure 4 shows a representative profile of the spa-
tial distribution of oxygen concentration after solving the Equa-
tion 1 with relevant parameters as discussed in Section 2.5.

(a) (b)

Figure 4: Plot showing the concentration profile of oxygen supplied from the
blood vessel network for the (a) the fixed, uniform distribution of blood vessels
shown in Figure 3 (a), and (b) the random distribution of blood vessels shown in
Figure 3 (b). The red coloured spheres represent the blood vessel cross sections
as shown in Figure 3 and the colour map shows the percentages of oxygen
concentration.

2.3. Antibiotic treatments

In the present model we assume a maximum drug effect, al-
lowing us to concentrate on the focus of this paper: the compar-
ison of bacterial cell state and bacterial spatial location on treat-
ment outcome. In future papers, the administration of drugs
will more closely model the current treatment protocols. In this
first iteration of the model, the distribution of antibiotic drug
type i, Drugi(x, t) is governed by a similar equation to that of
the oxygen distribution (1), given by

∂Drugi(x, t)
∂t

=∇.(DDrugi(x)∇Drugi(x, t)) + rDrugim(x)

− φDrugiDrugi(x, t)cell(x, t) − ηDrugiDrugi(x, t),
(4)

where DDrugi(x) is the diffusion coefficient of the drug, φDrugi

is the uptake rate of the drug, with φDrugib denoting the uptake
rate by the bacteria and φDrugim denoting the uptake rate by the
infected/chronically infected macrophages. rDrugi is the drug
supply rate by the vascular network and ηDrugi is the drug de-
cay rate. Inside a granuloma structure, the diffusion and supply
rate are lower to account for caseum impairing blood vessels
and the fact that we know that antibiotic diffusion into granulo-
mata is lower than in normal lung tissue (Kjellsson et al., 2012).
Hence the transport properties and delivery rate of the drug are
as follows:

DDrugi =


DDrugi

7.28
, inside a granuloma,

DDrugi, elsewhere in the domain,

(5)

and

rDrugi =


rDrugi

4
, inside a granuloma,

rDrugi, elsewhere in the domain.

(6)
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The diffusion rate above is currently based on rifampicin.
To study the efficacy of the drug, we have assumed a thresh-

old drug concentration value, below which the drug has no ef-
fect on the bacteria. If the drug reaches a bacterium or infected
macrophage when it’s concentration is above this level (which
is different for fast- and slow-growing extracellular bacteria and
for intracellular bacteria), then the bacterium will be killed and
an empty space will be created (this will be described further in
section 3.1).

2.4. Chemokines
Various molecules are released by macrophages and other

immune cells, these molecules act as chemoattractants, attract-
ing other host cells to the site of infection. Although different
chemokines perform different roles at various times, for this
model, we have chosen to represent the multiple chemokines
involved in the immune response as an aggregate chemokine
value. Sources of chemokine are derived from infected, chroni-
cally infected and activated macrophages (Algood et al., 2003).
The distribution of the chemokine molecules, Ch(x, t) is also
governed in a similar way to the oxygen and antibiotic:

∂Ch(x, t)
∂t

= ∇.(DCh(x)∇Ch(x, t)) + rChcell(x, t) − ηChCh(x, t),

(7)

where DCh(x) is the diffusion coefficient of the chemokines, rCh

is the chemokine supply rate by the macrophages at position
x at time t, with cell(x, t) = 1 if position x is occupied by an
infected, chronically infected or activated macrophage at time t
and zero otherwise. ηCh is the chemokine decay rate.

2.5. Parameter estimation
In order to simulate the model with biologically relevant out-

comes, it is important to use accurate parameters values. Most
of the parameters are chosen from previous mathematical and
experimental papers (see Table 1 and Table 2 for a summary of
the parameter values).

The time step was calculated by considering the fastest pro-
cess in our system, the oxygen diffusion. The oxygen dynamics
are governed by a reaction diffusion equation, where the pa-
rameters are chosen from previously published work (Macklin
et al., 2012). We assume a oxygen diffusion length scale of
L=100 µm and a diffusion constant of 2 × 10−5 cm2/s (Owen
et al., 2004). Using these along with the relation L =

√
D/φ,

the mean oxygen uptake can be approximately estimated as 0.2
s−1. The oxygen supply through the blood vessel is approxi-
mately 8.2 × 10−3 mols s−1 (Matzavinos et al., 2009). Nondi-
mensionalisation gives T=0.001 hours and hence each time step
is set to ∆t = 0.001 hours, with one time step corresponding to
3.6 s. The simulations are carried out within a two dimensional
domain with a grid size N = 100, which simulates an area of
lung tissue approximately 2 mm × 2 mm. The length scale of
100 µm will give a square grid of length ∆x × L=20 µm, which
is the approximate diameter of the biggest discrete element in
our system, the macrophage (Krombach et al., 1997). The space
step size is therefore ∆x = ∆y = 0.2 cm.

The parameters that are used in the equations governing the
dynamics of antibiotics and chemokine molecules are chosen in
a similar way.

Oxygen is lighter in comparison to the drugs, with a molec-
ular weight of 32 amu (Hlatky and Alpen, 1985), and hence
it diffuses faster than most of the drugs and the chemokine
molecules. The chemokine molecules diffuse slower than the
antibiotics, being heavier than most drugs. One of the drugs
under the current study, rifampicin has a molecular weight of
822.9 amu (PubChem Compound Database). To obtain or ap-
proximate its diffusion coefficient, its molecular mass was com-
pared against the molecular masses of known compounds, as in
(Powathil et al., 2012), and consequently taken to be 1.7×10−6

cm2s−1. Similar analyses are done with isoniazid, pyrazinamide
and ethambutol, with parameter values given in Table 1. The
decay rate of these drugs are calculated using the half life val-
ues of the drugs obtained from the literature and are also out-
lined in Table 1. The threshold drug concentrations, DrugKill f ,
DrugKills and DrugKillMi, below which the drug has no effect
on the TB bacteria have been chosen to be the average density
of total drugs delivered through the vessels (total drug deliv-
ered/total number of grid points) and the total drug given is kept
the same for all drugs types. Values for DrugKill f , DrugKills

and DrugKillMi are based on data arising from in vitro experi-
ments and are reported in (Hammond et al., 2015; Aljayyoussi
et al., 2017). They are given in Table 2. A relative threshold
is chosen here in order to compare the effects of bacterial cell
state and location of bacteria, rather than studying any optimi-
sation protocols for drug dosage. Values of 10−6 cm2s−1 to 10−7

cm2s−1 have been reported as diffusion constants for chemokine
molecules (Francis and Palsson, 1997). The half-life for IL-8,
an important chemokine involved in the immune response of
M. tuberculoisis, has been shown to be 2-4 hours (Walz et al.,
1996). We use a diffusion rate of 10−6 cm2s−1 and a half-life of
2 hours in our simulations.

Table 1: Diffusion and decay parameters
Drug/Chemokine Diffusion rate (cm2s−1) Decay rate (hr−1)

Rifampicin 1.7×10−6 0.17
Isoniazid 1.5×10−5 0.35

Pyrazinamide 1.6×10−5 0.12
Ethambutol 1.3×10−5 0.2
Chemokine 10−6 0.347

Other model parameters will be discussed in the next section
and are summarised in Table 2.

3. Cellular automaton rules

The entire multiscale model is simulated over a prescribed
time duration, currently set to 12000 hours (500 days), and a
vector containing all grid cell positions is updated at every time
step. The oxygen dynamics, chemokine dynamics and drug dy-
namics are simulated using finite difference schemes.

3.1. Rules for the extracellular bacteria
A minimal infectious dose of M. tuberculosis has been shown

to be of the order of 10 (Capuano et al., 2003). For this reason,
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Table 2: Parameters. When there is a range for a value, it is set randomly by the model.
Parameter Description Value Source

N Size of grid (N × N) 100 (Segovia-Juarez et al., 2004)
Nv Number of blood vessels 49 (Cilfone et al., 2013)

φOb (Micromoles/cell/hr) Oxygen consumption rate of bacteria 20.8 × 10−6 (Sershen et al., 2016)
φOmr (Micromoles/cell/hr) Oxygen consumption rate of Mr 1.15 × 10−7 (Sershen et al., 2016)
φOma (Micromoles/cell/hr) Oxygen consumption rate of Ma 2.3 × 10−7 (Sershen et al., 2016)
φOmi (Micromoles/cell/hr) Oxygen consumption rate of Mi 3.45 × 10−7 (Sershen et al., 2016)
φOmci (Micromoles/cell/hr) Oxygen consumption rate of Mci 4.6 × 10−7 (Sershen et al., 2016)
φOt (Micromoles/cell/hr) Oxygen consumption rate of T cells 0.14375 × 10−7 (Sershen et al., 2016)
φDrugb (Micromoles/cell/hr) Antibiotic consumption rate of bacteria 5.5 × 10−9 (Pienaar et al., 2015)

Rep f (hours) Replication rate of fast-growing bacteria 15-32 (Shorten et al., 2013)
Reps (hours) Replication rate of slow-growing bacteria 48-96 (Hendon-Dunn et al., 2016)

Olow (%) O2 threshold for fast→slow-growing bacteria 6 Estimated - see Section 4.1
Ohigh (%) O2 threshold for slow→fast-growing bacteria 65 Estimated - see Section 4.1

Mrinit Initial number of Mr in the domain 105 (Cilfone et al., 2013)
MrMa Probability of Mr→Ma (multiplied by no. of T cells in neighbourhood) 9 (Cilfone et al., 2013)

Nici Number of bacteria needed for Mi→Mci 10 (Cilfone et al., 2013)
Ncib Number of bacteria needed for Mci to burst 20 (Cilfone et al., 2013)

Mli f e (days) Lifespan of Mr, Mi and Mci 0-100 (Van Furth et al., 1973)
Mali f e (days) Lifespan of Ma 10 (Segovia-Juarez et al., 2004)
tmoveMr (mins) Time interval for Mr movement 20 (Segovia-Juarez et al., 2004)
tmoveMa (hours) Time interval for Ma movement 7.8 (Segovia-Juarez et al., 2004)
tmoveMi (hours) Time interval for Mi/Mci movement 24 (Segovia-Juarez et al., 2004)

Mrrecr Probability of Mr recruitment 0.07 (Cilfone et al., 2013)
Tenter Bacteria needed for T cells to enter the system 50 (Cilfone et al., 2013)
Trecr Probability of T cell recruitment 0.02 (Cilfone et al., 2013)

Tli f e (days) Lifespan of T cells 0-3 (Sprent, 1993)
Tkill Probability of T cell killing Mi/Mci 0.75 (Cilfone et al., 2013)

tmoveT (mins) Time interval for T cell movement 10 (Segovia-Juarez et al., 2004)
tdrug (hours) Time at which drug is administered 168-2160 (Asefa and Teshome, 2014; Osei et al., 2015)

DrugKill f (%) Drug needed to kill fast-growing bacteria 2 (Hammond et al., 2015)
DrugKills (%) Drug needed to kill slow-growing bacteria 10 (Hammond et al., 2015)

DrugKillMi (%) Drug needed to kill intracellular bacteria 20 (Aljayyoussi et al., 2017)

we begin our CA simulations with one cluster of 12 bacteria on
the grid; 6 fast-growing bacteria and 6 slow-growing bacteria.
These initial bacteria replicate following a set of rules and pro-
duce a cluster of bacteria on a regular square lattice with no-flux
boundary conditions. The fast- and slow-growing bacteria are
assigned a replication rate; Rep f for the fast-growing and Reps

for the slow-growing. When a bacterium is marked for repli-
cation, its neighbourhood of order 3 is checked for an empty
space. The neighbourhood type alternates between a Moore
neighbourhood and a Von Neumann neighbourhood to avoid
square/diamond shaped clusters, respectively. If a space in the
neighbourhood exists, a new bacterium is placed randomly in
one of the available grid cells. If there are no spaces in the
neighbourhood of order 3, the bacterium is marked as ‘resting’.
At each time step, the neighbourhood of these ‘resting’ bacteria
are re-checked so that they can start to replicate again as soon
as space becomes available.

As this multiscale model evolves over time, the elements
move and interact with each other according to the CA model.
The bacteria and host cells also influence the spatial distri-
bution of oxygen since they consume oxygen for their essen-
tial metabolic activities. As the bacteria proliferate, the oxy-
gen demand increases creating an imbalance between the sup-
ply and demand which will eventually create a state where
the bacteria are deprived of oxygen. Bacteria can change be-
tween fast-growing and slow-growing states, depending on the
oxygen concentration, scaled from 0 to 100, at their location.

Fast-growing bacteria where the oxygen concentration is below
Olow will become slow-growing, and slow-growing bacteria can
turn to fast-growing in areas where the oxygen concentration is
above Ohigh (see Table 2 for these values and section 3.5 for
more details).

3.2. Rules for the macrophages
There are 4 types of macrophage in our system: resting

(Mr), active (Ma), infected (Mi) and chronically infected (Mci).
There are Mrinit resting macrophages randomly placed on the
grid at the start of the simulation. These resting macrophages
can become active when T cells are in their Moore neigh-
bourhood, with probability MrMa multiplied by the number
of T cells in the neighbourhood. When active Macrophages
encounter extracellular bacteria, they kill the bacteria. If the
resting macrophages encounter bacteria, they become infected
and can become chronically infected when they phagocytose
more than Nici bacteria. Chronically infected macrophages can
only contain Ncib intracellular bacteria, after which they burst.
Bursting macrophages distribute bacteria randomly into their
Moore neighbourhood of order 3 and the grid cell where the
macrophage was located becomes caseum.

While the oxygen and antibiotics enter the system via
the blood vessel network, the chemokines are secreted by
the infected, chronically infected and activated macrophages.
Macrophages move in biased random walks, with probabilities
calculated as a function of the chemokine concentration of its
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Moore neighbourhood. Resting, infected and chronically in-
fected macrophages are randomly assigned a lifespan, Mli f e

days, and active macrophages live for Mali f e days. Resting
macrophages move every tmoveMr minutes, active macrophages
move every tmoveMa hours and infected/chronically infected
macrophages move every tmoveMi hours. Resting macrophages
are recruited from the blood vessels with a probability of Mrrecr.

3.3. Rules for the T cells

The T cells enter the system once the extracellular bacterial
load reaches Tenter and move in a biased random walk, similar
to the macrophages. T cells are recruited from the blood ves-
sels with a probability Trecr. They live for Tli f e, and move every
tmoveT minutes. Activated T cells are immune effector cells that
can kill chronically infected macrophages. If a T cell encoun-
ters an infected or chronically infected macrophage, it kills the
macrophage (and all intracellular bacteria) with probability Tkill

and that grid cell becomes caseum. T cells also activate rest-
ing macrophages when they are in their Moore neighbourhood,
with probability MrMa multiplied by the number of T cells in
the neighbourhood.

3.4. Rules for the Antibiotics

If the immune process does not clear the infection, drugs
are administered at tdrug hours, a randomly chosen time be-
tween two values (see Table 2). This mimics the variability
in time that patients seek medical attention for their disease
(Asefa and Teshome, 2014; Osei et al., 2015). The antibiotic
kills the bacteria when the concentration is over DrugKill f or
DrugKills, for the fast- and slow-growing bacteria respectively.
The antibiotics can also kill intracellular bacteria, by killing in-
fected/chronically infected macrophages if the concentration is
over DrugKillMi.

3.5. Oxygen thresholds for bacterial cell states

In order to choose values for Olow and Ohigh, we conducted
some test simulations for 120 hours, where no macrophages
were present. This allowed us to alter both the oxygen switch-
ing thresholds and see the effect it had on the bacteria. 90 simu-
lations were run in total, with a range of both parameters being
tested. Table 3 describes the outcome of these simulations:

Figure 5 shows representative examples of these test simu-
lations, where fast- and slow-growing bacteria are shown (by
the blue/cyan lines, respectively), with Ohigh fixed at 65 and
Olow = 3, 6, 9. In (a) we see the effect of having a lower
threshold for fast-growing bacteria to become slow-growing,
with Olow = 3, in (b) Olow = 6 and in (c), Olow has a higher
threshold of 9. In simulation (a), the bacteria do not change
state during the entire simulation, Figure 5 (a) supports this as
we do not see an increase in the cyan line that corresponds with
a drop in the blue. Simulation (b) has Olow = 6 and here we see
some transfer from fast- to slow-growing during the 120 hours.
For simulation (c), however, the fast-growing bacteria transfer
to slow-growing almost immediately.

Similarly, Figure 6 shows representative examples from vary-
ing Ohigh, where Olow is held at 6 and Ohigh = 55, 65, 75. In

Table 3: Oxygen switch
Olow = 3 Olow = 6 Olow = 9

Ohigh = 55 All slow-growing
bacteria switched
to fast-growing in
all 10 simulations
by t = 10 hours

In 9 of the 10
simulations, all
slow-growing
bacteria changed
to fast-growing
by t = 10 hours

In all 10 simu-
lations, bacteria
was all the same
cell state by
t = 10 hours:
in 4 simula-
tions all were
slow-growing,
in 6 simula-
tions all were
fast-growing

Ohigh = 65 No bacteria
change state in
any of the 10
simulations

In 7 of the sim-
ulations, some
bacteria changed
state: 4 from
fast-growing to
slow-growing
and 3 from
slow-growing
to fast-growing
(mean time for
first switch was
t=21 hours). In
3 of the simula-
tions, no bacteria
changed state.

All fast-growing
bacteria become
slow-growing by
t = 10 hours in all
10 simulations

Ohigh = 75 No bacteria
change state in
any of the 10
simulations

No bacteria
changed state
in any of the 10
simulations

All fast-growing
bacteria become
slow-growing by
t = 10 hours in all
10 simulations

simulation (a), where Ohigh = 55, the slow-growing bacteria
all change to fast-growing very near to the beginning of the
simulation. Simulation (b) shows some slow-growing bacte-
ria becoming fast-growing around 15 hours when Ohigh = 65,
and simulation (c) shows no transfer from fast- to slow-growing
when Ohigh = 75.

These test simulations support us choosing Olow = 6 and
Ohigh = 65.

4. Simulation results

In order to study the relative importance of bacterial cell state
and initial spatial location of bacteria, we study two scenarios:
one with a fixed, uniform blood vessel distribution and initial
bacterial locations (see four examples in Figure 7 (a)) , and
another where the vessel distribution and the initial locations
of the extracellular bacteria are determined randomly for each
simulation (see examples in Figures 8-10 (a)). We run a total
of 120 simulations for 500 days: 20 simulations for the ‘fixed’
scenario and 100 simulations for the ‘random’ scenario. These
simulations were run on servers that have dual Intel Xeon E5-
2640 CPUs and 128GB RAM. Each simulation took approxi-
mately 8 hours to run.

4.1. Fixed blood vessels
20 simulations were run with the same initial distribution

of Nv blood vessels and with one bacterial cluster of 6 fast-
growing bacteria and 6 slow-growing bacteria, located in the
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Figure 5: Plots of the fast- (blue) and slow-growing (cyan) extracellular bacteria for the first 120 hours, with Ohigh fixed at 65 and (a) Olow = 3, (b) Olow = 6 and (c)
Olow = 9.
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Figure 6: Plots of the fast- (blue) and slow-growing (cyan) extracellular bacteria for the first 120 hours, with Olow fixed at 6 and (a) Ohigh = 55, (b) Ohigh = 65 and
(c) Ohigh = 75.

centre of the grid. Figure 7 shows this initial set up. In this
‘fixed’ spatial configuration, there was 1 blood vessel located
within a 0.1 mm radius of the bacterial cluster, situated 1 grid
cell away (0.02 mm). All 20 simulations resulted in contain-
ment of the disease, with the macrophages and T cells prevent-
ing disease progression and no bacteria remaining at the end of
any of the simulations. As a granuloma develops in the sim-
ulations, caseous cells are created at the centre. At 500 days,
the simulations had a range of 11-49 caseous grid cells with a
median value of 13.5. In only one simulation the total bacterial
load exceeded Tenter and therefore T cells only appeared in one
simulation. See Table 1 in supplementary material for summary
statistics for these 20 simulations.

As can be seen in Figure 7(i)(b), at the end of this fixed sim-
ulation, there are 10 caseous grid cells remaining, with all bac-
teria eradicated. In the line plot, Figure 7(i)(c), we see that
the macrophages effectively phagocytose the bacteria early on
in the simulation and the infected macrophages gradually die
out over 2500 hours (around 100 days). In the model, as a
macrophage reaches the end of its lifespan, the grid cell be-
comes caseum and the intracellular bacteria contained within is
able to burst out and grow extracellularly. This can only hap-
pen, however, if there is space for the bacterium to move to.
If instead, as in this case, the immune response is effective in
controlling the disease with resting macrophages surrounding
the infection, there is no space for these intracellular bacteria to
re-emerge as extracellular bacteria, and the bacterium dies.

Figure 7(ii) depicts the outcome of another example simula-
tion with a starting ‘fixed’ distribution. Figure 7(ii)(b) shows
the end of this simulation with 49 caseous grid cells. If we look

at the line plot in Figure 7(ii)(c), we can see a more eventful
simulation. The bacteria start to grow at the beginning of the
simulation and we see a more gradual immune containment of
the infection. This is the one simulation where T cells entered
the system to assist in this containment. Because of this, the T
cells are also responsible for killing infected macrophages and
they also activate the macrophages, which also contribute to the
killing of the infected macrophages. In Figure 7(ii)(c) we also
see incidences of intracellular bacteria successfully moving out
of the macrophages as they die naturally. These can be seen as
small spikes in the slow-growing line. In many of these cases,
however, these newly escaped extracellular bacteria are quickly
phagocytosed again. Eventually, by around 3700 hours (around
150 days), this infection is completely eradicated.

4.2. Random blood vessels

100 simulations were run with a random distribution of blood
vessels and a random location for a bacterial cluster. The bac-
terial cluster consisted of 6 fast-growing bacteria and 6 slow-
growing bacteria, as in the fixed scenario. 90 simulations re-
sulted in containment of the disease. Here we define contain-
ment as fewer than 10 extracellular bacteria at the end of the
500 days. Ten simulations had a number of slow-growing bac-
teria remaining at 500 days, with a range 1-6. All of these re-
maining extracellular bacteria were surrounded by caseous grid
cells. The other 80 simulations had no extracellular bacteria
remaining. 29 out of the 90 simulations had intercellular bacte-
ria, with a range 1-41. Of these 90 ’contained’ simulations, 32
still had a small number of either extracellular or intracellular
bacteria remaining at the end of the simulation (but fewer than
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Figure 7: Plots showing the outcome of two representative simulations, (i)-(ii), with the fixed vessel distribution and initial bacterial location. (a) and (b) are plots of
the spatial distribution of all elements: at the start of the simulation (a) and at the end of the simulation (b). Red circles depict the blood vessels, black circles depict
the caseum, blue circles show the fast-growing extracellular bacteria, cyan circles show the slow-growing extracellular bacteria, green dots depict macrophages
(with darker green for the infected/chronically infected macrophages) and yellow dots depict the T cells. Plots of bacterial numbers are shown in (c), depicting
fast-growing extracellular bacteria (dark blue), slow-growing extracellular bacteria (cyan) and intracellular bacteria (green).
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ten extracellular bacteria) and hence these would be termed ‘la-
tently infected’, where the disease is capable of progressing at
a later stage. Figure 8 shows four representative examples of
these 90 simulations that were contained.

In Figure 8 (i)(b), we see an example of a simulation where
the infection has been contained, with no extracellular bacte-
ria and only 11 intracellular bacteria remaining. There is also
a granuloma visible at 500 days, containing 102 caseous grid
cells. The line plot shown in Figure 8 (i) (c) describes how the
immune system has contained this infection. In the 500 days
of the simulation, we see numerous spikes in the extracellu-
lar bacteria, as infected macrophages die and the intracellular
bacteria are released. In most circumstances, this re-emergent
infection is quickly controlled. At roughly 9000 hours, how-
ever, the slow-growing bacteria begin to grow again. It is at this
point in the simulation that T cells are recruited, which helps to
regain control of the infection.

Figure 8 (ii) shows another example of a contained infection,
where no treatment was needed. In this simulation, there are
6 extracellular bacteria remaining at the end of the 500 days.
However, as these are surrounded by caseous material within
the granuloma structure, the infection is controlled and the bac-
teria cannot grow.

In Figure 8 (iii), we see a similar picture to that of shown
in Figure 8 (i). The difference here is that there was no T cell
recruitment needed to control the infection. By the end of the
simulation, we see in Figure 8 (iii)(c) that there are 16 intracel-
lular bacteria remaining.

Figure 8 (iv) depicts a situation where the infection is con-
trolled efficiently by the host immunity. Figure 8 (iv)(b) shows
no bacteria remaining with only 12 caseous grid cells.

In 10 simulations, the immune response was not able to con-
tain the disease within the granuloma and active disease de-
veloped. Antibiotics were then administered at tdrug hours.
In seven of these simulations, the treatment was ‘successful’,
where we define success as fewer than ten extracellular bacte-
ria at the end of 500 days. Four of these simulations had be-
tween 1 and 8 slow-growing extracellular bacteria remaining at
500 days. These extracellular bacteria were all surrounded by
caseous grid cells. Although these four simulations are deemed
‘successful’, as there are a small number of bacteria remaining,
these cases are capable of relapsing. In the seven successful
simulations, the majority of the bacteria are killed by the an-
tibiotics (mean value of 75.1%). Four representative examples
of these ‘successfully treated cases’ are shown in Figure 9.

Figure 9 (i) shows an example of a successfully treated sim-
ulation. Both types of extracellular bacteria grow rapidly at the
start of the simulation, with the immune cells unable to control
the infection. As the bacteria grow, they start to consume more
and more oxygen, reducing the availability and causing the fast-
growing bacteria to switch state. We see the clear effects of the
antibiotics as they enter the system at 535 hours, with 85.8% of
the total bacteria in the system being killed by the antibiotics at
this time. No bacteria remain at the end of this simulation.

Figure 9 (ii) shows another example of a successfully treated
simulation. Again, we see the sharp reduction of bacterial load
as the antibiotics enter the system at 708 hours, with 80.6% of

the total bacteria in the system being killed by the antibiotics.
Shortly after this, the host immunity controls the remaining in-
fection. Only 1 slow-growing bacteria remains at the end of the
simulation, surrounded by casous grid cells.

In Figure 9 (iii), antibiotics were administered at 215 hours,
which we see in Figure 9 (iii)(d) controls the infection, killing
88.9% of the total bacteria.

Figure 9 (iv) shows an example where, although the antibi-
otics were used and were effective, the immune response was
actually responsible for the majority of the killing (63.5%).
This is in part due to that fact that antibiotics were given early, at
249 hours when the bacterial burden was not particularly high.

The remaining three simulations, were deemed ‘unsuccess-
ful’. In these simulations there were 16, 241 and 354 slow-
growing bacteria remaining at 500 days. The latter two simula-
tions are shown in Figure 10.

Figure 10 (i) shows a case where the infection was controlled
by the host immunity for almost the entire simulation. Near the
end of the 500 days, however, the intracellular bacteria escape
as the macrophages reach the end of their lives and these newly
extracellular bacteria grow. This is an example of a ‘latent’ case
of tuberculosis where the infection reactivates at a later date.

Finally, Figure 10 (ii) shows an example of a simulation
where treatment was received and was initially ‘successful’ but,
as is can be seen in Figure 10 (ii)(d), at around 8000 hours,
extracellular bacteria begin to grow as dying macrophages re-
lease their intracellular bacteria. The slow-growing bacteria
then continue to grow until the end of the simulation. This is an
example of a relapse.

Table 2 in supplementary material shows summary statistics
for these 120 ‘random’ simulations.

In the 90 ‘contained’ simulations, the median distance of ini-
tial bacterial cluster to nearest blood vessel source is 0.1 mm,
with a median value of 1 blood vessel source within a 0.1 mm
radius of the bacteria. In contrast, the other 10 simulations
which were not contained by host immunity, the median dis-
tance to the closest blood vessel source is 0.16 mm, with a me-
dian value of 0 blood vessel sources within a 0.1 mm radius of
the bacteria. This seems to suggest that, in general, if the initial
bacteria are located further away from the blood vessels, the
less likely it is that the host immune response will contain the
infection.

5. Discussion

Individual-based models have already been shown to be use-
ful in understanding tuberculosis disease progression (Segovia-
Juarez et al., 2004; Marino et al., 2011; Cilfone et al., 2013;
Pienaar et al., 2015, 2016; Sershen et al., 2016). Here we have
built a hybrid cellular automaton model that incorporates oxy-
gen dynamics, which allows bacteria to change state, and in-
cludes antibiotic treatments. In addition to focusing on bacte-
rial cell state, we also investigate changes in spatial location of
the bacteria and their influences on disease outcome.

We have shown that position of bacteria in relation to the
source of drugs alters the outcome of simulations. When
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Figure 8: Plots showing the outcome of four representative simulations, (i)-(iv), of contained simulations, with a randomly placed vessel distribution and initial
bacterial location. (a)-(b) are plots of the spatial distribution of all elements: at the start of the simulation (a) and at the end of the simulation (b). Red circles
depict the blood vessels, black circles depict the caseum, blue circles show the fast-growing extracellular bacteria, cyan circles show the slow-growing extracellular
bacteria, green dots depict macrophages (with darker green for the infected/chronically infected macrophages) and yellow dots depict the T cells. Plots of bacterial
numbers are shown in (d), depicting fast-growing extracellular bacteria (dark blue), slow-growing extracellular bacteria (cyan) and intracellular bacteria (green).
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Figure 9: Plots showing the outcome of four representative simulations, (i)-(iv), which were ‘successfully treated’, with a randomly placed vessel distribution and
initial bacterial location. (a)-(c) are plots of the spatial distribution of all elements: at the start of the simulation (a), just before the drug enters the system (b) and
at the end of the simulation (c). Red circles depict the blood vessels, black circles depict the caseum, blue circles show the fast-growing extracellular bacteria,
cyan circles show the slow-growing extracellular bacteria, green dots depict macrophages (with darker green for the infected/chronically infected macrophages) and
yellow dots depict the T cells. Plots of bacterial numbers are shown in (d), depicting fast-growing extracellular bacteria (dark blue), slow-growing extracellular
bacteria (cyan) and intracellular bacteria (green).

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/059113doi: bioRxiv preprint 

https://doi.org/10.1101/059113


i

ii

(a)             (b)                (c)    (d)

Time = 1.0 hrs Time = 395.0 hrs

Time = 12000.0 hrsTime = 1.0 hrs

Time = 12000.0 hrs

Time = 224.0 hrs

0 4000 8000 12000
Time (hrs)

0

50

100

150

200

250

300

N
u

m
b

e
r 

o
f 

b
a

c
te

ri
a

Fast-growing extracellular bacteria
Slow-growing extracellular bacteria
Intracellular bacteria

0 4000 8000 12000
Time (hrs)

0

50

150

250

350

N
u

m
b

e
r 

o
f 

b
a

c
te

ri
a

Fast-growing extracellular bacteria
Slow-growing extracellular bacteria
Intracellular bacteria

Figure 10: Plots showing the outcome of two representative simulations, (i)-(ii), which were ‘unsuccessfully treated’, with a randomly placed vessel distribution
and initial bacterial location. (a)-(c) are plots of the spatial distribution of all elements: at the start of the simulation (a), just before the drug enters the system (b)
and at the end of the simulation (c). Red circles depict the blood vessels, black circles depict the caseum, blue circles show the fast-growing extracellular bacteria,
cyan circles show the slow-growing extracellular bacteria, green dots depict macrophages (with darker green for the infected/chronically infected macrophages) and
yellow dots depict the T cells. Plots of bacterial numbers are shown in (d), depicting fast-growing extracellular bacteria (dark blue), slow-growing extracellular
bacteria (cyan) and intracellular bacteria (green).

analysing the 20 simulations with a fixed, uniform blood vessel
distribution, we see that there is very little difference between
the simulations, with the host immunity containing the infection
in all 20 cases. For the random distribution of blood vessels, the
location of the bacterial cluster was an important factor in deter-
mining disease outcome. In the simulations were treatment was
necessary, the initial bacteria were usually further away from
the blood vessel sources than those that were contained by the
immune response. The blood vessels act as sources for the im-
mune cells and so when the bacteria are located further away
from these sources, it can take a longer time for the immune
cells to respond to and attempt to control the infection. This
extra time can give the bacteria time to grow, making it harder
for the host immunity to contain the disease, thus in the ma-
jority of cases, antibiotics are required to reduce the bacterial
burden. We also note that in many of the simulations where the
initial bacterial cluster is located near the edge of the computa-
tional domain (examples shown in Figure 9), the host immune
response tends to find it harder to contain the infection. This is
because the host cells cannot surround the bacteria and there-
fore a complete granuloma cannot develop. Although this is a
flaw in the model design, it does illustrate the importance of ef-
fective granuloma formation. In future iterations of the model
we could consider a larger domain or look at alternative bound-
ary conditions to compare the effect.

In the 100 simulations that used a random distribution of
blood vessels and bacteria, we found that 90 (90%) of them

were contained by the host immunity but 32 of these (36%)
still had some bacteria remaining, and are therefore latently in-
fected, their disease capable of reactivating at a later date. 10
of the 100 simulations (10%) required treatment and 7 of these
(70%) had favourable outcomes, with fewer than ten extracel-
lular bacteria remaining at the end of 500 days. The remaining
three simulations had more than ten extracellular bacteria re-
maining at the end of the simulation. Two of these cases were
treated with antibiotics, which reduced the bacterial load dra-
matically. In one case, only 16 bacteria were remaining and
these bacteria were situated within a granuloma. The other case
depicts a relapse, where treatment was initially successful but
infection started to grow again post treatment. The last case is
an example of a latently infected individual whose disease reac-
tivates just before the end of the simulation. These percentages
are comparable with those described in Figure 1.

An important feature of our model is that of caseation:
when infected macrophages burst or die, or T cells kill in-
fected macrophages, that grid cell becomes caseum. Hence,
as macrophages move chemotactically towards the clusters of
bacteria, a caseous granuloma starts to form and this caseum in-
hibits drug diffusion. We have shown that in simulations where
bacteria are surrounded by caseum, they often remain at the end
of the simulation. This emphasises the importance of caseous
necrosis on the outcome of therapy. The implications of caseum
have already been demonstrated (Grosset, 1980) and our sim-
ulations confirm the importance of this type of necrotic break-
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down.
We have also shown that bacterial cell state has an impact on

simulations, which is a characteristic that is only just starting
to be understood. All simulations that have extracellular bacte-
ria remaining at the end of 500 days are slow-growing bacteria.
This is in part because any treatment received tends to kill off

the faster-growing bacteria more quickly, perhaps leaving be-
hind a slower-growing population. These bacteria are also of-
ten located inside a granuloma, where the oxygen supply and
diffusion rate is impaired, which favours slower-growing phe-
notypes. There are relatively few publications that define the
susceptibility of slow-growing mycobacteria in relation to the
standard or new anti-tuberculosis drugs and particular empha-
sis should be placed on such antibiotics that can penetrate well
into lesions.

Our preliminary simulations also highlight the importance
of spatial location of the bacteria. Perhaps it is thought obvi-
ous that spatial location of the bacteria is a key factor in treat-
ment outcome but previous mathematical models to date have
not identified this fact. Studies have focused on PK based on
serum and simulations of ELF BL. Our modelling has shown
that anatomical considerations are important when chronic in-
fection creates an anaerobic environment and fibrosis around
cavities. Treatment is compounded further by bacterial cell
state, which increases functional MIC of bacteria that can be
more difficult to kill due to poor penetration.

Future models could address this with enhanced understand-
ing of the effect of dormancy or phenotypic resistance. This in-
dicates the importance of work to define lesional PK (Prideaux
et al., 2015; Via et al., 2015). In future iterations of the model
will also include more anatomical and immunological complex-
ity, for example, airways will be added to the domain to explore
its effects and more than one T cell will be integrated into the
model. We could also explore the effect of fibrosis and cavity
formation on outcome, building on recent concepts on lesional
drug concentrations (Prideaux et al., 2015; Via et al., 2015). In
addition, we will model liquefaction, which will be important
to allow the release of ‘trapped’ bacteria, thus allowing us to
further investigate relapse cases. As our understanding of M.
tuberculosis cell state increases we will also be able to refine
our parameter estimates of this characteristic and build a better
model. In future models we will also investigate the effect of
allowing more than one element to occupy each grid cell.

Sputum culture conversion during treatment for tuberculosis
has a limited role in predicting the outcome of treatment for
individual patients (Phillips et al., 2016), so spatial models that
explore TB infection and treatment in the lung are needed if we
are to increase our understanding of patient outcome. In this
work we have shown, using an individual-based model, that a
spatial model allows us to explore many unanswered questions
in TB.
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