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Abstract

Fluorescence Recovery After Photobleaching (FRAP) is an important tool used by cell biologists to
study the diffusion and binding kinetics of vesicles, proteins, and other molecules in the cytoplasm,
nucleus or cell membrane. While many FRAP models have been developed over the past decades, the
influence of the complex boundaries of three-dimensional cellular geometries on the recovery curves,
in conjunction with ROI and optical effects (imaging, photobleaching, photoswitching, and scanning),
has not been well studied. Here, we developed a three-dimensional computational model of the FRAP
process that incorporates particle diffusion, cell boundary effects, and the optical properties of the
scanning confocal microscope, and validated this model using the tip- growing cells of Physcomitrella
patens. We then show how these cell boundary and optical effects confound the interpretation of FRAP
recovery curves, including the number of dynamic states of a given fluorescent protein, in a wide range
of cellular geometries–both in two and three dimensions–namely nuclei, filopodia, and lamellipodia of
mammalian cells, and in cell types such as the budding yeast, S. pombe, and tip-growing plant cells. We
explored the performance of existing analytical and algorithmic FRAP models in these various cellular
geometries, and determined that the VCell VirtualFRAP tool provides the best accuracy to measure
diffusion coefficients. Our computational model is not limited only to these cells types, but can eas-
ily be extended to other cellular geometries via the graphical Java-based application we also provide.
This particle-based simulation—called the Digital Confocal Microscopy Suite, DCMS—can also perform
fluorescence dynamics assays, such as Number and Brightness (N&B), Fluorescence Correlation Spec-
troscopy (FCS), Raster Image Correlation Spectroscopy (RICS), and could help shape the way these
techniques are interpreted.
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1. Introduction

Due to the popularity of confocal laser scanning microscopes, FRAP has emerged as a prominent tech-
nique to measure protein mobility, and throughout the past decade has appeared in over 150 publications
annually [1]. During a typical FRAP experiment; a cell expressing a fluorophore of interest is subjected to
a high intensity laser pulse which permanently abolishes the fluorescence properties of the fluorophore—
a process called photobleaching. This laser pulse is specifically localized to a predetermined Region Of
Interest (ROI) inside the cell, and over time fluorophores not subjected to the bleach move into the ROI,
leading to a recovery of the local fluorescence.

The rate and directionality of this fluorescence recovery can then be used—via a model—to determine
an array of important characteristics of the molecule of interest, diffusion coefficients, binding kinetics,
and the number of dynamic states of the fluorophore. These properties are important for a wide array
of biological questions. What is the contribution of diffusion in the transport of proteins? Is a protein
part of a complex that changes its mobility? Is the protein associated with the cytoskeleton or other
structures that could change its dynamics states? What are the in vivo kinetics of specific protein-protein
interactions?

To obtain a physical constant—such as the diffusion coefficient—that can help answer these questions
using FRAP, a model must be used. The two most commonly cited FRAP models are by Axelrod et al. [2]
and Soumpasis et al. [3], and they use an analytically calculated recovery profile of a two-dimensional ROI
inside a cell with an infinite boundary. Although these models are frequently used—over 650 combined
citations to date—more recent studies have included and explored additional relevant FRAP parameters
such as the finite confocal scan rate during photobleaching [4–9], arbitrary photobleaching profiles [10],
confocal imaging [5], and cell shape [11–14]. Despite this wealth of analytical models, as well as algorith-
mic approaches [10, 13, 15–19], it remains unclear whether these models can yield accurate estimates of
the diffusion coefficients for instance, when applied using realistic optical settings in actual cellular geome-
tries. A simple thought experiment (described in detail in Section S8 in the Supporting Material,
also Fig. S19) based on the method of images can show that geometric effects can produce a factor of
four difference in apparent diffusion coefficient under ideal conditions. Determining these quantities accu-
rately is important as this improves the significance of the biological conclusions derived from modeling
of the cellular processes that are studied.

To provide more accuracy in analyzing FRAP recovery, interactive solutions such as the VirtualFRAP
tool (part of VCell environment) [13] and simFRAP [10] have been developed, allowing the calculation of
diffusion coefficients in arbitrary two-dimensional geometries. While these algorithmic approaches make
fewer assumptions than existing analytical models [2, 3], they still rely on the time-scale-invariance of
the process, which is not necessarily true in the case where the bleaching and imaging durations are
not instantaneous. Without a comprehensive model that incorporates all the relevant aspects of FRAP,
it remains a challenge to determine if a particular analytical or algorithmic method is appropriate to
measure diffusion coefficients or identify dynamic states for a specific case.

While it has been shown in silico that cellular geometry can influence FRAP[12], this effect is often
not taken into account when analyzing recovery curves obtained from arbitrary three-dimensional cel-
lular geometries. When analytical models are unable to quantitatively describe these geometric effects,
oftentimes multi-exponential fitting is used to make qualitative conclusions about the inherent dynamics.
This introduction of spurious dynamic states—potentially interpreted as multiple diffusing species, active
transport systems, or binding/diffusion reactions—as a result of the fitting process can further confound
the problem, leading to misinterpretations of the underlying biology. These conclusions can further be
reinforced by an excellent goodness of fit, regardless of the underlying physical meaning.

Given the widespread use of FRAP, there is a need for a rigorous approach—incorporating optical,
geometric, and diffusive effects—that would allow accurate model selection for any cell type. Here, we
developed an experimentally validated particle-based diffusion model that allows us to conduct not only
FRAP, but also other fluorescence fluctuation based analyses on a wide variety of three-dimensional cel-
lular geometries. We then quantitatively demonstrate that cell shape is one of the predominant factors
that can influence FRAP recoveries, and affect measured diffusion coefficients for commonly used FRAP
models. Since there is a rich parameter space that influences fluorescent recovery, it would be misleading
to make absolute conclusions about FRAP recoveries in a given system. To help remedy this challenge,
and to make predictions for specific experimental setups and systems, we provide a free, user-friendly,
cross-platform, and GPU optimized version of our software, namely Digital Confocal Microscopy Suite
(DCMS) to the readers [20] .
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Figure 1. Illustration of 3D scanning confocal FRAP process. A) Scanning photobleach interacting
with confined particles. Arrows indicate the bleaching pattern of the Gaussian photobleaching laser
beam within the yellow circular region. B) Particle excitation and emission. Here the green diffraction
limited laser scans across the image and locally excites fluorophores that emit red light. Images are not
to scale.

2. Materials and Methods

2.1 FRAP Model in Digital Confocal Microscopy Suite (DCMS)

In order to accurately measure the diffusive dynamics of a given molecule in complex cellular geome-
tries, we created a, particle-based simulation that consists of non-interacting Brownian particles, with a
constant diffusion coefficient [21]. Particles are contained within a region defined by a boundary surface
with reflective boundary conditions (see Section S1.2 in the Supporting Material). This surface
can be any triangulated mesh representing the cell boundary of interest, however, when possible, we
used an analytical description of the cell shape (e.g. hemisphere capped cylinder for moss) to reduce
computational cost. In all of the production runs used for analysis here, we used 106 particles within this
simulation volume.

The simulation also incorporates properties of the optical system, i.e. imaging and bleaching (as
illustrated in Fig. 1), finite scan rates of the confocal microscope, the PSF, and ROI size and shape
related effects, as described in detail in Section S1.3 in the Supporting Material. Briefly, imaging is
performed by scanning across the region corresponding to the output image, using a squared Gaussian
beam Point Spread Function (PSF). The experimental PSF is measured (see Section S1.3) and used to
determine the parameters for the squared Gaussian. Photobleaching is performed by scanning across the
ROI, and stochastically photobleaching fluorophores within the beam (See Fig. S5 and Movies S1-S2).

Furthermore, the DCMS simulations can also conduct reversible photoswitching during imaging acqui-
sition and bleaching events. If this reversible photoswitching is neglected, especially for 3xmEGFP, it can
lead to overestimates in measured diffusion coefficients [22]. However, since the kinetics of this process
can dependent on laser power [22] (see Fig S9B), it would add additional model parameters. In order to
increase the accuracy of our results, and avoid a large parameter scan, we experimentally measured and
performed the necessary corrections for acquisition photobleaching (see Section S2.2 in the Supporting
Material) and reversible photoswitching (see Section S2.3 in the Supporting Material).

Additionally, although it was not utilized in this manuscript, DCMS also supports a number of
other choices, such as alternative PSF forms, reversible photobleaching and photoswitching, and binding
kinetics.
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2.2 Cell Culture and Sample Preparation

FRAP experiments were conducted on the caulonemal cells of the moss Physcomitrella patens; moss tis-
sue was cultured on cellophane placed on top of the solidified agar. Microscope samples were prepared in
QR-43C chambers (Warner Instruments) as follows. First, 25 mm bottom coverslips were plasma treated
for three minutes to yield a hydrophilic surface. A solution of 0.8% type VII agarose in PpNO3 medium
(refer to Ref. [23] for details) was melted then added directly to the coverslips. A small cellophane square
(1 cm2) with moss tissue, grown for seven days after sub-culturing, was inverted and placed onto the
agarose. To obtain flat cultures, a second untreated coverslip was placed on top of the cellophane and
flattened using a blunted syringe. Agarose was solidified by placing the cultures onto a surface at 12◦C.
Once the agarose solidified, the top coverslip was gently removed from the top of the preparation. The
remaining preparation was submerged in PpNO3 and the cellophane was removed. With the moss firmly
adhered to the agarose, the entire coverslip was added to the QR chamber. The chambers were capped
with 18 mm coverslips and connected to silicone tubing with inner and outer diameters of 0.03 in and
0.065 in, respectively. The tubing was connected to a peristaltic pump and liquid PpNO3 was perfused
through the chambers over night. Liquid PpNO3 was made two days prior to perfusion and was filter
sterilized immediately before its use. During latrunculin B treatment, a solution of 10 µM latrunculin B
in PpNO3 was perfused through the chamber for 20 minutes.

2.3 Confocal Imaging

FRAP experiments were conducted using a Leica TCS SP5 scanning confocal microscope and the Leica
FRAP Wizard. To conduct FRAP experiments, a 63X objective was used with a numerical aperture
(NA) of 1.4. In the software settings, the pinhole was set to 2.00 airy disks and the camera zoom was set
to 9. Images of 256×256 pixels were acquired with a depth of 12bits. To visualize 3xmEGFP, the Argon
laser was set to 75% power with a bidirectional scanning speed of 2800 Hz and the 488 nm laser line was
set to 10% power in the FRAP wizard. The emission bandwidth for 3xmEGFP was set between 499 nm
and 546 nm. During bleaching events, all laser lines were set to 100%.

2.4 FRAP Post Acquisition Processing and Analysis

Several confounding factors that can influence the interpretation of FRAP results were examined, namely,
image acquisition induced photobleaching/reversible photobelaching (Section S2.2), reversible photo-
bleaching following intentional photobleaching (Section S2.3), confocal detector linearity (Section S4),
and the effects of imaging and photobleaching away from the medial cell plane (Section S5). We then
constructed the FRAP processing scheme depicted in Fig. S6. This flowchart illustrates how the exper-
imental and simulated FRAP images were processed and analyzed to yield the diffusion coefficients and
highlight experimental boundary effects. Briefly, images from FRAP experiments, saved as tiff stacks,
were converted into fluorescence recovery curves by averaging the intensity of the pixels within the ROI.
Replicate experiments were then averaged and divided by acquisition bleaching controls. After processing
the recovery curves, we used an argument minimization scheme to find the best fit simulation parameters
(Section S2.4). Confidence intervals for the best fit parameters were found via Monte Carlo simulations
(Section S2.5). To analyze the directionality of fluorescence recovery spatially the photobleaching ROI
was cropped, corrected for the limited available volume at the cell tip (Section S3.1), and subjected to
Fourier analysis (Section S3.2). A flow chart depicting this analysis can be found in Fig. S12.

2.5 Experimental Measurement of the Point Spread Function (PSF)

In order to experimentally measure the PSF of the confocal microscope, beads were used from the
Invitrogen PS-Speck Microscope Point Source Kit P7220 (Thermo Fisher Scientific, Waltham, MA).
Preparations were made by adding 5 µL of 0.01% polylysine and 5 µL of bead solution to a dry
microscope slide. A coverslip was then placed directly onto the slide and sealed with wax. Beads were
visualized and measured with the Leica TCS SP5 scanning confocal microscope, using the settings
described in Section 2.3. Green fluorescent beads were used to match the 3xmEGFP fluorophore, and
z-stacks of the 175 nm beads were taken. From these z-stacks, a three-dimensional reconstruction of the
bead’s intensity profile was created as shown in Fig. S5a. These profiles were then used to determine
the three-dimensional functional form and parameters of the PSF, following the procedure defined in
Section S1.3.
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2.6 GPU Accelerated Computation

Due to the high computational cost associated with the motion of many particles, we wrote a parallel
simulation code to take advantage of General Purpose Graphics Processing Unit (GPGPU) computing.
In order to provide a general purpose tool, available to a wider audience, we made a graphical-user-
interface-based simulation tool (DCMS). This interface was written in Java, using the cross-platform
AMD APARAPI library [24] to use OpenCL computation whenever possible. This also allows the soft-
ware to efficiently use GPGPU computing when available, and fall back to CPU computing if it is not,
in a cross-platform manner. Our standard production runs, using the moss geometry and 161-image,
2-bleach sequence, take approximately half an hour to run (on an AMD RX 480 GPU). More modest
simulations, using fewer particles, fewer imaging steps, or more simple (fewer polygon) geometries, for
example, can be performed in a few minutes.

In order to more effectively perform the large number of runs required for our library fitting approach
used in Section S2.4, we also wrote a version of the software using NVidia’s CUDA platform. Combined
with some platform-specific optimizations, as well as using an analytical form of the ideal moss geometry
rather than a triangulated mesh, our run-time was reduced by approximately a factor of 10 (i.e. to 140
s on an NVidia GTX 780Ti) (see Ref. [25] for computational details).

3. Results

3.1 Cell Shape Influences Fluorescence Recoveries in vivo

In order to study the influence of cell shape and boundaries on fluorescence recovery in vivo, we con-
ducted FRAP experiments in the moss Physcomitrella patens, at two different ROI locations, one at
the cell edge and another at the center of the cell (as depicted in Fig. 2b). We processed the curves to
correct for acquisition and reversible photobleaching, and ensured that our experiments were in the linear
range of the detector (Sections S2.2, S2.3 and S4). Additionally, recoveries at the cell edge exhibited
a slower rate of recovery and higher fluorescence plateau when compared to the center. To ensure that
these observations were not due to filamentous actin localization at the cell edge, we performed the
same analysis in the presence of an actin depolymerization agent, latrunculin B at 10µM (Section S6).
Latrunculin B treatment, which has been shown to completely depolymerize the actin cytoskeleton at
this concentration[26], had no influence on the observed fluorescence recovery(Fig. S18).

To determine if a single diffusion coefficient could reproduce the different rates of recovery observed
at the edge and the center, we simulated FRAP recovery curves at the edge and center for a range of
diffusion coefficients using the model described in Section 2.1, and Section S1 in the Supporting
Material. In our fitting routine (Section S2.4), we used one diffusion coefficient to fit recovery at both
the edge and the center, which yielded a value of D = 8.25 ± 0.358 µm2s−1. This diffusion coefficient
is within the expected range for 3xmEGFP under physiological conditions[27], and using the Einstein-
Stokes relation can be used to estimate an effective viscosity of the moss cytoplasm—approximately one
order of magnitude higher than that of water in this case. The simulations at the cell edge exhibited both
a slower rate of recovery and higher fluorescence plateau when compared to the center, recapitulating
experimental recoveries. The slower recovery at the cell edge is due to geometrical constraints provided
by the apical plasma membrane, i.e., proteins cannot flow in or exchange in all directions as they can at
the center of the cell. The higher plateau at the cell edge is caused by photobleaching fewer particles at
the cell edge since the three-dimensional Gaussian laser beam extends outside of the cell volume at the
edge, in contrast to the fully encased beam at the cell center.

Fourier analysis of the spatial fluorescence recovery further supports the claim that cell shape can
influence the interpretation of FRAP curves (Sections S3.2 and S3.3). Specifically, experimental and
simulated fluorescence concentration gradients recovered in the same way, as characterized by the first
mode of the Fourier series representation of the spatial recovery profile (Fig. S13a and Movie S3).
Our simulation results in conjunction with experiments highlight the strong influence of boundaries on
recovery, and shows that erroneous conclusions about the fraction of bound molecules and fluorescent
mobility at the edge and center can be made if such geometric effects are not taken into account. It
is important to note that boundary effects are masked by the additional effects (such as scan speed)
associated with a fast recovery, and become more apparent at lower diffusion coefficients (Fig. 3). In the
limit of a fast scan speed, each image or photobleach happens at a single point in time, and the curve is
well sampled during recovery. However, with a slower scan speed—or a fast recovery—each image spans
a large amount of the recovery time, and the resultant recovery is under-sampled, distorting the apparent
fluorescence recovery.

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/059220doi: bioRxiv preprint 

https://doi.org/10.1101/059220


0 10 20 30 40
Time (sec)

0.6

0.8

1

In
te

ns
ity

A)!

0-0.11s!
    Δt1!

20-40s!
   Δt2!

G
FP

!
SI

M
!

B)!

C)!

Figure 2. Cell shape influences fluorescence recovery in vivo and in silico. A) Three- and two-dimensional
rendering of simulated scanning confocal photobleaching and recovery. Artificially fast imaging scan rates
were used to illustrate three dimensional properties of the simulation. The full animated form of this
panel can be found in Movies S1 and S2. B) Fluorescence recovery of 3xmEGFP cells at the edge
(black squares) and center (green circles). Best fit simulation indicated in red. n = 14 and 7 for the
edge and center, respectively. Error bars represent standard deviation. C) Cropped and frame averaged
photobleaching ROI at the cell edge of 3xmEGFP cell line (top) and simulation (bottom). Time intervals
for frame averaging are ∆t1 = 0− 0.11 s and ∆t2 = 20− 40 s. n = 14 and 50, respectively. ROI is 4 µm
in diameter. Image intensity denoted with rainbow lookup table.

3.2 Exponential Fitting Does Not Necessarily Reflect the Underlying Dynamics

When a proper analytical model is not available to describe a given fluorescence recovery, a common
practice is to fit the recovery data to a series of exponentials; the number of exponentials needed to
fit the recovery has been interpreted as the number of “dynamic states” of the fluorophore [28–33]. In
this context having multiple dynamic states refers to the various modes by which a fluorophore recovers
during a FRAP experiment. These modes can include multiple diffusion coefficients, chemical reactions,
and active transport, or any combination of the three. Specific examples would include: the presence of
more than one diffusion coefficient in a reaction diffusion system; two modes of fluorescence recovery in
an active transport and diffusion based system; two unique reaction rates in a reaction dominant FRAP
experiment.

Fundamentally, exponential fitting should only be used to identify unique reaction rates in a reaction
dominant FRAP experiment [34]. This is because diffusion-based fluorescence recovery asymptotically
behaves as a power law, and neither a single, nor a double exponential can fundamentally reproduce this
behavior at long times (see Section S9, also Fig. S20). Hence, there is no theoretical justification for
fitting a single or double exponential to a diffusion based recovery.

As the divergence between asymptotic behavior and the exponential functional form often occurs at
times longer than those that are experimentally relevant, however, one may still want to consider using it
to fit early times in a recovery curve. While it may appear to provide an adequate fit in early recovery, as
we will demonstrate below using a proof-by-contradiction approach, exponential fitting fails to capture
the underlying dynamics and is not able to predict the number of dynamic states in a diffusion-based
recovery. To start, we analyzed simulated fluorescence recoveries of a fluorophore with a single diffusion
coefficient, D = 1 µm2s−1, in the moss geometry. Simulations were conducted at the cell center and
the cell edge. At both regions, a fit to the single exponential model exhibits periodic over- and under-
shooting, (Fig. 3A), whereas the double exponential model exhibits less periodicity for either location
(Fig. 3B). Residual plots demonstrate periodic errors in the single exponential fit and the lack thereof
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in the double exponential fit (Fig. 3C and D). To determine if the models predict the trends of the
fluorescence recovery, we performed a Wald-Wolfowitz runs test. This test determines if the residuals of
the fit are random, where increased randomness suggests a better fit. The results of this test suggest (for
this diffusion coefficient and given morphology) that neither the single nor the double exponential fits
exhibited random residuals (null hypothesis of random residuals, p-values = 2× 10−8 and 0.027, respec-
tively). However, there is an improvement in fit quality with the double exponential function. In addition,
other morphologies show an improvement for the double exponential fit that becomes significantly ran-
dom Table S4. Sum of squared differences between the simulation and exponential fitting demonstrated
that the single exponential fit exhibits an eight-fold higher sum of squared difference compared to the
double exponential fit (Fig. 3E). Lastly, to determine if the single- or double- exponential model should
be used, we performed an F-test to compare the change in sum of squares and the change in number of
parameters between the two models. The results of this test predicted that the double exponential fits
best with a p-value < 0.001 [35], for this morphology and diffusion coefficient.

Table S4 further shows that similar results hold for other cell shapes and diffusion coefficients
between 0.1 and 10 µm2s−1. Since the double exponential fit is comprised of two recovery phases, it
is important to note how much each phase contributes to the recovery. For the curve generated at the
cell center, the fast mode contributed to roughly 60% of the recovery while the slow mode contributed
to about 40%, Fig. 3F, indicating that contributions from both modes are significant. Based on the
results of this fitting procedure, one could naively conclude that the molecule simulated here has at least
two dynamic states and that it must have two different modes of recovery. Such a conclusion would be
incorrect, as we simulated only one diffusion coefficient.

As illustrated, at short times, exponential fitting inadequately describes the dynamic behavior of a
FRAP curve, while at long times it diverges from the expected asymptotic limit. We therefore suggest
that exponential forms should only be used to make comparisons of the relative rate of fluorescence
recovery between curves.

3.3 Model Selection Should Consider the Effects of Boundaries, Dimensionality, and Initial
Conditions

To explore the predictions made by existing analytical FRAP models (see Section S7), we simulated
fluorescence recovery experiments for six different relevant cellular shapes—nuclei, filopodia and lamel-
lipodia of mammalian cells, budding yeast, S. pombe, and tip-growing plant cells (moss)—for a range of
biologically relevant diffusion coefficients (Fig. 4A and b and Movies S4-S8). We used four notable
analytical models [2–4, 36] to fit to our simulated recoveries. Because of their substantial citation history,
we selected both the analytical models from Axelrod et al. [2] and Soumpasis et al [3]. For its simplicity,
and because it incorporates boundaries, we selected a one-dimensional analytical solution with reflective
boundary conditions [36]. Because it takes into account the PSF and confocal scanning during photo-
bleaching, we chose the analytical solution given by Braeckmans et al. [4]. Once the simulated recoveries
were fit with these models, we measured the percent difference between the simulated input diffusion
coefficient, Dtrue, and the model predicted diffusion coefficient, Dmodel, i.e, |(Dtrue−Dmodel)/Dtrue|∗100.

The analytical models from Axelrod [2], Soumpasis [3], and Braeckmans [4], most accurately predicted
diffusion coefficients when photobleaching was conducted at the cell center. As expected, all three models
failed to predict diffusion coefficients reliably in long thin tubular geometries (with percent differences
greater than 50% for most cases), i.e. S.pombe and filopodia, as shown in Table I. These models also
exhibited similar failings in the remaining cell shapes when FRAP was conducted at the cell edge (with
percent differences greater than 50% for most cases). Further evidence for this spatial effect was demon-
strated by conducting photobleaching and model fitting at a varying distance away from the cell edge.
Consistent with strong boundary effects, as the bleaching event (ROI) was moved further from the cell
edge, we observed an increased rate of fluorescence recovery and improved model predicted diffusion coef-
ficients (see Fig 5). This cautions against using indiscriminately, analytical models that make infinite
boundary assumptions in complex cellular geometries. These boundary effects can be further illustrated
using the one-dimensional strip FRAP model that incorporates boundaries. This model predicts that
bleaching at the boundary should recover with an effective diffusion coefficient 4 times slower than a
centered bleach (see Section S8).

The one-dimensional strip FRAP was found to be the most accurate (with percent differences less
than 25% in most cases) in both S.pombe and filopodia where the geometries closely resembled a long
thin tube relative to the imaging ROI, as shown in Table I. Furthermore, because the model accounts
for boundaries, it accurately predicts diffusion coefficients at the ends of the cells. Although moss is also
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Figure 3. Multiple exponential fits cannot evaluate the number of dynamic states of a protein. A) Sim-
ulated moss fluorescence recovery (blue circles) with corresponding single exponential fits (black lines),
D=1 µm2s−1. Photobleaching was performed at the cell edge (bottom) or in the middle of the cell (top).
B) Simulated moss fluorescence recovery (blue circles) with corresponding double exponential fits (red
lines), D=1 µm2s−1. Photobleaching was performed at the cell edge (bottom) or in the middle of the cell
(top). C) Residuals for the single exponential fit to simulated moss recovery away from the cell boundary.
D) Residuals for the double exponential fit to simulated moss recovery away from the cell boundary. E)
Sum of squares for the single exponential (black) and the double exponential (red) fits. Fits were per-
formed on the simulated moss recovery at the middle of the cell. *** indicates p-value < 0.001 of extra
sum of squares F-test. F) Percent of fluorescence recovery dictated by the fast (black) and slow (white)
terms in the double exponential fit. Fit was performed on moss recovery at the middle of the cell.

a long tubular cell, the strip FRAP model could not accurately measure diffusion within this cell type.
This is because moss is large relative to the PSF such that the bulk of the fluorescence recovery does not
happen along one dimension. The one dimensional strip model failed to measure diffusion coefficients
accurately for the remaining more complicated cell shapes.

Lastly, we chose the VirtualFRAP tool (part of VCell environment) [13] as an algorithmic example
because it incorporates the cellular boundaries, albeit in two-dimensions, and calculates a diffusion coef-
ficient after an iteration procedure. Note that the VirtualFRAP tool is a two-dimensional continuum
approach that is best suited for low NA lenses. This low NA is necessary to bleach a cylindrical region
encompassing the height of the cell. The algorithmic VCell VirtualFRAP tool accurately estimated
diffusion coefficients (within a 25% difference) for all morphologies with only one exception(see below),
(Table I). This level of accuracy is consistent with our simulated bleached region being close to a cylin-
der as shown in Section S11. It also indicates that incorporating the two dimensional geometry is a
good approximation for many cell types and our measured optical settings.
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ulated fluorescence recoveries with photobleaching at the middle (A) or edge (B) of the cell. Post-bleach
image is 16 seconds after photobleaching. Fluorescence intensity is indicated by the rainbow lookup table.
Scale bar is 5µm.

One trend was observed across all the models, specifically that the models mostly predicted inaccu-
rate diffusion coefficients when Dtrue = 10 µm2s−1. This failure is the product of the finite scan rate
used during photobleaching and image acquisition, and can be attenuated at artificially fast scan speeds,
Table S5. At 2800 Hz, a protein diffusing at 10 µm2s−1 is expected to travel roughly 80 nm during a
single line scan. Given our 100 nm line spacing, this suggests that diffusion is too fast for our acquisition
speed. Furthermore, this demonstrates that at the upper scan speed of our confocal system (2800 Hz), we
cannot reliably measure fast diffusion coefficients greater than 10 µm2s−1, and highlights how the finite
scan speed of the confocal must be considered as a limiting factor in performing FRAP experiments.

3.4 Membrane FRAP

FRAP analysis of molecules associated with the plasma membrane has been used extensively to charac-
terize their dynamics[37–41]. Compared with intracellular molecules, using FRAP to estimate diffusion
coefficients in membranes is simplified due to the two-dimensional nature of the membrane, as well as
the slower dynamics of the molecules. To explore the influence of membrane curvature on fluorescence
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Figure 5. ROI Positional Dependence. A) Simulated fluorescence recovery for an array of photobleach-
ing regions. Color of the curve denotes position of bleach as depicted. B) Best fit diffusion coefficients
for the simulated recoveries in (A) when fit to the Soumpasis [3] model. Smaller dots are intermediate
points, not depicted in the in (A).

Diffusion Coefficient (µm2s−1)
Cellular

Geometry Input
D

Axelrod
1976b

Soumpasis
1983

Braeckmans
2003 1D FRAP VirtualFRAP

B Yeast E 1 0.123 ± 0.001 0.103 ± 0.001 0.103 ± 0.001 0.820 ± 0.004 1.22 ± 0.01
B Yeast C 1 1.95 ± 0.02 1.82 ± 0.02 1.82 ± 0.02 3.98 ± 0.02 0.908 ± 0.004
B Yeast E 10 3.16 ± 0.03 2.90 ± 0.02 3.25 ± 0.16 9.44 ± 0.04 11.7 ± 0.1
B Yeast C 10 96.7 ± 1.8 84.5 ± 0.3 49.1 ± 0.5 44.4 ± 0.7 8.42 ± 0.13

Lamellipodia E 1 0.534 ± 0.007 0.530 ± 0.007 0.530 ± 0.007 6.18 ± 0.08 1.03 ± 0.01
Lamellipodia C 1 0.962 ± 0.010 0.942 ± 0.010 0.942 ± 0.010 3.54 ± 0.05 1.02 ± 0.01
Lamellipodia E 10 2.16 ± 0.04 2.33 ± 0.04 2.33 ± 0.04 25.1 ± 0.4 9.95 ± 1.29
Lamellipodia C 10 12.8 ± 0.6 ∗ 12.1 ± 0.5 12.1 ± 0.5 65.6 ± 1.3 10.0 ± 0.2

Nucleus E 1 0.358 ± 0.008 0.351 ± 0.008 0.351 ± 0.008 3.48 ± 0.07 1.03 ± 0.02
Nucleus C 1 1.56 ± 0.02 1.55 ± 0.02 1.55 ± 0.02 7.18 ± 0.14 1.01 ± 0.01
Nucleus E 10 3.17 ± 0.05 3.38 ± 0.05 3.38 ± 0.05 23.3 ± 0.3 13.9 ± 0.2 ∗

Nucleus C 10 81.7 ± 0.7 46.4 ± 0.4 ∗ 40.3 ± 0.3 83.3 ± 1.4 6.36 ± 0.13 ∗

Pombe E 1 0.152 ± 0.001 0.135 ± 0.002 0.135 ± 0.002 1.39 ± 0.02 1.05 ± 0.01
Pombe C 1 0.374 ± 0.002 0.359 ± 0.002 0.359 ± 0.002 1.17 ± 0.01 0.948 ± 0.004
Pombe E 10 0.994 ± 0.005 0.999 ± 0.005 2.28 ± 0.14 11.6 ± 0.1 11.3 ± 0.1
Pombe C 10 6.94 ± 0.12 6.13 ± 0.08 7.40 ± 0.12 37.3 ± 0.2 10.1 ± 0.1

Moss E 1 0.467 ± 0.012 0.469 ± 0.014 0.469 ± 0.014 5.68 ± 0.19 1.10 ± 0.02
Moss C 1 1.06 ± 0.03 1.07 ± 0.03 1.07 ± 0.03 4.31 ± 0.15 1.05 ± 0.02
Moss E 10 2.26 ± 0.27 2.43 ± 0.29 2.43 ± 0.29 32.7 ± 3.8 12.1 ± 0.2
Moss C 10 6.62 ± 0.24 6.98 ± 0.23 6.98 ± 0.23 52.9 ± 2.0 7.81 ± 0.14

Filopodia E 1 0.147 ± 0.001 0.108 ± 0.001 0.108 ± 0.001 1.09 ± 0.01 1.03 ± 0.01
Filopodia C 1 0.420 ± 0.003 0.402 ± 0.003 0.402 ± 0.003 1.12 ± 0.01 1.03 ± 0.01
Filopodia E 10 0.982 ± 0.027 0.978 ± 0.030 3.17 ± 0.07 9.56 ± 0.26 10.3 ± 0.1
Filopodia C 10 8.30 ± 0.05 7.66 ± 0.04 7.66 ± 0.04 32.0 ± 0.2 ∗ 10.3 ± 0.1

Table I. Best fit diffusion coefficients for the four analytical models and the VCell VirtualFRAP tool.
ROI is either at the cell Edge (E) or Center (C). ± represents standard error of ten simulations. Bolded
text indicates cases where the model produced an answer within 25% of the true D value. Note that
similar results for D = 0.1 µm2s−1 are given in Table S3. To quantify the effects of confocal scan speed,
results for D = 10 µm2s−1, with a 280 kHz scan speed, can be found in Table S5. ∗ indicates cases in
which switching to a faster scan speed brought the measured value to within 25% of the true D value.

recovery, we simulated photobleaching experiments inside a 200 nm thick moss shell (Fig. 6A). The shell
was oriented such that the imaging plane was parallel to the flat circular surface of the cylinder (Fig 6B).
Imaging and bleaching were then conducted on the flat circular surface of the cylinder or the extreme cell
apex, as shown in Fig 6A and B. To simulate typical membrane diffusion, D = 0.1 µm2s−1 was chosen.
Analysis of our simulation results showed an increase in fluorescence recovery at the cell apex (Fig 6B).
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Figure 6. Membrane FRAP. A) Simulated fluorescence recovery images of the moss cell membrane, at
the base of the cell (top) or the extreme cell apex (bottom) with bleaching and imaging planes perpen-
dicular to the long axis of the cell. Scale bar is 3 µm. B) Simulated fluorescence recovery curves at the
base of the cylinder (green) or the extreme cell apex (black). n=10, error bars indicate standard error.
Dashed lines represent fits to the Soumpasis model (found in Section S7). C) Simulated fluorescence
recovery images of the moss cell membrane, with bleaching and imaging planes parallel to the long axis
of the cell. Scale bar is 5 µm. D) Simulated fluorescence recovery curves at the base of the moss cell
cylinder (red) or the extreme cell apex (black). n=10, error bars indicate standard error. E) Simulated
fluorescence recovery images of the budding yeast membrane, with bleaching and imaging planes parallel
to the long axis of the cell. Scale bar is 3 µm. F) Simulated fluorescence recovery curves at mother cell
(red) and the daughter cell (black). n=10, error bars indicate standard error.

When fit with the Soumpasis model (see Section S7), we found the measured diffusion coefficients to
be D = 0.11 ± 0.01 and 0.13 ± 0.01 µm2s−1 at the base of the cylinder and the cell apex, respectively.
This reduction in predicted diffusion coefficient can be attributed to performing a planar bleach scan on
a curved membrane. During this planar scan, the membrane curvature exposes more bleachable surface
area, creating an larger effective ROI. We expect this effect to become more dramatic in instances where
both the ROI and membrane curvature are large.

To investigate the effects of FRAP on membranes in other cellular orientations, we simulated imaging
and bleaching planes that were parallel to the long axis of the moss cell (Fig. 6C and D). Simulations
were then subjected to photobleaching at the base of the cylinder or the extreme cell apex. At early
times flourescence recoveries at both locations appeared identical, however, at long times we observed
separation between the curves (Fig. 6D). This is beacuse photobleaching in this orientation bleached
more molecules at the base of the cylinder when compared to the apex.

To explore FRAP, in a cellular geometry often used to study membrane dynamics, we simulated
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photobleaching on the membrane of budding yeast (Fig. 6E and F). We found that photobleaching at
the daughter cell or the mother had little to no influence on flourescence recoveries. Once cell orientation
and effective ROI sizes are accounted for, membrane curvature has minimal influence on fluorescence
recoveries, consistent with earlier modeling work[41].

4. Discussion

In this paper, we experimentally showed, to the best of our knowledge for the first time, the influence of
cell boundaries in FRAP recovery. Our results were recapitulated using a comprehensive FRAP model
that not only takes into account three-dimensional cellular geometry, but also confocal microscope optical
properties. We observed that when performed close to boundaries, for instance when studying tip growing
cells, fluorescence recovery is significantly slowed even though a molecule’s diffusion coefficient remains
the same. As we have also demonstrated with an analytical model in Section S8, this results in a smaller
effective diffusion coefficient. Therefore, whenever possible, we recommend avoiding FRAP closer than
one ROI distance from the edge. In addition, when FRAP is conducted close to the cell boundary, the
three-dimensional Gaussian laser beam may extend into the area outside of the cell volume and, as a
consequence, bleach fewer fluorophores than photo-bleaching experiments performed at the cell center.
These results suggest that comparison of bound fractions of molecules near cellular boundaries should
be performed with caution.

The FRAP models we used from Axelrod et al., Soumpasis et al. and Braeckmans et al. give very
similar results and are useful to obtain diffusion coefficients in flat structures such as lamellipodia and
membranes. These models can also be useful for larger structures, such as plant tip growing cells or
other cylindrical structures, as long as appropriately fast image acquisition rates are used relative to the
diffusion coefficient in question. Our results show that for thin and elongated structures, similar to a
filopodium, pombe, or an elongated fungal hypha, a simple 1D FRAP model could be sufficient, as long
as it incorporates boundaries. For more complex morphologies, sophisticated approaches are necessary,
such as the VCell VirtualFRAP tool. We found that the VirtualFRAP tool—an algorithmic approach—
performs well in all of our simulated cases, when an appropriately fast scan rate is used, with less than
25% error in estimation of the diffusion coefficient. Importantly, VirtualFRAP performs well at bound-
aries, but when two-dimensionality cannot be approximated (i.e. when high NA is required), it might
becomes necessary to apply a full optical and geometrical simulation method such as the one presented
in here. This level of accuracy, however, is often times adequate, and will also allow for the estimation
of the effective viscosity, and can provide further insight into the cytoplasmic forces.

Overall, we found that the analytical models considered in this paper can generally fail if the underly-
ing assumptions do not match the cellular geometry or confocal optical properties that were used. While
this is expected, given the misuse of these models in the literature, we recommend that they should not
be used naively without consideration of the experimental setup. This caveat also applies to our DCMS
software, as it makes assumptions about the properties of the system (simple diffusion, specific PSF
shape, finite fluorophore reservoir, etc.), as well as requiring that the researcher knows and inputs the
parameters of their experimental setup.

In addition, we find that extraneous recovery states resulting from fitting a series of exponentials can
be explained by the geometrical and optical properties of the system, rather than an underlying biological
mechanism. Moreover, when using analytical FRAP diffusion/binding kinetics models, we expect these
effects to influence binding and dissociation constants. We additionally discourage the use of exponential
fitting without theoretical justification, as its asymptotic behavior does not match that of a primarily
diffusive system. A detailed analysis of these effects is beyond the scope of this work, and is left for
future studies.

Although our analysis showed how boundary and optical effects can confound FRAP analysis, these
conclusions cannot be generalized to every experimental setup, and further validation across additional
models is required. In order to make this model validation process more accessible, for experimentalists
using existing models or theorists developing new analytical models, we developed an interactive graphical
interface for the Java-based version of our simulation, called Digital Confocal Microscopy Suite (DCMS).
This tool allows the users to simulate specific experimental conditions—cell type, microscope settings,
and diffusion coefficient—and easily generate simulated recovery curves. Any given model (analytical or
algorithmic) can then be fit to these simulated recovery profiles to calculate the model predicted diffusion
coefficient. The difference between the model predicted and input (to the simulation) diffusion coefficients
can then be used to determine the validity of the model of interest. DCMS can also serve as a useful
and freely available [20] teaching tool, not only to explore optical and boundary effects in FRAP, but
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also to demonstrate how scanning confocal microscopes can be used in fluorescence dynamics techniques,
such as Raster Image Correlation Spectroscopy (RICS) [42], Number and Brightness (N&B) [43, 44], and
Fluorescence Correlation Spectroscopy (FCS) [45].
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S1. FRAP Model in Digital Confocal Microscopy Suite (DCMS)

S1.1 Diffusion of Particles

We used Brownian dynamics to simulate the diffusion of fluorescent particles in three-dimensional cel-
lular geometries [1, 2]. The particles are assumed to be in a fluid with a very low Reynolds number, in
which inertial effects are negligible, and the Stokes equation, i.e.,

ζ
dr

dt
= ξ(t) (1)

applies for each particle. Here ξi(t) is the ith sample of random Gaussian noise with the properties

〈ξi(t)〉 = 0 (2)

〈ξi(t)ξj(t′)〉 = 2kBTζδijδ(t− t′) . (3)

Assuming spherical particles with radius R, the friction coefficient ζ, is given by

ζ = 6πηR (4)

for the dynamic viscosity η. We can relate this ζ to the diffusion coefficient D, using the Einstein relation

D =
kBT

ζ
. (5)

S1.2 Boundary Conditions

The particles in the simulation were constrained to stay within a region defined by a triangulated mesh,
as shown in Fig. S1a. The constraint was imposed by adding an elastic collision between the particles
and the boundary of the geometry, displayed in Fig. S1b and S1c. For each particle, where di is the
attempted displacement before collision, during each time step, a line segment is drawn from the pre-
vious position along its direction of travel. For each of the triangles that compose the boundary, the
line segment connecting the current to the next position is tested to check if it intersects the triangle.
Out of the intersections that are found, the first one reached is chosen as the collision to perform. The
position of the particle is set to this intersection point, and the amount of extra distance is recorded.
The displacement vector is then reflected along the surface normal n̂, and the final displacement df is
determined from the initial displacement di by

df = di − 2n̂(di · n̂) . (6)

The particle then repeats the movement process (including additional collisions, if appropriate) using
the remaining amount of distance.

We discretize this model using a basic Eulerian integration scheme with a variable time step. As we
only need particle coordinates when we use them for imaging or photobleaching, we can choose the time
step size (δt) to be variable. At every time step, the difference between the current time, and the time
of the next imaging or photobleaching event, is calculated. This time difference is then used as the time
step size for that step. It has been shown that [3] error associated with Brownian dynamics simula-
tions with reflective boundary conditions is on the order of O(

√
δt). In order to keep a bound on our
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Figure S1. Fluid model boundary conditions. A) Visual representation of the model moss geometry. B)
Example of the wall collision process for a particle attempting to move outside a square corner in two
dimensions. The particle’s tentative final position after moving dmove is outside both the horizontal and
vertical boundaries. This causes both distances dv-wall and dh-wall to be calculated. In this case, dv-wall is
the smaller, and thus happened first, so it is the chosen collision. The distance dremain = dmove−dv-wall is
calculated, the displacement vector is reflected by the boundary, and a new tentative position is proposed
a distance dremain along that vector. C) Again the same particle’s tentative position is tested, and found
to be outside the horizontal boundary. There is only one distance, dh-wall, so dremain = dmove − dh-wall is
the only option. The displacement vector reflection process is performed again, and the particle moves
its remaining dremain, arriving at yet another tentative position. As this position is inside all boundaries,
it is accepted as the final position.

simulation discretization error, we place a maximum value on the possible duration of a time step. If a
given time step would be larger than that maximum duration, time steps of that maximum duration are
taken instead, until the time of the next event is reached. This maximum is chosen to limit the average
distance that a particle can travel in a single time step, via the relation Dδt < 0.1 µm2. To show that
our simulations are performed in the region where that error is small, we varied the maximum allowable
time step size, and found that the resulting FRAP recovery curve is unaffected, as shown in Figure S2.
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Figure S2. Validation of choice of simulation maximum time step. DCMS simulations for the moss
geometry at the cell center and edge were performed with a maximum time step of 0.012 s (red) and
0.00012 s (black), respectively. D = 8.25 µm2s−1, n=50, error bars indicate standard error.
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S1.3 Confocal Imaging and Bleaching

In order to accurately measure diffusion of an experimental fluorophore, it is important to model the
imaging and photobleaching events on the confocal microscope properly[4]. Conventionally the Point
Spread Function (PSF) of a confocal microscope is the result of the convolution of the excitation beam
which can described by a Gaussian beam, i.e. a beam with a Gaussian profile along the x and y axes,
and Lorentzian along the z-axis, and an emission beam which is typically modeled by an Airy func-
tion [5, 6]. While more detailed analytical calculations for the PSF of a confocal microscope exist [7],
the required numerical integration would put a prohibitive load on the computational modeling when
rendering images. To find the best parameters to empirically and efficiently describe the PSF of our
microscope, we imaged 175 nm fluorescent beads as described in Section 2.5. As the beads used to
measure this PSF are not an ideal point source, this produced a convolution of the PSF and the bead
volume. After using a three-dimensional fitting routine in which a candidate PSF is convolved against a
sphere representing the bead, we found that our experimental z-stacks were best fit by the convolution
of two Gaussian beams (see Fig. S3).Thus, our resulting analytical approximation to the PSF takes the
form

IPSF(x, y, z) =

(
I0

w2(z)

)2

e
−4

(x2+y2)

w2(z) , (7)

where the beam waist is given by

w(z) = w0

√
1 +

z2

z2
R

. (8)

Here, w0 is the minimum beam waist and zR is the Rayleigh range. This expression resulted in an
improved fit compared to the commonly used 3D Gaussian model—as evidenced by the sum of squares
shown in Fig.S3c. The resulting parameters for the fitting routines to the squared Gaussian beam are
shown in Table S1 (top). This improvement is likely due to the large pinhole size used, 2 AU (Airy
Units).

To illustrate that the fitting accuracy of the 3D Gaussian can be improved by decreasing the pinhole
size, we measured the point spread function again for decreasing pinhole sizes Fig. S4. To collect more
light and more accurately depict the PSF, we reduced the confocal scan speed to 400 Hz. As the pinhole
size is reduced, the 3D Gaussian approximation improves, but never outperforms, the Gaussian beam
approximation. A pinhole size of 2 AU was chosen for FRAP experiments to reduce out of focus light
and collect enough light to measure an adequate fluorescence signal in moss. Although decreasing the
pinhole size removes out of focus light, it also reduces the amount of light collected. At smaller pinhole
sizes, such as those less than 1 AU ,the laser power required to collect a sufficiently large fluorescence
signal would result in increased photo-toxicity and acquisition photobleaching.

Parameter Value
Imaging w0 350± 25 nm
Imaging zR 875± 25 nm

Bleaching w0 950± 158 nm
Bleaching Kc 0.008± 0.0015
Bleaching Ke 0.006± 0.0015

Table S1. FRAP parameters determined for 3xmEGFP. Imaging parameters include the beam waist,
w0 and Rayleigh range, zR. Confidence intervals are defined by the sampling distance for the respective
parameter, as illustrated by the grid in Figure S3. Photobleaching parameters include the beam waist,
w0, and bleaching probabilities, Ke and Kc, for the edge and center, respectively with 95% confidence
intervals. Ke and Kc Monte Carlo replicas never produced different parameters. For this reason the
confidence intervals for these parameters are represented by our simulation sampling distance for the
parameter K. It is important to note that using a shared bleach probability for the edge and center did
not appreciably change our measured diffusion coefficient.

Since confocal scan time has been previously shown to influence fluorescence recovery [8], we per-
formed a series of estimates to determine if modeling the entire scanning process was necessary. We
estimated the distance a particle travels in a given time as the one-dimensional root-mean-square dis-
tance for a diffusive particle with diffusion coefficient D as L ≡

√
2Dt. For D = 10 µm2s−1 (the largest
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value consistent with our experimental measurements in moss), we determined length scales for the
durations of the various imaging processes, as shown in Table S2. We compared these distances with
our imaging resolution—our PSF on the scale of hundreds of nm. The characteristic distance traveled
during the acquisition of an image line is significantly smaller than the PSF size—defined by its beam
waist, w0—while that of an entire image is larger. Thus, we chose a time step of 360 µs for imaging or
photobleaching, a value equal to the time it takes to do a single line.

Process Duration t Distance L ≡
√

2Dt
Single point acquisition 500 ns 3.16 nm
One pixel to the next∗ 1.4 µs 5.29 nm
One line, end to end 360 µs 84 nm
One entire image 91 ms 1.34 µm

Table S2. Estimates of the distance a particle with diffusion coefficient D = 10 µm2s−1 will travel
during various processes of the Leica TCS SP5. ∗ Total time, including both imaging and movement.

To simulate photobleaching on the confocal microscope, it was necessary to determine the spatial
profile of an individual photobleaching event. This profile was characterized as a Gaussian beam, with a
fluorophore-bleach probability (Pphotobleach) proportional to the beam intensity. As the microscope scans
through a line at a speed much greater than diffusion (Table S2), we treated the photobleaching effect
of a single horizontal line scan as a single instantaneous event. This was done by convolving the Gaussian
beam intensity against a boxcar function from x = −a to x = a, i.e,

Pphotobleach(x, y, z) = K

∫ a

−a
I(x+ u, y, z)du =

∫ a

−a

K

w2(z)
e
− 2((x+u)2+y2)

w2(z) du

=
K

w(z)

[
erf

(√
2(x+ a)

w(z)

)
− erf

(√
2(x− a)

w(z)

)][
e
− 2y2

w2(z)

]
(9)

using the same w(z) functional form as used for imaging, with K as the bleaching proportionality con-
stant. Simulated confocal scanning events using Eq. 9 are illustrated in Fig. S5a and b. To improve
fitting to experimental data, we let the imaging beam width w0 differ from photobleaching width. The
resulting parameters are shown in Table S1 (bottom). It is not surprising that the photobleaching beam
width differs from the imaging width because it has been previously shown that higher order diffraction
rings can lead an extension of the bleaching width [9].

The entire FRAP process is illustrated in Movie S1, and Movie S2, with a snapshot from the sim-
ulations shown in Fig. 2a. Image stacks obtained from the simulations were analyzed to calculate the
recovery curves, enabling the measurement of diffusion coefficients as explained in Section S2.4.
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Figure S3. Measuring the imaging Point Spread Function (PSF). A) Squared Gaussian Beam approxi-
mation IPSF(x, y, z) (left, defined by Eq. 7) of experimental point spread function for 3xmEGFP (right).
B) Parameter scan of potential values for w0 and ZR. Cool colors indicate small sum of squares between
the experimental PSF and Squared Gaussian Beam, while warm colors indicate high sum of squares. C)
Sum of squares between the experimental PSF and either the Squared Gaussian Beam (red) or the 3D
Gaussian (blue).
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Figure S4. Effect of reducing pinhole size. A)Experimentally measured PSF in x-y and x-z for pinhole
sizes of 0.2, 0.4, 1, 2, and 6.3 AU . Rainbow look up table indicates fluorescence intensity. Scale bar
is 1 µm. B) Sum of squared differences for PSF fit with Gaussian beam (red) or 3D Gaussian (blue).
C) Percent difference between sum of squared differences of the Gaussian beam and the 3D Gaussian
approximations. Pinhole size is given in Airy Units (AU).
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Figure S5. Modeling the photobleaching PSF A) Example simulated rectangular photobleaching with
one, two, and ten confocal laser scans using Eq. 9. Dashed yellow rectangles indicate regions in which
horizontal lines scans were measured and averaged along their vertical axis. B) Horizontal line scans
through simulated photobleaching images in (A) for one, two, six, and ten confocal laser scans. I and
Ib represent the simulated fluorescence intensity and the mean image background intensity, respectively.
Blue dashed lines indicate the bleach result following each successive laser scan, and the red solid line
indicates the final bleach result.
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S2. Processing and Fitting of Experimental FRAP Data

S2.1 FRAP Post-Acquisition Image Processing

Divide by pre-bleach,
background-subtract

Yields Rexp0 (t)i (Eq. 10)

Divide by R(t)

Average across experiments
Yields Rexp(t)

FRAP experiment
image series in
Yields I(x, y, t)i

Simulation
image series in
Yields I(x, y, t)i

Divide by pre-bleach
Yields Rsim(t)i (Eq. 10)

Average across simulations
Yields Rsim(t)D,KE ,KC ,w0

Simulation/experiment
argument minimization fit

Fit Parameters D,KE ,KC ,w0

Generate Monte Carlo
replicas (Eq. 16)

Generate Monte Carlo
replicas (Eq. 16)

Simulation/experiment
argument minimization fit

Confidence Intervals for D, KE , KC , w0

Spatial
Analysis Spatial collapse about ROISpatial collapse about ROI

R(t) (Eq. 13)Correct for reversible photoswitching
α

R(t)

Figure S6. Flowchart for postprocessing of experimental and simulated images produced during FRAP.
Both experimental and simulated images were reduced to recovery curves, averaged, and normalized
as specified. The experimental curves were then subjected to an argument minimization to find their
corresponding best fit simulations. Confidence intervals for the best fit parameters were generated via
Monte Carlo replicas (Section S2.5).

As depicted above, raw experimental FRAP tiff stacks I(x, y, t)i were first analyzed with a custom
ImageJ macro. The subscript i represents the ith replicate tiff stack for a particular experimental con-
dition. The macro was written to track the photobleached ROI throughout the fluorescence recovery.
The macro conducted background subtraction and divided the ROI fluorescence intensities by the ROI
prebleach intensity to yield Rexp

o (t)i [10], namely,

Rexp
o (t)i =

〈I(x, y, t)i〉(x,y)∈ROI − 〈I(x, y, t)i〉(x,y,t)∈BackROI

〈I(x, y, t)i〉(x,y)∈ROI,t<0 − 〈I(x, y, t)i〉(x,y,t)∈BackROI
. (10)

Here 〈...〉 denotes averaging about the corresponding subscripts inside the parenthesis, i.e.,

〈...〉(j) =
1

n

n∑
j=1

. (11)

The subscript ROI represents the photobleaching ROI and the subscript BackROI represents the back-
ground ROI. All subsequent FRAP recovery curve processing was then conducted on the time dependent
curves Rexp

o (t)i. Simulated recovery curves were subjected to the same normalization without background
subtraction to yield Rsim(t)i.

Rsim
o (t)i =

〈I(x, y, t)i〉(x,y)∈ROI

〈I(x, y, t)i〉(x,y)∈ROI,t<0
. (12)
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Experimental recoveries were then subjected to the acquisition photobleaching/reversible photoswitching
correction (Section S2.2). Finally, using argument minimization, all relevant experimental parameters
(Section S2.4) and corresponding confidence intervals were determined (Section S2.5).

S2.2 Image Acquisition Photobleaching and Reversible Photoswitching

Image acquisition photobleaching and reversible photoswitching during imaging, are processes by which
fluorophores are photobleached or photo-converted by the laser used to excite the fluorophores. Depend-
ing on the experimental setup and conditions, such as the choice of fluorophore of interest and laser
intensity, image acquisition photobleaching can significantly reduce fluorescence recoveries and lead to
underestimation of the diffusion coefficient [11–13].

To measure the contribution of these effects, fluorescent cells were imaged with the same image sam-
pling rate and experimental conditions as those used during FRAP experiments (Section 2.2). Cells
were not subjected to the high intensity laser pulse necessary during FRAP experiments. Thus, reduced
fluorescent intensity was primarily a result of the photobleaching and photoswitching during image acqui-
sition. Images were then analyzed, and the mean fluorescence loss within the ROIs at the cell edge and
center were measured across time. This ensured that the appropriate boundary effects were taken into
consideration for each location. Fluorescence loss RL(t)i was divided by the intensity measured within
the ROIs for the first image acquired RL(0)i to yield RLn(t)i. Here, the subscript i denotes the ith exper-
imental replicate. These normalized curves RLn(t)i were averaged across these replicates < RLn(t)i >(i)

to yield RLn(t). Examples of these curves from the cell center of latrunculin B treated cells expressing
3xmEGFP are displayed in Fig. S7a.
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Figure S7. Image acquisition photobleaching and reversible photoswitching. A) Observed photobleach-
ing and photoswitching during image acquisition at the center of cells expressing 3xmEGFP treated
with latrunculin B. Red squares represent mean acquisition intensity, RLn(t). Regions of different image
sampling rates are outlined above. Blue dashed lines represents piecewise exponential approximation
of image acquisition effects R(t), see Eq. 13. Error bars represent standard error. (n=9). B) Example
fluorescence recovery before < Rexp

o (t)i >(i) (black triangles) and after Rexp(t) (red squares) correc-
tion for acquisition photobleaching and reversible photoswitching. Correction was conducted by dividing
< Rexp

o (t)i >(i) by the acquisition correction R(t) (blue) for the cell center of latrunculin B treated cells
expressing 3xmEGFP. n=13 and 6, respectively.

The observed intensity profile shows a short bleaching event, followed by two longer recovery events
at the input acquisition rates. This initial decay was less than 2% because we tried to minimize the laser
power (10% power) required to illuminate our sample. Since our pinhole size was 2 Airy Units, we could
collect sufficient light at low laser power 2.3. To help prevent further fluorescence loss, we then changed
our sampling rate after the first 30 points were selected. This decrease in imaging sampling rate caused

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/059220doi: bioRxiv preprint 

https://doi.org/10.1101/059220


a small increase in fluorescence intensity, an effect which has previously been shown to be the prod-
uct of reversible photoswitching during image acquisition [11–13]. Furthermore, this type of reversible
photobleaching cannot be explained by a single light dependent rate constant that converts unbleached
fluorophores to permanently bleached ones.

As a first approximation to this reversible photoswitching process, one would have to determine the
rate constants that dictate the reversible bleaching reaction PB ← F ⇀↽ RB, where PB, F, and RB
are the concentrations of permanently bleached, unbleached, and reversibly photoswitched fluorophores,
respectively. However, this reaction can include additional states and transitions (such as from RB to
PB), and the relevant rate constants have been shown to be light dependent [11], increasing the number
of open parameters in the model that need to be experimentally determined. While DCMS is capa-
ble of reproducing this reversible photoswitching, to avoid a large reaction model and parameter scan,
and increase the accuracy of our approach, we sought to remove acquisition photobleaching/reversible
photoswitching effects from our experimental data directly [14].

Since these RLn(t) curves were noisy, they were approximated by separate exponential functions
as shown in Fig. S7a. Specifically, the three image sampling rates of 0.11, 0.25, and 1 s/frame used
throughout the time course were each fit to their own exponential function, resulting in one curve, R(t),
that approximates the entire image acquisition time course RLn(t), i.e.,

R(t) =


A1e

B1t + C1 for 0 < t ≤ 3.39

A2e
B2t + C2 3.39 < t ≤ 10.89

A3e
B3t + C3 10.89 < t ≤ 40 .

(13)

Finally, to correct for image acquisition photobleaching/reversible photoswitching each averaged
FRAP experiment 〈Rexp

o (t)i〉(i) was divided by its corresponding acquisition approximation R(t) to
yield Rexp(t) as shown in the flow chart (Fig. S6). An outline of this correction procedure is provided
in Fig. S8. Examples of fluorescent recovery curves before 〈Rexp

o (t)i〉(i) and after acquisition bleach-
ing/reversible photoswitching correction Rexp(t) can be found in Fig. S7b. Following correction, these
recovery curves more accurately depict the dynamic nature of the fluorophores in question without being
confounded by image acquisition photobleaching or reversible photoswitching, and can now be analyzed
with a FRAP model that does not incorporate these effects.

Divide by pre-bleach
background-subtract

Spatial collapse about ROI

Fit to three-domain exponential
Yields R(t) (Eq. 13)

Unbleached image in

Figure S8. Flowchart for acquisition photobleaching/reversible photoswitching correction. Unbleached
images were background subtracted, normalized by the prebleach fluorescence, and spatially collapsed
about the ROI. These fluorescence traces were then fit to a three-domain exponential.

S2.3 Bleaching and Reversible Photoswitching

Similar to reversible photoswitching effects during acquisition, one should expect the main photobleach-
ing event to be influenced by the photo conversion of the fluorescent protein [11, 12]. To measure the
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effects of reversible photobleaching, we performed photobleaching experiments in the nucleus of a cell
line expressing nuclear GFP. During photobleaching, we illuminated the entire nucleus in plane, elimi-
nating the effects of fluorescence recovery in the x and y directions. Based on the size of our PSF and
our simulation evidence, fluorescence recovery in the z direction can be neglected. For these reasons,
we attribute the fluorescence recovery seen in the nucleus to reversible photoswitching (see Fig. S9a).
We found that the proportion of reversibly photoswitched molecules, α, was approximately 11%. To
approximate the rate of reversible photoswitching, R(t), the fluorescence recovery was fit to a double
exponential. As shown previously, [12], we found that α increased as we decreased the laser power of the
main bleach event (Fig. S9b).

While DCMS can model this reversible photoswitching during bleaching, once again, for similar rea-
sons, we opted to use an empirical approach and corrected for reversible photoswitching using a scheme
devised by Mueller et al. [12]. Specifically, we modified all DCMS outputs with the correction scheme [12]
expressed as

IM (r, t) = IFRAP(r, t) + αR(t)IFLAP(r, t) . (14)

Here IM (r, t) represents the observed fluorescence recovery as a function of space and time for a photo-
bleaching experiment with irreversible photoswitching, IFRAP(r, t) represents the contribution of fluores-
cence recovery from unbleached fluorophores into the bleached region, and the expression αR(t)IFLAP(r, t)
is the contribution of fluorescence recovery due to reversibly photoswitched fluorophores. IFLAP(r, t)
is used here because the population of reversibly photoswitched fluorophores can be thought of as a
Fluorescence Loss After Photobleaching (FLAP) experiment. FLAP is a process by which a high inten-
sity laser pulse activates a population of fluorophores. The fluorescence intensity within this zone of
activation will decrease as the activated fluorophores diffuse away. As shown by Mueller et al. [12],
IFLAP(r, t) = [1− IFRAP (r, t)] and [1− IFRAP (r, t)] can be substituted into Eq. 14. This is true because
the laser pulse in both FRAP and FLAP is the same. It then follows that the solution to the diffusion
equation for FLAP is equal to one minus the FRAP solution. Since our simulation produces images
with the intensity profile IFRAP (r, t) including all the necessary spatial effects, IFLAP(r, t) also includes
spatial effects. Given our measured R(t) and α, we were able to correct all DCMS outputs for reversible
photoswitching (including spatial effects) using this approach (Fig. S9c and Fig. S9d).

S2.4 FRAP Parameter Minimization

To identify the simulation parameters that best fit the recovery curves produced by experiments, a least
squares minimization routine was used. In this routine, an exhaustive parameter sweep was simulated to
generate a library of simulated recovery curves for all relevant parameter combinations. Then based on
quality of fit to the experimental curves, the best fit parameters were identified. Specifically, averaged
experimental recovery curves Rexp(t) were characterized into classes Rexp

E (t) and Rexp
C (t), depending on

if they were produced from the edge or center of the cell, respectively. Similarly, the averaged simulation
recovery curves were characterized to produce Rsim

E (t)D,K,w0 and Rsim
C (t)D,K,w0 . Here, D is the diffusion

coefficient, K is the bleaching proportionality coefficient, and w0 is the bleaching probability beam waist
used for the simulation. The best fit parameters for each experimental condition were found by minimiz-
ing the sum of squares differences between the experiment and simulation, for both the edge and center
i.e.,

arg min
w0,D,Ke,Kc

[∑
t>0

(Rexp
E (t)−Rsim

E (t)D,Ke,w0
)2 +

∑
t>0

(Rexp
C (t)−Rsim

C (t)D,Kc,w0
)2

]
. (15)

These parameters were found by allowing the edge and center to have the same diffusion coefficient D.
The bleaching proportionality coefficient, K, was split into two independent parameters Ke and Kc,
for the edge and center, respectively, to improve the resultant fit. The difference between Ke and Kc

indicates that some underlying physical process may be altering the initial bleach depths at the edge
and center (Table S1). Understanding the cause of this difference is beyond the scope of this paper.
Note that this parameter minimization procedure was only applied to experimental data, using DCMS-
generated recovery curves. Errors associated with the parameters were determined from the minimization
procedure described in Section S2.5.
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Figure S9. Reversible photoswitching caused by the main photobleaching event A) Measured reversible

photoswitching of nuclear GFP, demonstrated by IN (t) =
〈IM (r,t)〉(x,y)

〈IM (r,t<0)〉(x,y)
. α denotes the percentage

of reversibly switched fluorophores. n=4, error bars indicate standard error. Width of the nucleus

images is 9 µm. B) Fluorescence recoveries, IF (t) = IN (t)IN (t=0.21 s)
IN (t)IN (t=0.21 s) , due to reversible photoswitching

of nuclear GFP at 100% (black), 50% (blue), 30% (red), and 15% (grey) laser power. C) Illustra-
tion of reversible photoswitching components including the rate of reactivation R(t) (yellow), the
rate of their movement out of the ROI IFLAP(t) (blue), and their product R(t)IFLAP(t) (red). D)
DCMS-produced curves FRAP (t) (black) before correction for reversible photoswitching, the contri-
bution of reversible photoswitching αR(t)IFLAP(t) (red inset), and the final corrected DCMS simulation
FRAP (t) + αR(t)IFLAP(t) = FRAP (t) + αR(t)[1− IFRAP (r, t)] (blue).

S2.5 FRAP Parameter Error Estimation

In order to provide a confidence interval on the parameters determined from the parameter minimization
procedure, we used a Monte Carlo method. In the Monte Carlo method used, we took the mean and
standard deviation for the average recovery curves, Rexp(t) and σexp(t), respectively, and generated a
series of new recovery curves, γ(t)i, from them. This was done by sampling each point from a normal
distribution with the parameters given by the experimental data, i.e.,

γexp(t)i = N (Rexp(t), σexp(t)) . (16)

Here i represents the ith generated recovery curve. This generation process was repeated n times, where n
matches that of the experiment, and averaged to produce γexp(t). A similar procedure was then repeated
on the simulation data (where n = 50), for all of the varying parameters, producing a new library of
γsim(t)D,K,w0 . The minimization procedure was then applied to find the D, Kc, Ke, and w0 for that set,
as in Eq. 15,

arg min
D,Kc,Ke,w0

[∑
t>0

(γexpE (t)− γsimE (t)D,Ke,w0
)2 +

∑
t>0

(γsimC (t)− γsimC (t)D,Kc,w0
)2

]
. (17)
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The random resampling imposed by both γexp(t) and γsim(t) allows for variation of the minimized
parameters D,Kc,Ke, and w0 each time this routine is repeated. We then repeated this procedure until
the standard deviation of the parameters D,Kc,Ke, and w0 reaches convergence. The confidence of these
parameters was then expressed as two standard deviations of each parameter, as found in Table S1.
Once again, this procedure was only applied to the experimental data, based on the DCMS-produced
curves.

S3. Spatial Analysis of Fluorescence Recovery

S3.1 Spatial ROI Extraction and Processing

Uncorrected Corrected

A) B)

Uncorrected Corrected

Figure S10. Accessible volume and medial plane deviation correction. A) 3xmEGFP at cell edge before
(left) and after (right) accessible volume correction. (n = 13) B) 3xmEGFP simulation at cell edge before
(left) and after (right) accessible volume correction. (n = 50) All cropped ROIs are 4 µm in diameter.

To enable spatial analysis of fluorescence recoveries, experimental bleaching ROIs were extracted from
image stacks with a custom cropping macro written in ImageJ. During cropping, the images were man-
ually oriented and the macro was used to crop the ROIs from each image stack. Cropped image stacks
were divided by the mean of their corresponding prebleach images and then averaged across replicate
experiments, namely,

In(x, y, t)i =
I(x, y, t)i

〈I(x̃, ỹ, t̃)i〉(x̃,ỹ,t̃<0)

. (18)

Here I(x, y, t)i is the ith image stack for a particular experimental condition, t < 0 denotes the prebleach
portion of time in the image stack, and In(x, y, t)i is the final normalized image stack. Simulated images
were cropped and divided by the mean prebleach intensity in the same way.

To remove the effects of medial plane deviation and the limited accessible volume at the cell edge,
described in Section S5, the extracted ROIs were again normalized. To conduct this second normaliza-
tion, prebleach ROIs were averaged in time and along the vertical axis of the cell, as shown in Fig. S10.
Zero valued pixels were ignored in this averaging. More specifically,

Iline(x) = 〈In(x, y, t)i〉y,t<0 if In(x, y, t)i > 0 . (19)

These line scans Iline(x) were fit to an exponential function of the form Ae−Bx + C. Each ROI stack
In(x, y, t)i was then divided by this exponential decay to yield a volume corrected ROI Iv(x, y, t)i, as
shown in Fig. S10, i.e.,

Iv(x, y, t)i =
In(x, y, t)i
Ae−Bx + C

. (20)

Volume corrected ROIs were used in all subsequent spatial analyses. An outline of this volume correction
is depicted in Fig. S12.

S3.2 Fourier Analysis

Quantification of the directionality of fluorescence recovery was performed by subsampling the cropped
ROIs into angular sectors about their centers. To reduce the noise associated with small regions of inter-
est, a sliding window average was used. This sliding window was rotated 360 degrees and averaged about
the horizontal axis of the ROI, producing an intensity profile that was dependent on the angular position
of the sliding window, as shown in Fig. S11. To investigate fundamental modes of spatial recovery, the
angular intensity profiles, Iv, were reconstructed using a Fourier cosine series [15], namely,
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Iv(θ) =
∞∑
n=0

fn(θ) =
a0

2
+
∞∑
n=1

an cos(nθ) , (21)

with an denoting the amplitude of the nth Fourier mode.
To illustrate the trends captured by the Fourier coefficients, three artificial gradients were generated

and a Fourier analysis was used. The first gradient (Fig. S11a) increases linearly from right to left,
while the second (Fig. S11b) peaks at 120 degrees. Finally, the third gradient (Fig. S11c) increases
from right to left. The two linear gradients (Figs. S11a and S11c) were well approximated by the first
cosine mode of the Fourier series. This first (n = 1) amplitude describes the direction and steepness
of the gradient. Specifically, a positive amplitude represents a gradient increasing from right to left,
and a negative amplitude represents a gradient increasing from left to right. The mode amplitude value
represents the steepness of the gradient. The gradient with a peak (Fig. S11b) requires the first three
Fourier modes to be best captured. These simple examples illustrate how signs and amplitudes of the
first few terms of the cosine series throughout fluorescence recovery make it possible to quantitatively
characterize the directionality of spatial recovery.

A) B) C)
θ 

Figure S11. Fourier analysis of ROIs. A) Sliding angular intensity window for spatial analysis of gener-
ated gradients is indicated in red. Window is rotated 360 degrees and averaged about the ROIs horizontal
axis. B) Fourier series representation of spatial intensity for generated gradients. Black squares represent
the mean intensity of the sliding window, Iv(θ), divided by the maximum pixel intensity of the image,
Imax. Dotted lines indicate fn where f0 is red, f1 is green, f2 is blue, and f3 is magenta (Eq. 21).
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Spatial collapse across y (for px > 0)
Yields Iline(x, t) (Eq. 19)

Fit to exponentialDivide by exponential fit
Yields Iv(x, y, t) (Eq. 20)

Sliding window average
Yields Iv(θ) (Eq. 21)

Fourier Analysis
Yields an(t) (Eq. 21)

Spatial
Analysis

Divide by prebleach
Yields In(x, y, t)i (Eq. 18)

Figure S12. Flowchart of spatial analysis including volume correction and Fourier analysis. Image stacks
prior to bleaching were subjected to line scans and fit to a single exponential. Post bleach images were
divided by the exponential fit and quantified spatially with a sliding window average. Sliding window
intensity profiles were analyzed with Fourier analysis.

S3.3 Fourier Analysis of 3xmEGFP at the Cell Edge

To characterize the directionality of fluorescence recovery, we cropped and averaged the photobleached
regions (Movie S3). We could then detect intensity gradients as a function of angular position and time
within the photobleached region (Figs. S13a and S13b). The shape of these gradients at early time
points demonstrates that the geometry at the cell edge limited the direction of fluorescence recovery.
The same analysis at the cell center yielded no observable gradient at early times. Additionally, the uni-
formity of fluorescence recovery at the cell center indicates that hydrodynamic effects do not influence
3xmEGFP dynamics (Fig. S14). This also indicates that the FRAP recovery at the edge is affected by
its position next to the apical plasma membrane, such that material can not flow in or exchange in all
directions as it can with the FRAP region in the center.

To quantitatively express the gradient’s transition from the transient state (∆t1), found at early time
points during recovery, to the steady state (∆t2), and to test the statistical significance of the difference
between the observed gradients, we used a Fourier cosine series to express the angular intensity profile
at the cell edge (Section S3.2). Over the time course of the fluorescence recovery, the coefficients of the
first fundamental mode of the Fourier series, a1(t) decayed to zero (Fig. S13c). At early times, ∆t1, the
gradients exhibited time averaged Fourier coefficients significantly different than those observed during
the steady state, ∆t2, (Fig. S13d). This significant difference between the time averaged coefficients at
∆t1 and ∆t2 indicates that experimental noise artifacts did not produce the gradient observed at ∆t1,
and is consistent with a cell boundary effect on diffusion. The simulations at the cell edge recapitulated
the angular intensity profiles observed transiently (∆t1: 0 − 0.1s) and at steady state (∆t2: 20 − 40 s)
(Figs. S13a-d and Movie S3). This agreement between the simulated and experimental recovery sup-
ports the accuracy of our model of 3xmEGFP diffusion, and shows that spatial effects dominate over
reversible photoswitching for this system.

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/059220doi: bioRxiv preprint 

https://doi.org/10.1101/059220


0 50 100 150
 (Degrees)

0.85

0.9

0.95

1

1.05

I v(
)

0 50 100 150
 (Degrees)

0.6

0.65

0.7

0.75

0.8

I v(
)

Δt2"

C)" D)"

Δt1"

B)"A)"

0 50 100 150
 (Degrees)

0.6

0.65

0.7

0.75

0.8

I v(
)

0 50 100 150
 (Degrees)

0.6

0.65

0.7

0.75

0.8

I v(
)

0 20 40
Time (sec)

-0.1

-0.05

0

0.05

0.1

a 1

0.11s 20-40s 0.11s 20-40s

0

0.02

0.04

0.06

0.08

0.1

a 1

*** *

GFP Simulation

    Δt1       Δt2       Δt1       Δ t2

E)" F)"Δt2"Δt1"

Figure S13. 3xmEGFP Fourier analysis at the cell edge. A-B) Angular intensity profile of 3xmEGFP
at the cell edge during the time intervals ∆t1 and ∆t2. ∆t1 = 0− 0.11 s (A) and ∆t2 = 20− 40 s (B).
First mode of the Fourier series, f1, is indicated in blue. n = 14, error bars indicate standard error.
C-D) Angular intensity profiles of 3xmEGFP simulations at the cell edge during the same time intervals.
∆t1 = 0 − 0.1s (C) and ∆t2 = 20 − 40 s (D). First mode of the Fourier series, f1, is indicated in blue.
n=50, error bars indicate standard error. E) Amplitude of the first mode of Fourier series, a1, across time
for 3xmEGFP (black) and simulation (red) for angular intensity profiles at the cell edge. n = 14 and 50
respectively; error bars indicate standard error. ∆t1 = 0.11 s; ∆t2 = 20 − 40 s. F) Fourier coefficients,
a1, for frame averaged angular intensity profiles. 3xmEGFP cells are indicated in black and the simula-
tions are indicated in red. Differences between ∆t1 and ∆t2 for simulation and 3xmEGFP are significant
with, p-value < 0.05 and p-value < 0.001, respectively. n = 14 and 50, for experiment and simulation,
respectively; error bars indicate standard error.

S3.4 Fourier Analysis of 3xmEGFP at the Cell Center

To verify that no hydrodynamic effects were present at the cell center, Fourier analysis was applied to
the untreated 3xmEGFP FRAP experiments at the cell center. No significant horizontal recovery gradi-
ents were detected by analyzing the first mode of the Fourier analysis (Figs. S14), indicating that no
cytoplasmic streaming currents were present at the cell center.
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20-40s!0.11s!

A)! B)!

C)! D)!

Figure S14. 3xmEGFP center spatial analysis. A-B) 3xmEGFP spatial intensity profiles at 0.11 s (A)
and at 20− 40 s (B) following photobleaching. Black squares represent experimental intensity, and blue
line indicates first mode f1 of the Fourier series. Iv(θ) is the mean intensity within the sliding window
for a particular angle θ. C) Amplitude of the first mode of Fourier series across time, a1. D) Binned first
mode, a1, values at 0.11 s and 20− 40 s. Error bars represent standard errors. p-value = 0.28 (n=7)

S4. Detector Linearity

One of the main assumptions inherent in current analytical and computational FRAP models and anal-
ysis is detector linearity [16]. This assumption asserts that an increase in measured fluorescence intensity
is linearly proportional to the increase of fluorescent particles within a region of interest, and holds
well within a limited range, dependent on experimental setup. Due to the limited range of linearity of
photon detectors in confocal systems, it was necessary to establish an operating range for the FRAP
experiments in our experimental setup. Operating outside this linear range can produce results that are
not comparable with those within the linear regime. To establish an operating range, a cell line with
nuclear localized GFP was used. Repeated photobleaching was conducted to reduce the concentration of
fluorescent particles within the nucleus, as shown in Fig. S15. FRAP recovery curves Rnuc

m (t) were gen-
erated by measuring the mean nuclear GFP intensity at each time point, t. Here, the subscript m denotes
the mth successive bleach and the superscript nuc denotes that the intensity measured was from nuclear
GFP. These curves were then divided by the nuclear GFP prebleach intensities Rpbnuc

m which corresponds
to each successive bleach. By measuring fluorescence recovery at different concentrations we were able
to determine if the concentration of particles could affect the resulting FRAP curves (Fig. S15). Since
there was no difference in FRAP profiles across experimentally relevant intensities, it was concluded that
these experiments were conducted within the linear operating range of the detector. Because the detector
linearity assumption holds, no confocal detector corrections were applied to experimental FRAP data.
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Figure S15. Photon detection linearity. Nuclear GFP prior to photobleaching and following nine suc-
cessive photobleaching and recovery experiments (left). Example fluorescence recovery of nuclear GFP
after the first (red circles) and ninth (black triangles) successive bleaching events (right). Rnuc

m (t) is the
nuclear GFP fluorescent intensity and Rpbnuc

m is the mean prebleach nuclear GFP intensity before each
successive bleach.

S5. Effects of Imaging and Photobleaching Away From the Medial Cell Plane

With and without treatment with latrunculin B, an intensity gradient was detectable at the edge of the
cell for the 3xmEGFP fluorophores, Fig. S16a and Fig. S10. It is possible that these gradients are a
result of imaging above and below the medial cell plane. These intensity gradients were observed prior
to photobleaching and decayed toward the edge of the cell (Fig. S16c). Intensity gradients were found
by taking line scans L(x)i through cells that were not subjected to photobleaching. Intensity gradients
L(x)i were divided by their corresponding center intensity at L(0)i and averaged about the ith image,
< L(x)i/L(0)i >(i). Since these gradients were present in the 3xmEGFP cell lines, they were not the
result of secretion at the cell edge. To determine if this reduced edge intensity could be a result of the
reduced cell volume imaged at the edge [17], confocal images of uniformly distributed fluorophores were
simulated, and the results for two different slices in Z are shown in Fig. S16b. In the medial plane at
Z = 0, the reduced volume alone could not reproduce the experimental line scans. When imaged 2.5 µm
above or below the medial cell plane, the simulations were able to produce a stronger gradient effect than
the one observed experimentally, shown in Fig. S16c. This suggests that the experimental gradient is a
result of imaging above and below the medial plane.

It is likely that the photobleaching experiments happened around the medial plane, Z = 0, with some
variation in Z positioning plus or minus a few microns. To test the potential effects of this on rate of
fluorescence recovery, FRAP experiments, with a diffusion coefficient of D = 0.35 µm2s−1 (to better
resolve this effect), were simulated at the medial plane and 2 µm away from the medial plane, Fig. S17a
. These simulated curves were averaged about each replicate < Rsim

o (t)i >(i) to yield Rsim(t) for both
imaging planes. Both recovery profiles for Z = 0 µm and Z = 2 µm shown in Fig. S17b are very sim-
ilar. Moreover, randomly generated simulations with a 2 µm standard deviation away from the medial
plane were generated, as displayed in Fig. S17c. These simulations had a constant diffusion coefficient
of D = 0.35 µm2s−1 and were bound by recovery curves of simulations photobleached at the medial cell
plane with diffusion coefficients D = 0.31 µm2/s and D = 0.39 µm2/s. This error in diffusion coefficient
measurement is well within a 15% error, as depicted in Fig. S17c.

Based on these two analyses, it can be concluded that imaging away from the medial plane can influ-
ence the spatial FRAP analysis, but photobleaching away from the medial plane has little influence on
FRAP recovery curves. As a result, only spatial FRAP analysis was subjected to corrections to account
for imaging away from the medial plane, as outlined in Section S3.1.
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Figure S16. Intensity profile variation in Z. A) Experimental intensity gradient measured with uncon-
jugated 3xmEGFP. Dashed white line indicates line scan through ROI at cell edge. ROI is 4 µm in
diameter. B) Simulated intensity gradients for image acquisition medially at Z = 0 µm and 2.5 µm
above the medial plane. Dashed white lines indicate line scans through simulations. C) Horizontal line
scans through simulation at Z = 0 µm (dashed blue line) and Z = 2.5 µm (dashed red line). Line
scan through experimental 3xmEGFP intensity profile (black squares). < L(x)i/L(0)i >i denotes that
the experimental line scan intensities were divided by the center intensity, and averaged across experi-
mental replicates. Error bars indicate standard error. n=14 for experimental 3xmEGFP and n=50 for
simulations.
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Figure S17. Recovery dependence on photobleaching plane position in Z. A) Simulated photobleaching
medially at Z = 0 µm (top) and 2 µm above the medial plane (bottom). B) Simulated fluorescence
recovery for photobleaching at Z = 0 µm (dashed blue line) and Z = 2 µm (black line). Rsim(t) is
the averaged simulation recovery curve. (n=50) C) Simulated averaged fluorescence recovery for ran-
domly chosen FRAP experiments performed between the medial plane at Z = 0 µm and 2 µm above
with a diffusion coefficient of D = 0.35 µm2s−1 (blue line). Dotted lines represent simulated medial
fluorescence recovery at Z = 0 µm with diffusion coefficients D = 0.31 µm2s−1 (dashed red line) and
D = 0.39 µm2s−1 (dashed black line), respectively, and Rsim(t) is the averaged simulation recovery
curve. (n=50)

S6. 3xmEGFP Latrunculin B Recovery

To verify that F-actin had little influence on the dynamics of freely diffusing species, cells expressing
3xmEGFP were treated with latrunculin B. Following latrunculin B treatment, the cells were subjected
to FRAP at the edge and the center of the cell. Latrunculin B treatment had little effect on the recovery
curves (Fig. S18) when compared to the corresponding untreated 3xmEGFP cells. Just as with untreated
cells, latrunculin B treated cells displayed a reduced recovery at the edge when compared to the center.
This trend was recapitulated by best fit simulations with a diffusion coefficient of D = 8.00±0.45 µm2s−1,
which is within the error of our diffusion coefficient measured in untreated cells.
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Figure S18. 3xmEGFP latrunculin B FRAP. Fluorescence recovery of latrunculin B treated 3xmEGFP
cells. Recovery curves, Rexp(t), at the edge and center are indicated with black squares and green circles,
respectively. n = 24 and 7 for the edge and center, respectively. Simulations corresponding to best fit
parameters indicated in red where D = 8.00± 0.45 µm2s−1. Error bars represent standard deviation.

S7. Analytical FRAP Models

In the following section, we briefly describe and provide functional forms for the analytical models we
used for our fits. All models are normalized such that FRAP (0) = 0, and FRAP (∞) = 1. In order to
fit to a recovery curve with bleach depth I(0) = A, and plateau I(∞) = B, these functional forms can
be described with

I(t) = B +A(FRAP (t)− 1) . (22)

In what follows, D denotes the diffusion coefficient.

Axelrod 1976b: We use the second of the two models published in Axelrod’s paper introducing
FRAP[18]. In this model, a Gaussian bleaching volume in a region with infinite boundary conditions
is considered. Fluorescence recovery is given by

FRAP (t) =

∞∑
n=0

(−K)n

n!

[
1 + n

(
1 +

2t

τD

)]−1

(23)

τD ≡
r2
b

4D
(24)

with the parameters

rb : photobleaching radius K : photobleaching parameter

Note that the original paper additionally uses P0, the bleaching laser power, A, the light attenuation
factor, and C0, the fluorophore concentration. We set these equal to unity to produce a normalization
similar to the rest of the models presented here.

Soumpasis 1983: The Soumpasis model[19] uses similar assumptions to the Axelrod model, except
using a sharp cylindrical bleach, rather than a two-dimensional Gaussian bleach. As its is a closed form
expression using Bessel functions, it is very popular for curve fitting. Fluorescence recovery is given by

FRAP (t) = e−2τD/t

[
I0

(
2τD
t

)
+ I1

(
2τD
t

)]
(25)

τD ≡
r2
b

4D
(26)
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with the parameters

rb : photobleaching radius I0, I1 : Modified Bessel functions of the First Kind

Braeckmans 2003: The Braeckmans model [20] incorporates the time required for the confocal to
scan a large circular region of interest. It assumes that the region of interest is significantly larger than
the imaging PSF, and uses a uniform cylindrical bleaching volume with infinite boundary conditions.
Fluorescence recovery is given by

FRAP (t) = 1 +

{
e−K0−1

[
1− e−

r2b
2Dt

(
I0

(
r2
b

2Dt

)
+ I1

(
r2
b

2Dt

))]}
(27)

with the parameters

rb : photobleaching radius I0 :
Modified Bessel functions of the First Kind

K0 : photobleaching parameter I1 :

1D FRAP Finite Boundary: The 1D FRAP model[21] considers a ROI in the middle of a finite size
strip with reflective boundary conditions at the ends. This is a very simple model, but is expected to
work well for objects which are long and thin. Fluorescence recovery is given by

FRAP (t) = 1− 1

(a/L)(1− a/L)

∞∑
n=1

2

n2π2
sin2

(nπa
L

)
e−(Dn2π2/L2)t (28)

with the parameters

a : half of the length of the bleach zone L : one half the cell length

1D FRAP Infinite Boundary: The 1D FRAP considers a ROI in the middle of an infinite size strip.
This is a very simple model, but is expected to work well for objects which are very long and thin.
Detailed derivation of this model, and the subsequent 2D and 3D versions, are given in Section S9.
Fluorescence recovery is given by

FRAPd(t) = 1−

[
erf

(
a√
Dt

)
− 1√

π

(
1− e−a

2/Dt
) √Dt

a

]
(29)

with the parameter

a : half of the length of the bleach zone

2D Square FRAP Infinite Boundary: The 2D FRAP considers a square ROI in the middle of an
infinite 2D plane. Fluorescence recovery is given by

FRAPd(t) = 1−

[
erf

(
a√
Dt

)
− 1√

π

(
1− e−a

2/Dt
) √Dt

a

]2

(30)

with the parameter

a : half of the length of one side of the square bleach

3D Cubic FRAP in an Infinite Boundary: The 3D FRAP considers a cubic ROI in the middle of
an infinite 3D plane. Fluorescence recovery is given by

FRAPd(t) = 1−

[
erf

(
a√
Dt

)
− 1√

π

(
1− e−a

2/Dt
) √Dt

a

]3

(31)

with the parameter

a : half of the length of one side of the cubic bleach
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Single Exponential (One Dynamic State): The single exponential model represents a system with
a single dynamic state. Fluorescence recovery is given by

FRAP (t) = 1− e−kt (32)

with the parameter

k : exponential rate constant

Double Exponential (Two Dynamic States): The double exponential model is often used to rep-
resent a system with two dynamic states. It is composed of the sum of two exponentials, each which
represents a single state. Fluorescence recovery is given by

FRAP (t) = 1− (Ce−k1t + (1− C)e−k2t) (33)

with the parameters

k1 : fast exponential rate constant k2 : slow exponential rate constant
C : fractional composition of each recovery phase

S8. Analytical Demonstration of FRAP Boundary Effects in One Dimension

To better illustrate how a cell boundary can influence measured diffusion coefficients, we utilized the
symmetry of the one-dimensional strip FRAP. For a cell of length 2L, and a bleach region of size 2a
centered in the middle of the cell (as shown in Fig. S19A), the FRAP recovery curve is given by Eq. 28.
If the bleach region is moved next to the boundary (as shown in Fig. S19B), the presence of the bound-
ary slows down the fluorescence recovery. Due to symmetry, the bleach adjacent to the boundary (as
shown in Fig. S19B) is equivalent to a centered bleach size of 4a in a cell of length 4L (as shown in
Fig. S19C). Substitution of 2L and 2a into Eq. 28 shows that the expression containing the diffusion
coefficient changes from (Dn2π2/L2) to (Dn2π2/4L2). This clearly demonstrates that the recovery at
the boundary (as shown in Fig. S19B) recovers like the centered solution (as shown in Fig. S19A)
with an effective diffusion coefficient Deff ≡ D/4.

L 

a 

2a 

2L 

2a 

2L 

A)

B)

C)

Figure S19. Different initial conditions for one-dimensional strip FRAP. A) A centered bleach region
of length 2a in a cell of length 2L. B) A bleach region of length 2a at the right boundary in a cell of
length 2L. C) A centered bleach region of length 4a in a cell of length 4L. The right hand side is tinted
to illustrate the symmetry between the left hand side and (B). Fluorescence is indicated in green and
bleach zone is indicated in black.
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S9. Asymptotic Behavior of FRAP Recovery

Solution of the diffusion equation in an infinite domain is known to exhibit power law scaling at long
times. To further validate DCMS, we investigated the fluorescence recovery behavior at long times both
analytically and using DCMS in one-, two-, and three-dimensions. While the analytical calculations are
straightforward in Cartesian coordinates [22], we will briefly outline the steps here for completeness.
Starting from the three-dimensional diffusion equation,

∂c(x, y, z, t)

∂t
= D∇2c(x, y, z, t) (34)

with the initial condition

c(x, y, z, 0) =

{
1 x, y, z ∈ [−a, a]

0 else
, (35)

one can show that FRAP recovery is given by

FRAP (t) = 1− 1

V

∫∫∫
V

c(x, y, z, t)dxdydz . (36)

Using separation of variables, i.e. c(x, y, z, t) = X(x)Y (y)Z(z)F (t), and the diffusion equation (Eq. 34),
one can show that the concentration at t = 0 can be written as

c(x, y, z, 0) =

∫ ∞
0

dβ

∫ ∞
0

dη

∫ ∞
0

dµ
[
Ã(β)cos(βx) + B̃(β)sin(βx)

]
×

×
[
C̃(η)cos(ηy) + D̃(η)sin(ηy)

] [
Ẽ(µ)cos(µz) + F̃ (µ)sin(µz)

]
.

(37)

The coefficients Ã through F̃ , can be determined from the initial conditions using the orthogonality
relations of the trigonometric functions. One can then show that the general solution can be written
as [23]

c(x, y, z, t) =
1

π

∫ ∞
0

dβ
1

π

∫ ∞
0

dη
1

π

∫ ∞
0

dµ

∫∫∫
V ′
dx′dy′dz′ c(x′, y′, z′, 0)e−(µ2+η2+β2)Dt×

× cos (β(x− x′)) cos (η(y − y′)) cos (µ(z − z′))
(38)

Integrating over β, η, and µ with the initial condition in Eq. 35 yields

c3D(x, y, z, t) ≡ c(x, y, z, t) =
1√
4Dt

∫ a

−a
dx′e−

(x−x′)2
4Dt

1√
4Dt

∫ a

−a
dy′e−

(y−y′)2
4Dt

1√
4Dt

∫ a

−a
dz′e−

(z−z′)2
4Dt

(39)
Performing the Gaussian integrals, one gets for the concentration profile in three-dimensions

c3D(x, y, z, t) =
1

2

[
erf

(
x+ a√

4Dt

)
−erf

(
x− a√

4Dt

)]
︸ ︷︷ ︸

c1D(x,t)

1

2

[
erf

(
y + a√

4Dt

)
−erf

(
y − a√

4Dt

)]
︸ ︷︷ ︸

c2D(x,y,t)

1

2

[
erf

(
z + a√

4Dt

)
−erf

(
z − a√

4Dt

)]
.

(40)
where c1D(x, t) and c2D(x, y, t) indicate the corresponding solutions in one- and two-dimensions. The
FRAP recovery curve then can be calculated using Eq. 36 which yields its most general form

FRAPd(t) = 1−

[
erf

(
a√
Dt

)
− 1√

π

(
1− e−a

2/Dt
) √Dt

a

]d
, (41)

where d = 1, 2, 3 denotes the dimension. In the limit of long times, it can be shown that the asymptotic
expansion is given by

FRAPd(t) ' 1−
(
a2

πDt

)d/2
= 1−

(
a2

πD

)d/2
t−d/2 . (42)

23

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/059220doi: bioRxiv preprint 

https://doi.org/10.1101/059220


10-1 100 101 102

Time (s)

10-4

10-2

100

102

In
te

ns
ity

10-1 100 101 102

Time (s)

10-4

10-2

100

102

In
te

ns
ity

10-1 100 101 102

Time (s)

10-4

10-2

100

102

In
te

ns
ity

10-1 100 101 102

Time (s)

10-4

10-2

100

102

In
te

ns
ity

10-1 100 101 102

Time (s)

10-4

10-2

100

102

In
te

ns
ity

10-1 100 101 102

Time (s)

10-4

10-2

100

102

In
te

ns
ity

D)C)

A) B)

F)E)

Figure S20. Asymptotic behavior of FRAP recovery illustrated using DCMS simulations. Red, green,
and blue dotted lines represent Eq. 42 with d = 1, 2, and 3 producing t−1/2, t−1, and t−3/2 scaling,
respectively. All fluorescence recovery curves were plotted as one minus the fluorescence intensity on a
logarithmic scale. A) DCMS fluorescence recovery in filopodia with a centered bleach (purple) compared
with Eq. 41 (d = 1, black line), showing t−1/2 scaling at long times. B) DCMS fluorescence recovery in
lamellipodia with a centered square bleach (purple) compared with Eq. 41 (d = 2, black line), showing
t−1 scaling at long times. C) DCMS fluorescence recovery in a large cubic cell with a cubic bleach (purple)
compared with Eq. 41 (d = 3, black line), showing t−3/2 scaling at long times. D) Single (Eq. 32, gray
line) and double (Eq. 33, black line) exponential fits to the filopodia center bleach (purple) do not exhibit
power law scaling at long times. E-F) DCMS fluorescence recoveries (purple) in the moss geometry with
bleaches at the cell center (E) and cell edge (F) exhibit long time power law behavior of the form t−1/2.

In order to validate DCMS with respect to this asymptotic behavior given by Eq. 42, we performed
simulations within filopodia (d = 1, t−1/2), Fig. S20A, lamellipodia (d = 2, t−1), Fig. S20B, and a
three-dimensional cube (d = 3, t−3/2) Fig. S20C. The results are in excellent agreement with theoretical
predictions. In contrast, the single (Eq. 32) and double (Eq. 33) exponential models do not obey this
scaling, once more illustrating the fact they do not have the right functional form (see Fig. S20D).

It is important to note that this scaling behavior can be affected in confined cellular geometries. For
instance, simulations in the moss geometry with both a center and edge bleach exhibited power law
behavior that converges to −1/2 instead of −3/2, as shown in Figs. S20E and F. This is not surprising
since in the moss geometry, the combined effect of scanning that bleaches the ROI (see Fig. S21) and
the fact that the moss cell has an aspect ratio like a tube, practically reduces this geometry to a one-
dimensional object in the limit of long times. However, at earlier times, this one-dimensional approach
does not work, and the recovery is best explained by a two-dimensional model as illustrated in Table I;
since there is no z diffusion at early times, diffusion is practically in x− and y− directions.
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S10. FRAP Fitting Results for Various Cell Types

All model fitting to the simulations (except for the VCell VirtualFRAP tool) was performed in Matlab
using the fitting function lsqcurvefit with equal weights for each point in the recovery. For VCell Vir-
tualFRAP, we use the built-in function to produce a diffusion coefficient from an input image stack.
This function was chosen because it enables the user to specify upper and lower bounds for parameter
estimation. The results of these fits can be found in Table I.

Diffusion Coefficient (×10-3 µm2s−1)

(input D = 100)
Cellular Geometry

Axelrod
1976b

Soumpasis
1983

Braeckmans
2003 1D FRAP VirtualFRAP

B Yeast E 10.2± 1.4 9.25± 0.09 9.25± 0.04 15.0± 0.1 145± 0.2
B Yeast C 96.1 ± 0.3 98.8 ± 0.8 98.7 ± 0.8 306± 1 94.6 ± 2.8
Lamellipodia E 80.1 ± 1.1 75.6 ± 1.4 75.5 ± 1.6 811± 2 106 ± 19
Lamellipodia C 94.5 ± 0.7 90.6 ± 1.1 90.6 ± 1.1 239± 1 99.9 ± 3.4
Nucleus E 54.5± 1.0 49.0± 1.5 49.0± 1.8 492± 2 90.58 ± 17.6
Nucleus C 115 ± 1 115 ± 1 115 ± 1 328± 1 113 ± 4
Pombe E 20.7± 1.1 14.6± 0.3 14.6± 0.3 146± 1 82.62 ± 3.0
Pombe C 44.2± 0.6 39.8± 0.3 39.8± 0.3 105 ± 1 87.62 ± 0.9
Moss E 63.3± 1.7 59.0± 1.0 59.0± 1.2 619± 1 103 ± 13
Moss C 102 ± 2 100 ± 2 101 ± 2 280± 2 113 ± 8
Filopodia E 27.5± 2.1 14.5± 0.2 14.6± 0.4 163± 1 105 ± 4
Filopodia C 46.2± 0.5 37.9± 0.6 37.9± 0.3 93.6 ± 0.3 103 ± 1

Table S3. Best fit diffusion coefficients for the four analytical models and the VCell VirtualFRAP tool.
Input D = 0.1 µm2/s = 100×10-3 µm2s−1. ROI is either at the cell Edge (E) or Center (C). Bolded
text indicates cases where the model produced an answer within 25% of the true D value. ± represents
standard error of ten simulations.
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Cellular Geometry

Input D

(µm2s−1)
Z-score

(Single Exponential)
Z-score

(Double Exponential) F-score
B Yeast E 0.1 -5.826 -5.826 2.22×10-5

B Yeast C 0.1 -3.663 -3.930 47.592
B Yeast E 1 -1.953 -1.953 -0.0566
B Yeast C 1 -1.693 -2.728 -1.2942
B Yeast E 10 -2.468 -2.468 -0.0116
B Yeast C 10 0.166 -3.438 -26.237
Lamellipodia E 0.1 -6.673 -6.673 2.11×10-5

Lamellipodia C 0.1 -6.900 -3.250 240.61
Lamellipodia E 1 -5.650 -1.477 345.22
Lamellipodia C 1 -6.900 -3.173 366.56
Lamellipodia E 10 -5.155 -5.166 -0.0071
Lamellipodia C 10 -3.516 -1.927 55.919
Nucleus E 0.1 -6.900 -0.315 601.02
Nucleus C 0.1 -4.805 -3.758 61.077
Nucleus E 1 -5.851 -1.946 290.15
Nucleus C 1 -5.295 -3.776 66.649
Nucleus E 10 -1.165 -1.927 47.034
Nucleus C 10 -0.382 -0.911 -0.2861
Pombe E 0.1 -6.380 -2.711 567.84
Pombe C 0.1 -5.851 -2.157 603.33
Pombe E 1 -5.841 -2.711 652.50
Pombe C 1 -6.901 -0.714 1484.9
Pombe E 10 -6.379 -1.685 423.74
Pombe C 10 -2.450 -0.651 47.366
Moss E 0.1 -5.339 -1.847 183.53
Moss C 0.1 -4.282 -2.728 74.604
Moss E 1 -5.851 -2.683 112.92
Moss C 1 -5.336 -2.207 133.24
Moss E 10 -4.282 -0.643 94.534
Moss C 10 -5.339 -1.105 92.325
Filopodia E 0.1 -6.374 0.804 1318.0
Filopodia C 0.1 -6.898 -1.142 667.68
Filopodia E 1 -6.893 -3.235 808.11
Filopodia C 1 -6.900 -1.685 1510.5
Filopodia E 10 -6.893 -2.796 690.82
Filopodia C 10 -3.25 -1.403 121.54

Table S4. Model selection and evaluation through statistical analysis. Small F-scores indicate that the
single-exponential model should be chosen and are denoted with bold text. Large negative Z-scores indi-
cate that the order of the residuals is random (better fit) and are denoted with bold text. ROI location
is either at the cell Edge (E) or Center (C).
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Diffusion Coefficient (input D = 10µm2s−1)
Cellular

Geometry Axelrod
1976b

Soumpasis
1983

Braeckmans
2003 1D FRAP VirtualFRAP

Budding Yeast E 2.00± 0.06 1.64± 0.06 1.64± 0.06 15.2± 15.2 8.38
+0.01
−0.01

Budding Yeast C 52.2± 1.2 46.9± 0.9 46.9± 0.9 166± 2 9.52
+0.01
−0.01

Lamellipodia E 6.37± 0.26 6.05± 0.26 8.67 ± 1.31 69.4± 2.8 9.89
+0.03
−0.03

Lamellipodia C 12.5 ± 0.6 11.5 ± 0.4 11.5 ± 0.4 51.0± 3.5 10.6
+0.02
−0.02

Nucleus E 4.54± 0.24 3.81± 0.22 4.27± 0.45 37.0± 1.9 9.48
+0.00
−0.00

Nucleus C 28.2± 0.2 16.4± 0.2 12.5 ± 0.1 87.8± 1.7 8.49
+0.01
−0.01

Pombe E 1.46± 0.04 1.10± 0.06 1.10± 0.06 11.0 ± 0.5 9.81
+0.05
−0.05

Pombe C 5.12± 0.08 4.93± 0.08 4.93± 0.08 14.6± 0.3 10.6
+0.01
−0.01

Moss E 5.96± 0.39 6.14± 0.42 6.14± 0.42 79.2± 6.0 12.8+0.13
−0.13

Moss C 15.5± 1.0 15.3± 0.9 15.3± 0.9 107± 18 10.9
+0.04
−0.04

Filopodia E 1.50± 0.04 1.12± 0.05 1.12± 0.05 11.3 ± 0.5 12.9+0.06
−0.05

Filopodia C 4.31± 0.09 4.07± 0.10 4.07± 0.10 11.6 ± 0.3 8.06
+0.00
−0.00

Table S5. Best fit diffusion coefficients for the four analytical models we used, and the VCell Virtual-
FRAP tool. ROI is either at the cell Edge (E) or Center (C). Input D = 10 µm2/s, with 280 kHz scan
rate. Bolded text indicates cases where the model produced an answer within 25% of the true D value. ±
represents standard error of ten simulations for analytical models. For VCell VirtualFRAP, manual use
caused us to only use a single replicate; the asymmetric interval returned by the software is presented
rather than a standard error.
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S11. Simulated Bleach Profile

The parameters we used for the DCMS simulations produce a bleached region extending all the way
through the cells. This is illustrated in Figure S21 in the moss cell geometry, which is the thickest cell
type we tested. This indicates that our bleached region is quasi-cylindrical.

Instant Photobleach Bleached 
Fraction

X 

Z 

Figure S21. Illustration of the three-dimensional profile of the photobleached region for DCMS moss
simulations (left) and the corresponding bleach fraction (right). Immobile fluorophores were used to
create a z-stack showing only the effects of photobleaching. Scale bar is 2 µm.
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S12. Table of Symbols

Symbol Description
D Diffusion coefficient
Dmodel Diffusion coefficient predicted from one of the models in question
Dtrue DCMS input diffusion coefficient for validation of the models in question
IPSF(x, y, z) Point Spread Function (PSF) intensity (Eq. 7)
I0 Maximum PSF intensity
w(z) Beam width (Eq. 8)
w0 Minimum beam waist
zR Rayleigh range
Pphotobleach(x, y, z) Photobleach probability (Eq. 9)
K{E,C} Photobleaching proportionality constant at the Edge (E) and Center (C)
r Particle position (Eq. 1)
δt Time step length
ξi(t) A sample of random Gaussian noise (Eq. 2)
kB Boltzmann constant
T Temperature
ζ Friction coefficient (Eq. 4)
η Effective fluid viscosity
R Particle radius
I(x, y, t)i An experimental or a simulation image (Section S2.1)
Rexp
o (t)i Normalized average intensity of ROI for experiments (Eq. 10)

Rsim(t)i Normalized average intensity of ROI for simulations (Eq. 10)
without background subtraction

〈I(x, y, t)i〉(x,y)∈ROI Mean ROI intensity (Eq. 10)
〈I(x, y, t)i〉(x,y,t)∈BackROI Mean background intensity (Eq. 10)
〈I(x, y, t)i〉(x,y)∈ROI,t<0 Mean prebleach intensity (Eq. 10)
RL(t)i Fluorescence loss experimental intensity (Section S2.2)
RLn(t)i Normalized fluorescence loss curve (Section S2.2)
R(t) Piecewise exponential fit of RLn(t) (Eq. 13)
Rexp(t) Final postprocessed experimental fluorescence intensity (Section S2.2)
L(x)i Line scan through image (Section S5)
R(t) Photoswitching recovery as a function of time (Eq. 14)
α Fraction of fluorophores fraction which undergo photoswitching (Eq. 14)
IFRAP(r, t) Fluorescence Recovery After Photobleaching curve (Eq. 14)
IFLAP(r, t) Fluorescence Loss After Photoactivation curve (Eq. 14)
IN (t) Pre-bleach normalized fluorescence recovery of the nucleus (Figure S9)
IM (t) Bleach-fraction normalized fluorescence recovery of the nucleus (Figure S9)

R
{exp,sim}
{E,C} (t) Experimental/Simulation (exp/sim) ROI Intensities at

the edge/center (E,C) of the cell (Section S2.4)
σ(t) Standard deviation of recovery R(t) (Section S2.5)
γ(t)i Resampled replicas of experimental recovery R(t) (Eq. 16)
In(x, y, t)i Normalized image (Eq. 18)
Iline(x) Prebleach line scan of image (Eq. 19)
Iv(x, y, t)i Volume-corrected normalized image (Eq. 20)
Iv(θ) Iv(x, y, t)i expressed as a function of angle (Eq. 21)
an Amplitude of the nth Fourier mode (Eq. 21)
Rnuc
m (t) Nuclear GFP fluorescent intensity (Fig. S15)

Rpbnuc
m Prebleach nuclear GFP intensity (Fig. S15)
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Supporting Movies

Movie S1. Simulation of FRAP at the moss cell edge. Three dimensional (upper left) and two dimen-
sional (upper right) renderings of simulated scanning confocal photobleaching and recovery are shown.
Fluorescence intensity is indicated by the rainbow lookup table. Total fluorescence intensity measured
in the ROI (4µm, located at the edge of the cell) is shown as a function of time, focusing on the over-
all recovery (bottom) and photobleach (inset). Artificially fast imaging scan rates (instantaneous image
capture at 1000 fps) and parameters (D = 1.0 µm2s−1, 500×500 pixel resolution) were used to illustrate
three dimensional properties of the simulation.

Movie S2. Simulation of FRAP at the moss cell center. Three dimensional (upper left) and two dimen-
sional (upper right) renderings of simulated scanning confocal photobleaching and recovery are shown.
Fluorescence intensity is indicated by the rainbow lookup table. Total fluorescence intensity measured
in the ROI (4µm, located at the center of the cell) is shown as a function of time, focusing on the over-
all recovery (bottom) and photobleach (inset). Artificially fast imaging scan rates (instantaneous image
capture at 1000 fps) and parameters (D = 1.0 µm2s−1, 500×500 pixel resolution) were used to illustrate
three dimensional properties of the simulation.

Movie S3. Analysis of spatial recovery of 3xmEGFP at the moss cell edge. Cropped and frame aver-
aged photobleaching ROI at the cell edge for 3xmEGFP cell line (left). Corresponding angular intensity
profiles of 3xmEGFP at the cell edge (right). The first mode of the Fourier series, f1, is overlaid in blue,
with its magnitude, a1 shown in the inset. n = 14; ROI is 4 µm in diameter. Mean subtracted image
intensity is denoted with the rainbow lookup table.

Movie S4. Fluorescence recovery in the budding yeast. Medial confocal slice of simulated fluorescence
recovery of budding yeast following photobleaching of the daughter cell is shown. Simulations were run
with a diffusion coefficient of D = 1 µm2s−1.

Movie S5. Fluorescence recovery in the nucleus. Medial confocal slice of simulated fluorescence recovery
of the nucleus following photobleaching at the cell edge is shown. Simulations were run with a diffusion
coefficient of D = 1 µm2s−1.

Movie S6. Fluorescence recovery in the filopodia. Medial confocal slice of simulated fluorescence recov-
ery of filopodia following photobleaching at the cell edge is shown. Simulations were run with a diffusion
coefficient of D = 1 µm2s−1.

Movie S7. Fluorescence recovery in pombe. Medial confocal slice of simulated fluorescence recovery
of S.pombe following photobleaching at the cell edge is shown. Simulations were run with a diffusion
coefficient of D = 1 µm2s−1.

Movie S8. Fluorescence recovery in the lamellipodia. Medial confocal slice of simulated fluorescence
recovery of lamellipodia following photobleaching at the cell edge is shown. Simulations were run with a
diffusion coefficient of D = 1 µm2s−1.
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