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ABSTRACT

Since domestication, population bottlenecks, breed formation, and selective breeding have radically shaped the genealogy
and genetics of Bos taurus. In turn, characterization of population structure among globally diverse bull genomes enables
detailed assessment of genetic resources and origins. By analyzing 432 unrelated bull genomes from 13 breeds and 16
countries, we demonstrate genetic diversity and structural complexity among the global bull population. Importantly, we
relaxed a strong assumption of discrete or admixed population, by adapting latent variable models for individual-specific
allele frequencies that directly capture a wide range of complex structure from genome-wide genotypes. We identified a
highly complex population structure that defies the conventional hypothesis based on discrete membership and contributes to
pervasive genetic differentiation in bull genomes. As measured by magnitude of differentiation, selection pressure on SNPs
within genes is substantially greater than that on intergenic regions. Additionally, broad regions of chromosome 6 harboring
largest genetic differentiation suggest positive selection underlying population structure. We carried out gene set analysis using
SNP annotations to identify enriched functional categories such as energy-related processes and multiple development stages.
Our comprehensive analysis of bull population structure can support genetic management strategies that capture structural
complexity and promote sustainable genetic breadth.

Introduction
Bos taurus (cattle) has long experienced selection for high quality milk and meat production. To maintain and encourage
genetic diversity, it is important to characterize the population structure of bulls around the world. Inferring population structure
and genetic differentiation play an increasingly important role in conservation efforts, genealogy, and selection programs. In
this study, we have analyzed a large number of whole genome sequences of Bos taurus bulls from 13 breeds, representing 16
countries, to characterize population structure and genetic diversity.

Recognizing the importance of cattle genome diversity in genome-wide association studies, genomic predictions, and
optimal breeding, there have been substantial efforts to obtain genome-wide genotypes of multiple breeds in diverse geographical
locations1–3. The 1000 Bull Genomes Consortium has successfully collaborated with institutions from more than 20 countries
to collect 1577 whole genome sequences (as of version 5). This international collection of diverse genomes can be regarded as
representative of genetic diversity within bulls and thus enables systematic analysis of population genomics. Although the
structural complexity of cattle has previously been studied based on limited genome profiles or genetic markers, focusing on
regions and breeds4–7, a population genetic study involving a large and diverse collection of whole genome sequences has not
been performed.

Moreover, most studies assumed discrete structure among representatives of a studied population, as defined by self-
identified breeds. Recent studies using genome-based tree, admixture models, and other techniques demonstrate far greater
structural complexity1, 2, 7, but direct estimation and utilization of continuous population structure have been challenging.
Logistic factor analysis (LFA) uses recently developed probabilistic models of individual allele frequencies underlying
genotypes that are appropriate for a wide range of population structures (e.g., discrete, continuous, or admixture)8. Building
on principal component analysis (PCA), LFA provides a non-parametric estimation method tailored to genotype data. By
modeling each single nucleotide polymorphism (SNP) by the population structure estimated by logistic factors (LFs), genetic
differentiation can be directly tested and inferred.

Applying latent variable probabilistic models, we analyzed 432 unrelated Bos taurus genomes from 13 breeds and 16
countries, as part of the 1000 Bull Genomes Project2. This study provides detailed assessment of population structure among
a diverse panel of whole genome sequences (> 3.9 million SNPs per bull). We identified pervasive genetic differentiation
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as suggested by domestication and selection. Through incorporating gene set analyses with genomic features, evolutionary
pressure on genetic variation is investigated. Additionally, we present an interactive visualization, which enables exploration of
underlying population structure by logistic factors. This study represents one of the first studies in population genomics where
potentially inaccurate breeds (or other self-referential subpopulation labels) are intentionally left unused.

Results
In the 1000 Bull Genomes Project dataset, there were n = 432 unrelated Bos taurus samples with average sequencing coverage
> 5 (Figure 1). These bulls represent 13 different breeds; namely, Angus, Brown Swiss, Charolais, Gelbvieh, Holstein, Jersey,
Limousin, Montbeliard, Normandy, Piedmont, European Red Dairy, Holstein, Red & White, and Simmental/Fleckvieh. Defined
by the official animal identification, our samples came from Australia, Austria, Canada, Denmark, Finland, France, Germany,
Italy, Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, United Kingdom, and United States (Figure 2). Among
these genomes, there are m = 3,967,995 single nucleotide polymorphisms (SNPs) with no missing values and minor allele
frequencies ¿ 0.05 (Supplementary Fig. 2). To explore structural complexity, whole genome sequences of n = 432 selected
samples were hierarchically clustered using Manhattan distances (Figure 3, colored by 13 different breeds). It is evident that
official breed codes (or countries of origin) do not necessarily represent the genetic diversity among bulls represented by SNPs.

The dimension of the population structure in logistic factor analysis was set at d = 7, as estimated by the VSS algorithm
and the scree plot of decreasing eigenvalues (Supplementary Fig. 3). The estimated logistic factors demonstrate the genetic
continuum, reflecting shared origins of genetics and overlapping goals of breeding programs since domestication (Figure 4). At
the same time, the logistic factor 4 displays a clear distinction of Brown Swiss (from Switzerland, Germany, France, and Italy)
and projection of logistic factors allows straightforward visual identification of clusters. We enable interactive exploration
of this population structure by creating an online app visualizing logistic factors according to user-specified parameters
(https://nnnn.shinyapps.io/bullstructure/).

We discovered diverse and pervasive genetic differentiation with respect to the population structure of bulls. When applying
the resampling-based jackstraw method to test association between SNPs and logistic factors, we observed that the vast majority
of SNPs are statistically significantly differentiated (an estimated proportion of null SNPs π̂0 of 6.2%). A proportion of variation
explained by d = 7 LFs for each SNP is approximated by McFadden’s pseudo R2. We found that the median and mean values
of McFadden’s pseudo R2 are 0.070 and 0.087, respectively (Figure 5). The chromosome 6 contained substantially more SNPs
with high R2 than other chromosomes; it harbors 166 (39.0%) out of 426 SNPs with R2 > 0.6, as well as all 29 (100%) SNPs
with R2 > 0.7. On the other hand, the X chromosome shows the least variation with respect to logistic factors, containing zero
SNP with R2 > 0.5. The top 1000 genomic features that are associated with differentiated SNPs are shown in Supplementary
Data 1. Note that we additionally conducted an independent robustness analysis with d = 22 logistic factors (as suggested by a
cross-validation method), which confirm highly consistent genetic differentiation, with an overall R2 correlation of 0.93.

Among SNPs with the highest R2 > 0.7, there exist two tight groups on chromosome 6; specifically 14 SNPs (13 within
50kbp of known genomic features) positioned between 71101370 and 71600122 and 15 SNPs (11 within 50kbp of known
genomic features) positioned between 38482423 and 39140537. 83% of those most differentiated SNPs (20 out of 24 SNPs
with known genomic features) are within or close to genes related to the selection sweep according to9. Among the first
group, five SNPs fall within CHIC2 (ENSBTAG00000032660), while the closest features within 50kbp also include GSX2
(ENSBTAG00000045812), U6 spliceosomal RNA (ENSBTAG00000042948), and novel pseudogene (ENSBTAG00000004082).
U6 spliceosomal RNA (ENSBTAG00000042948) and novel pseudogene (ENSBTAG00000004082) are known to be associated
with milk protein percentage10. In the second group, the exact overlaps occur in FAM184B (ENSBTAG00000005932),
LCORL (ENSBTAG00000046561), and NCAPG (ENSBTAG00000021582). LCORL encodes a transcription factor whose
human ortholog is involved in spermatogenesis, whereas NCAPG is crucial in mitosis and meiosis. Expecting much granular
investigation of such genomic features, the list of 396,800 SNPs at the top 90 percentile (R2 > .174) is available as Supplementary
Data 2.

To better understand evolutionary and biological processes, we conducted gene set analyses using genomic annotations of
SNPs. Firstly, we found that SNPs located within known genomic features have about 1.8% higher R2 measures than intergenic
SNPs without annotations (MWW p-values 9.85×10−106). On the other hand, among intergenic SNPs, we found no significant
correlation (p-value of 0.44) between SNP-feature distances and R2 measures (Supplementary Fig. 4). Secondly, among genic
SNPs, R2 measures corresponding to SNPs within exons are slightly higher than those within introns by 0.27% with a MWW
p-value 3.89×10−29. Start/stop codons and 3’/5’ UTR do not exhibit statistically significant difference from other genic SNPs.
Lastly, we used 338 genes that are closest to SNPs with R2 > 0.5 in the DAVID functional annotation tools. We found a total of
34 enriched annotation clusters, of which 11 clusters with enrichment scores > 0.5 are shown in (Table 1). Biological processes
and functions related to calcium-binding domain (cluster 1 and 9) and iron containing hemeproteins related to ATP (cluster 3
and 6) exhibit strong enrichment, potentially reflecting causes of population structure. Notably, we observed functional clusters
for sexual, respiratory, and embryonic developments (cluster 5, 7, and 10, respectively).
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Discussion
Bos taurus has played a crucial role in ancient and modern societies alike by providing agricultural support and essential
nutrients. Accurate characterization of its population structure helps conservation of genetic resources and optimal selection
programs, ensuring a healthy and sustainable cattle population. In this process, we can better infer the genetic and functional
variation that underlies the population structure. Our study, using 432 whole genome sequences of unrelated Bos taurus samples,
provides a comprehensive and rigorous assessment of population structure among diverse bulls.

Assumptions underlying population structure and its estimation methods based on genotypes have evolved to address
growing genomics data in terms of complexity and scales11–13. Particularly, the contentious and ambiguous definition of
breeds merely requires “certain distinguishable characteristics” and practically relies on self-referential breed registry for sire
and dam14. Therefore, we have relaxed strong assumptions often used in population genomics, by employing latent variable
probabilistic models8. In this study, we did not assume discrete or admixed populations. The present framework can nonetheless
capture a broad range of arbitrarily complex structure including the aforementioned configurations. Based on observing a
largely continuous genetic spectrum compared to breeds, we demonstrated that breeds do not account for structural complexity.
We speculate that many cattle breeds, including presumed founders, are not as isolated or discrete as one would be led to
believe. The population structure of our bull genomes in 7-dimensional logistic factors can be explored on our interactive
visualization website.

When modeling SNPs with logistic factors in generalized linear models, we found widespread genetic differentiation due to
population structure. This likely arose from a long history of breed formation and artificial selection, such that different national
breeding programs may have caused weak and pervasive systematic variation. Despite being blind to breeds, the majority
of the most differentiated SNPs in our study have been identified as under selection sweep. The chromosome 6 harboring a
large proportion of highly differentiated SNPs has been suggested for strong selective sweep1, and may also be associated with
calving ease and carcass weight15, 16. Interestingly, given that the novel pseudogene (ENSBTAG00000004082), which has been
known to be associated with calving performance17 and protein percentage10 is strongly associated with population structure,
we suspect that it plays a crucial functional role in bull genomes. Overall, our genome-wide study of differentiation suggests
stronger evolutionary pressure on genic regions. Enrichment analysis of genome annotations provides strong indications that
functional groups related to energy production and development stages underlie the systematic variation in the panel of diverse
bulls.

Pedigrees were used to remove 72.6% of bull samples related by progenitors, resulting in a panel of 432 genomes analyzed.
However, undocumented kinship may potentially bias our population structure analysis, just as it does other methods that
utilize breed and other subpopulation information. We advocate for stronger linkage between breeding programs and registries.
The structural complexity among bull genomes discovered in this study can be used directly to identify genetic association
with quantitative traits18. However, the 1000 Bull Genomes Consortium does not collect quantitative traits as its main goal
is comprehensive identification of genomic variants. Lastly, the 1000 Bull Genomes Project, which is among the largest
collections in this area of study, is still lacking samples from Asia, Africa, and South America.

This study paves a way to further our understanding of genetic diversity among modern cattle breeds. Our identification of
systematic genetic differentiation may inform conservation efforts to preserve heritage breeds and maintain genetic diversity.
Considering our flexible assumption about population structure and exclusive use of whole genome sequences, our highly
differentiated SNPs, gene set analysis, and functional enrichment show how we can dispense of potentially inaccurate
subpopulation labels in population genomics.

Methods

Bull Genomes
The 1000 Bull Genomes Project has collaborated with worldwide institutions to gather whole-genome sequences of diverse
breeds. Its initial efforts have vastly expanded known single nucleotide polymorphisms (SNPs) and copy number variations
(CNVs) in Bos taurus2. Currently, it covers 1577 bull samples as of version 5 released in 2015, among which 1507 and 70
bull genomes were sequenced with Illumina/Solexa and ABI SOLiD technology, respectively. For analysis of population
structure, we selected unrelated bulls with average sequencing coverage greater than 5. Among sibs only one representative was
selected randomly. SNP genotypes were identified prior to our study based on whole genome sequence data of bulls, using a
multi-sample variant calling procedure. Polymorphisms with minor allele frequencies below 0.05 were removed from analyses.
For processing whole-genome sequences, we used vcftools v0.1.1419, BEDOPS v2.4.1520, and R v3.2.221.

Statistical Analysis
To infer population structure directly from a genome-wide genotype matrix, we consider a probabilistic model of individual
allele frequencies. In particular, by using logistic factor analysis8 that captures systematic variation of individual-specific allele

3/11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2016. ; https://doi.org/10.1101/059139doi: bioRxiv preprint 

https://doi.org/10.1101/059139
http://creativecommons.org/licenses/by-nc-nd/4.0/


frequencies arising from discrete or continuous sub-population, spatial variation, admixture, and other structures, we relax
statistical assumptions imposed on bulls by its official breed and country code defined in the animal registration ID. While the
statistical models and algorithms are extensively described in elsewhere8, we provide a brief overview of this approach here.

Consider a genotype matrix Y with m SNPs and n bulls. For each yi j, an individual-specific allele frequency for ith SNP and
jth bull is fi j ∈ [0,1]. This collection of parameters (a m×n F matrix) is transformed into real numbers via the logit function,
which allows computation of the underlying latent structure. Overall, the statistical model considered is

logit(F) = AH.

Then, the population structure is captured by d logistic factors (LFs) H which can be estimated by applying principal component
analysis (PCA) to logit(F). Note that A is a matrix of coefficients in a logistic regression. The dimensions of logistic
factors are estimated by comparing the observed correlation matrix to a series of hypothesized structures derived from selected
variables of large loadings22. In the Very Simple Structure (VSS) algorithm, we considered d = 1, . . . ,100, while applying
principal component analysis on the mean-centered genotypes (R package psych). Eigenvalues of m−1YT Y and percent
variance explained by each component are visually inspected for the inflection point (e.g., elbow). For robustness analysis to
confirm genetic differentiation, we alternatively used cross-validation approximations to choose d23.

To investigate genetic differentiation with respect to the population structure, we test association between ith SNP yi and
estimate logistic factors Ĥ. We model SNPs with d logistic factors in a logistic regression (with a logit link function),
where the deviance statistic compares the full (LFs) model Y∼ Ĥ and the null (intercept) model Y∼ 124. We take account
of the fact that the population structure is directly estimated from Y by utilizing the resampling-based jackstraw method25.
For each of B iterations, the jackstraw method introduces a small number s� m of permuted SNPs under a null model Y∼ 1
and computes s empirical null deviance statistics. P-values are calculated by ranking observed deviances with an empirical
distribution of B× s deviances, as adapted from the resampling-based jackstraw approach25. This method based on a logistic
regression is implemented in the jackstraw v1.1 package, freely available on the Comprehensive R Archive Network
(https://cran.r-project.org/web/packages/jackstraw). A proportion of SNPs that are not associated with
LFs (π0) is then estimated from m p-values.

To approximate how much of the variation in genotypes is explained by the population structure, we calculate McFadden’s
pseudo R2 that is appropriate for a logistic regression26. This methodology is operationally similar to detecting genomic
signatures with PCA27, although the difference arises from directly modeling categorical SNP data. For ith SNP,

R2
i = 1−

log(L f ull
i )

log(Lnull
i )

,

where log(L f ull
i ) and log(Lnull

i ) are maximum log-likelihoods of the full and null models, respectively. As this study only
considers McFadden’s pseudo R2 in logistic regressions, we will henceforth refer to it as R2 when clear in context.

Annotation and Enrichment
For genome annotation, we used the latest Bos taurus reference genome from the Center for Bioinformatics and Computa-
tional Biology, University of Maryland (downloaded from the NCBI server ftp://ftp.ncbi.nlm.nih.gov/, version
UMD3.1.83).

When testing whether the distribution of McFadden’s pseudo R2 measures are significantly different according to feature
types, we used the Mann-Whitney-Wilcoxon (MWW) test28. With a large sample size, a Normal approximation is used to
compute MWW p-values. In particular, we investigated whether SNPs falling within genes may have a higher McFadden’s
pseudo R2 than those in intergenic regions. Among SNPs with known feature assignments, MWW tests were used to infer if a
particular feature type is associated with significantly higher R2 measures.

Lastly, because some of SNPs are in intergenic regions with no known annotations, we utilized the closest features function
from BEDOPS v2.4.1520. Among the top genes with McFadden’s pseudo R2 > 0.5, we apply DAVID v6.7 considering
GO, KEGG pathways, InterPro, SwissProt Protein Information Resource, and other databases to identify enrichment of
biological processes and functional pathways29. For intergenic SNPs, we searched the reference genome for the closest genes,
which were used in DAVID v6.7. When clustering functional annotations, we set “Classification Stringency” to high.
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Figure 1. Average sequencing coverage of 432 bull samples.

Figure 2. Bar plot of cattle breeds, with a number of samples colored by countries of origin.
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Figure 3. Hierarchical clustering of 432 bull genomes. Genome-wide SNPs are clustered using Manhattan distances and
samples are colored by breeds.
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Figure 4. Scatterplots of logistic factors (LFs). All pairs of 6 LFs are plotted, excluding the intercept term. Data points
corresponding to 432 bull genomes are colored by 13 breeds. Interactive visualization available at
https://nnnn.shinyapps.io/bullstructure/.
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Figure 5. Genome-wide pseudo R2 measures with respect to logistic factors (LFs). The distribution is highly skewed towards
0, which leads to overplotting in a low range (see an insert for a genome-wide histogram). Overall, the median and mean are
0.070 and 0.087, respectively
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Table 1. Enriched functional clusters, for genes associated with R2 > 0.5

Cluster 1 Enrichment Score: 1.405 Calcium-binding domain
Category Term Count % PValue
INTERPRO IPR018247:EF-HAND 1 6 2.098 0.035
INTERPRO IPR018249:EF-HAND 2 6 2.098 0.038
INTERPRO IPR011992:EF-Hand type 6 2.098 0.045
Cluster 2 Enrichment Score: 1.372 Cysteine-type activity
Category Term Count % PValue
GOTERM MF FAT GO:0004198∼calcium-dependent cysteine-type endopeptidase activity 3 1.049 0.011
GOTERM MF FAT GO:0008234∼cysteine-type peptidase activity 4 1.399 0.066
GOTERM MF FAT GO:0004197∼cysteine-type endopeptidase activity 3 1.049 0.106
Cluster 3 Enrichment Score: 0.897 Cytochrome
Category Term Count % PValue
PIR SUPERFAMILY PIRSF000045:cytochrome P450 CYP2D6 3 1.049 0.013
INTERPRO IPR002401:Cytochrome P450, E-class, group I 3 1.049 0.068
INTERPRO IPR017973:Cytochrome P450, C-terminal region 3 1.049 0.080
INTERPRO IPR017972:Cytochrome P450, conserved site 3 1.049 0.084
SP PIR KEYWORDS heme 4 1.399 0.091
INTERPRO IPR001128:Cytochrome P450 3 1.049 0.107
SP PIR KEYWORDS Monooxygenase 3 1.049 0.124
COG ONTOLOGY Secondary metabolites biosynthesis, transport, and catabolism 3 1.049 0.148
GOTERM MF FAT GO:0020037∼heme binding 4 1.399 0.159
GOTERM MF FAT GO:0046906∼tetrapyrrole binding 4 1.399 0.176
GOTERM MF FAT GO:0009055∼electron carrier activity 4 1.399 0.301
SP PIR KEYWORDS iron 4 1.399 0.399
GOTERM MF FAT GO:0005506∼iron ion binding 4 1.399 0.614
Cluster 4 Enrichment Score: 0.860 Signaling
Category Term Count % PValue
UP SEQ FEATURE signal peptide 19 6.643 0.048
SP PIR KEYWORDS signal 19 6.643 0.111
SP PIR KEYWORDS glycoprotein 16 5.594 0.492
Cluster 5 Enrichment Score: 0.833 Sexual development
Category Term Count % PValue
GOTERM BP FAT GO:0045137∼development of primary sexual characteristics 3 1.049 0.117
GOTERM BP FAT GO:0003006∼reproductive developmental process 4 1.399 0.151
GOTERM BP FAT GO:0007548∼sex differentiation 3 1.049 0.180
Cluster 6 Enrichment Score: 0.760 Ion binding
Category Term Count % PValue
GOTERM MF FAT GO:0043167∼ion binding 40 13.986 0.130
GOTERM MF FAT GO:0046872∼metal ion binding 38 13.287 0.190
GOTERM MF FAT GO:0043169∼cation binding 38 13.287 0.213
Cluster 7 Enrichment Score: 0.725 Respiratory development
Category Term Count % PValue
GOTERM BP FAT GO:0030324∼lung development 3 1.049 0.145
GOTERM BP FAT GO:0030323∼respiratory tube development 3 1.049 0.145
GOTERM BP FAT GO:0060541∼respiratory system development 3 1.049 0.150
GOTERM BP FAT GO:0035295∼tube development 3 1.049 0.400
Cluster 8 Enrichment Score: 0.723 Protease activity
Category Term Count % PValue
GOTERM MF FAT GO:0004175∼endopeptidase activity 8 2.797 0.129
GOTERM MF FAT GO:0070011∼peptidase activity, acting on L-amino acid peptides 9 3.147 0.190
GOTERM MF FAT GO:0008233∼peptidase activity 9 3.147 0.215
GOTERM BP FAT GO:0006508∼proteolysis 12 4.196 0.242
Cluster 9 Enrichment Score: 0.703 Calcium-binding domain
Category Term Count % PValue
UP SEQ FEATURE calcium-binding region:2 3 1.049 0.126
INTERPRO IPR002048:Calcium-binding EF-hand 4 1.399 0.148
UP SEQ FEATURE calcium-binding region:1 3 1.049 0.157
SMART SM00054:EFh 4 1.399 0.187
UP SEQ FEATURE domain:EF-hand 1 3 1.049 0.258
UP SEQ FEATURE domain:EF-hand 2 3 1.049 0.258
INTERPRO IPR018248:EF hand 3 1.049 0.333
Cluster 10 Enrichment Score: 0.668 Embryonic development
Category Term Count % PValue
GOTERM BP FAT GO:0001824∼blastocyst development 3 1.049 0.082
GOTERM BP FAT GO:0001701∼in utero embryonic development 4 1.399 0.165
GOTERM BP FAT GO:0043009∼chordate embryonic development 4 1.399 0.397
GOTERM BP FAT GO:0009792∼embryonic development ending in birth or egg hatching 4 1.399 0.400
Cluster 11 Enrichment Score: 0.565 Cardiomyopathy
Category Term Count % PValue
KEGG PATHWAY bta05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC) 3 1.049 0.240
KEGG PATHWAY bta05410:Hypertrophic cardiomyopathy (HCM) 3 1.049 0.277
KEGG PATHWAY bta05414:Dilated cardiomyopathy 3 1.049 0.304
Cluster 12 Enrichment Score: 0.519 Phosphorylation
Category Term Count % PValue
GOTERM MF FAT GO:0004672∼protein kinase activity 9 3.147 0.213
GOTERM BP FAT GO:0006468∼protein amino acid phosphorylation 9 3.147 0.291
GOTERM BP FAT GO:0016310∼phosphorylation 9 3.147 0.447
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