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Abstract 

Dissecting the physiological circuitry underlying diverse human complex traits associated with 

heritable common mutations is an ongoing effort. The primary challenge involves identifying 

the relevant cell types and the causal variants among the vast majority of the associated 

mutations in the noncoding regions. To address this challenge, we developed an efficient 

probabilistic framework. First, we propose a sparse group-guided learning algorithm to infer 

cell-type-specific enrichments. Second, we propose a fine-mapping Bayesian model that 

incorporates as Bayesian priors the sparse enrichments to infer risk variants. Using the 

proposed framework to analyze 32 complex human traits revealed meaningful tissue-specific 

epigenomic enrichments indicative of the relevant disease pathologies. The prioritized variants 

exhibit prominent tissue-specific epigenomic signatures and significant enrichments for eQTL 

and conserved elements. Together, we demonstrate the general benefits of the proposed 

integrative framework in elucidating meaningful tissue-specific epigenomic elements from 

large-scale correlated annotations and the implicated functional variants for future 

experimental interrogation. 

 

1 Introduction 

Over the past several years, genome wide association studies (GWAS) have identified genetic 

signals for many complex human traits, that exhibit intricate polygenic architectures and co-

morbidities among similar phenotypes. Systematic investigation of these GWAS data involves 
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not only identifying the associated variants but also the relevant cell-types, and it promises to 

decipher the underlying epidemiology at the single-nucleotide resolution 
1-4

.  

However, there are several challenges in this approach that hinder further progress. These 

include (1) difficulty in interpreting the function of variants in the noncoding regions, which 

contribute about 90% of the current GWAS catalog 
5
; (2) the lack of statistical power to detect 

causal  SNPs that are under-represented in the population due to low minor allele frequency 

and thus exhibit small effect size 
6
; (3) insufficient knowledge about the potentially relevant cell 

types and tissues that are disrupted by the mutations; (4) the fact that the true causal variants 

are often harbored within large haplotype blocks spanning many kilobases of the human 

genome, where SNPs are correlated with one another via linkage disequilibrium (LD) 
7
. 

To help interpret non-coding elements and gain insights into their potential regulatory 

functions, several international consortia have recently released a plethora of genome-wide 

reference annotations. In particular, the ENCODE/Roadmap Epigenomics consortium generated 

and made publicly available epigenomic annotations in diverse cell types and tissues, providing 

a multi-dimensional reference map to elucidate enhancer/repressor locations indicative of cis-

regulatory functions
8
. The 1000 Genome consortium provided genotype information of 

hundreds of individuals that share ancestral haplotypes, which can be used to estimate LD 

structure in terms of SNP-by-SNP genetic correlation (as a surrogate to the in-sample LD from 

the GWAS cohort that are often unavailable) to help disentangle functional signals from those 

stemming from co-inherited but passenger SNPs occurring within the same haplotypes 
9
.  

Several studies have implicated enrichment of GWAS variants in putative regulatory elements – 

e.g., enhancer-associated histone modifications, regions of open chromatin, and conserved 

non-coding elements
3,10-13

 
14,15

. Moreover, this overrepresentation has also been used to 

predict relevant cell types and non-coding annotations for specific traits
16

. Several recently 

developed methods are able to leverage the GWAS summary statistics in terms of marginal 

statistics of the association of each SNP with the trait of interest 
17,18

 as well as functional 

annotations to aid the inference of risk variants 
19-23

. However, it remains a challenge to explain 
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genetic signals and infer causal variants based on genome-wide functional and tissue-specific 

enrichments. The hundreds of epigenomic annotations, although informative, are frequently 

correlated, making the interpretation of their connections with the causal variants difficult. 

Specifically, many annotations overlap with one another due to the sharing of regulatory 

elements in the genome and across tissues. Thus, it is challenging to interpret the tissue-

specific enrichments when simultaneously using all of the annotations to explain the genetic 

signals and pinpoint the potential tissues of action. 

In this article, we describe a novel probabilistic framework to infer sparse interpretable 

genome-wide functional enrichments as well as the locus-specific influence of these 

annotations to ultimately infer risk variants potentially underlying the genetic association 

through tissue specific perturbations. We apply our proposed method to investigate 32 

complex human traits using the publicly available full summary statistics each containing 5-11 

million genotyped or imputed SNPs. To leverage the evidence of tissue-specific epigenomic 

activities, we harness a large compendium of functional genomic and epigenomic annotations 

precompiled from ENCODE/Roadmap consortium, including four epigenomic marks implicated 

in promoting transcription (H3K4me1, H3K4me3, H3K27ac, H3K9ac) across 100 well-

characterized cell types and tissues
8
. Because of the interpretability of the proposed model, we 

are able to make intuitive biological observations based on our inference results, allowing us to 

revisit these many complex human traits from a novel system-level perspective. Our method is 

implemented as an R package that can be easily apply to analyzing other complex traits. 

2 Results 

2.1 A novel probabilistic framework to infer interpretable genome-wide tissue-

specific enrichment patterns and locus-specific risk variants 

To infer relevant cell types and variants associated with each trait, we take into account three 

lines of evidence (Fig. 1a): (1) genome-wide genetic signals, in terms of marginal summary 

statistics of each SNP; (2) functional genomic and epigenomic reference annotations 

overlapping the SNPs; and (3) linkage disequilibrium, by estimating SNP-by-SNP Pearson 
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correlation from the 1000 Genome reference panel. The general scheme of our learning 

algorithm follows an expectation-maximization (EM) formulation: at E-step, we infer the 

posterior probabilities of causal SNPs by fixing their functional enrichments; at M-step we learn 

the functional enrichments over all of the annotations in concordance to the posterior 

probabilities of the SNP associations. We then alternate between the E and M-step until some 

convergence criterion is satisfied. Here the SNP posteriors are defined by the likelihood dictated 

by the genetic signals and the prior dictated by a logistic function, which is a weighted linear 

combination of the annotations. Because of the linearity of the model, we interpret the highly 

positive coefficient weights as functional enrichments of the corresponding annotations. 

Using the proposed model, we would like to investigate the following biological questions: (1) 

where does the functional convergence take place for trait-associated genetic perturbations, as 

approximated by enrichment profiles of cell-type-specific epigenomic annotations? (2) what 

groups of traits exhibit similar functional convergence patterns, as measured by correlating 

enrichment profiles? (3) what are the risk loci supported by both genetic signals and functional 

enrichment patterns? And (4) what are the specific risk variants within risk loci that exhibit 

prominent evidence of function? In what follows, we first highlight the novel features of the 

proposed method. Then we show how such features enable answering these questions directly 

from real data. 

The proposed framework is divided into two stages namely genome-wide enrichment learning 

and locus-specific fine-mapping (Fig. 1a). At stage 1, we seek to learn a sparse functional 

genomic enrichment pattern over all of the tissue-specific annotations with respect to the trait 

of interest. In other words, we quantify the extent to which SNPs with high genetic signal tend 

to occur in genomic regions that are functionally active in specific tissues, as indicated by 

epigenomic annotations. The main challenge here is that many annotations are correlated with 

each other due to shared basal-level regulatory activities. For instance, in addition to tissue-

specific genes, the histone modification H3K4me3 also marks the active promoters 
8,10

 of 

ubiquitously expressed genes, and it is thus annotated in many cell/tissue types, which are not 

necessarily related in terms of the underlying tissue-specific biology. Consequently, when 
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jointly modeled in a naïve way, the correlation between different annotations leads to an 

enrichment pattern that is not easily interpretable. One way to account for the non-tissue-

specific enrichment is to include a set of baseline annotations as intercepts in a linear model 
16

. 

However, although this approach works well when considering one tissue-specific annotation at 

a time conditioned on the baseline annotations, it becomes inadequate when jointly 

considering all of the tissue-specific annotations, which nevertheless is necessary for the 

subsequent risk variant prioritization based on all lines of evidence.  

As a novel strategy to these inevitable problems, here we propose a sparse model guided by 

the enrichments over cell groups pre-defined based on anatomical, hierarchical associations, 

effectively exploiting the “structure” of the annotation data. Specifically, we iteratively learn 

the high-level enrichments at the cell-group level and dissect the overrepresentation signal at 

the cell-type-specific level only within the cell/tissues belonging to highly enriched cell groups 

(Fig. 1b). Importantly, the cell groups are defined based solely on anatomical relations. The 

annotations in the same cell group are aggregated to form a single annotation, where a SNP is 

annotated as positive if it overlaps with any of the annotations in the group. Thus, we 

effectively implement a hierarchical enrichment approach, where signal is quantified first at the 

organ/tissue level and then propagated at a higher resolution across the relevant cell-types 

with in the organ/tissue. Our approach is inspired by, but different from, the Group Lasso 

methods recently developed in statistics 
24

 
25

. These methods were originally designed to 

address multi-level categorical variables in a supervised framework where the labels in the 

response variable are observed, whereas we infer them within the EM framework.  

At stage 2, we harness the genome-wide functional enrichments learnt from stage 1 by 

incorporating them as Bayesian prior into a novel fine-mapping model. As mentioned above, a 

main challenge of inferring the potential causal variants is the consideration of LD structure. To 

this end, we need to infer the posterior distributions over causal configurations of all of the 

SNPs in the locus that are potentially correlated with each other via LD. We approach this 

problem by considering a multivariate normal (MVN) density
17,18,21,26

 as a function of the GWAS 

summary statistics Z-score with covariance expressed by the reference LD plus the variance 
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contributed by the causal SNPs. However, the brute-force way to model all of the causal 

configurations is not tractable for modest size locus, because the configurations grow 

exponentially to the number of SNPs in the locus. In order to circumvent this limitation, we 

propose an efficient Important Sampling scheme 
21

: we sample configurations based on the 

posterior probability of each individual SNPs being causal, effectively focusing on the SNPs that 

are more likely to be causal than the majority of other SNPs in terms of their genetic Z-score 

(reflected by the likelihood) and functional supports (reflected by the prior).  

We validated the proposed approach via simulation (Supplementary Fig S1-S3), and in what 

follows we present our results on the real data. 

2.2 Functional enrichment profiles of 32 human complex traits reveal relevant 

non-tissue-specific functional genomic elements 

To demonstrate a real-world application, we used the proposed method to investigate 32 

human complex traits, for which the full summary statistics are publicly available (Table 1). To 

facilitate downstream analysis, we grouped these 32 traits into 5 groups: Anthropometric, 

Neuro-degenerative (NeuroDegen), Neuro-psychiatric (NeuroPsych), Heart, Immune, and 

Metabolic. We preprocessed the GWAS summary statistics by filtering out ambiguous 

mutations and then imputing them based on 1000 Genome phase 1 version 3 data using ImpG 

27
. In total, we harnessed 272 publicly available and preprocessed functional annotations 

including 52 baseline annotations and 220 cell-type-specific annotations 
16

. 

 

For the genome-wide enrichment analyses, we first performed LD-pruning to recursively 

remove SNPs that are in high LD with the most significant SNPs to account for inflated p-values 

due to high LD regions. We then applied our proposed stage-1 model to investigate the 

functional enrichments of the 32 traits. We first examined what functional categories are 

enriched for each of the complex traits using only the 52 baseline non-tissue-specific 

annotations (Supplementary Fig. S4; Supplementary Data 1). Because sparsity is of less 

concern with such small number of annotations, we applied a non-sparse variant of our model 
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(i.e., L2-norm over each annotation weights) and assessed significance in terms of the 

asymptotic Z-score estimates of the enrichment coefficients from the logistic function. 

 

Overall, the most enriched annotations include regions that are transcribed 
28

, conserved in 

mammals
15

, marked with H3K4me1, overlapping coding segments, and chromatin accessible 

(DHS). Interestingly, although these 52 baseline annotations are not cell-type-specific, but 

define a union set of the putative genomic functional space, many traits cluster in a way 

consistent with the known groups by similarity of enrichment profiles alone. For instance, both 

immune and brain-related traits aggregate together into clusters. Both immune and metabolic 

traits tend to be enriched for coding categories. Immune traits also exhibit more prominent 

enrichments for promoter and enhancers elements (defined by H3K4me3 and 

H3K4me1/H3K27ac, respectively). In contrast, neuro-psychiatric phenotypes such as human 

intelligence (IQ), Schizophrenia (SCZ), and Years of Education (EduYear) are strongly enriched 

for conserved elements and repressed states, and are mostly depleted in coding regions. Thus, 

the results suggest that overall, genetic variants associated with related traits tend to perturb 

functionally common sets of genomic elements, and this is evidences even when considering 

only tissue-agnostic functional annotations. 

 

The strong enrichment for repressed states over many psychiatric traits and their salient 

contrast to many non-psychiatric traits is intriguing. This state is associated with gene silencing 

and was originally derived from the repressive histone mark H3K27me3 generated by Polycomb 

repressive complex 2, which is, for instance, involved in maintenance of pluripotency state 

during embryonic development 
29,30

. Based on our results, an interesting follow-up study would 

be to explore whether genetic variants associated with psychiatric traits affect the regulatory 

roles of this mark converging in subtle alterations in early brain development. 
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2.3  Inferred cell-group enrichments are consistent with the relevant physiology 

of the complex traits 

We then examined the enrichment profiles of the 32 traits for 10 different cell-group 

annotations. To this end, we aggregated the 220 cell-type-specific annotations into 10 pre-

defined cell-group annotations, namely: adrenal/pancreas, cardiovascular, central nervous 

system (CNS), connective/bone, gastrointestinal, immune, kidney, liver, skeletal muscle, and 

others -- according to a previous study 
16

. Again, we applied the non-sparse model for this case. 

We found that our cell-type-specific enrichment estimates are consistent with the underlying 

biology and the recent literature for most of the traits 
11,16

 (Fig. 2; Supplementary Data 2). In 

particular, all of the immune traits exhibit prominent and almost exclusive enrichment for the 

immune cell-group annotation. Psychiatric traits are predominantly enriched for the CNS 

annotation with SCZ and EduYear exhibiting the most prominent CNS-enrichments among other 

related traits. The lipid traits including low/high density lipoprotein (LDL, HDL) and triglycerides 

(Trigly) are enriched for liver cell group. BMI and Height are mostly enriched for CNS and 

connective/bone, respectively, whereas fasten glucose (FastGlu) is primarily enriched for 

adrenal and pancreas. Notably, the genetic signals of ulcerative colitis (UlcerCol) is not only 

enriched in immune but also in gastrointestinal group, consistent with the underlying pathology 

31
. Interestingly, some of the psychiatric traits exhibit somewhat mixed enrichment signals. In 

particular, the genetic signals of Alzheimer’s Disease are primarily enriched in immune and liver. 

Recent literature has suggested both the important roles of innate immunity in Alzheimer 
32

 

and the metabolic-induced dementia due to liver malfunctions 
33

. The latter may be also related 

to the enrichment signal we observed for anorexia and autism disorder. 

 

 

2.4 Sparse cell-group-guided model reveals interpretable enrichment path of 

tissue-groups 

We next proceeded to refine the cell-group enrichments observed above by dissecting the 

overrepresentation signal at the cell-type-specific level for the highly enriched cell groups. To 

this end, we used the proposed cell-group-guided sparse model.  To examine the effects that 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/059345doi: bioRxiv preprint 

https://doi.org/10.1101/059345
http://creativecommons.org/licenses/by-nc-nd/4.0/


different levels of sparsity have on the cell-specific enrichments, we trained our model using 

values of sparsity ranging from 0.1 to 0.9. We define sparsity level as the fraction of the 

maximum enrichment score among the 10 cell groups. Thus, a sparsity equal to 0 or 1 will result 

in the inclusion of either all or no tissue-specific annotations, respectively. To account for 

general non-tissue-specific enrichments and to facilitate the fine-mapping analysis in stage 2, 

we also included into our model the 52 baseline annotations (i.e., conservation, coding, 

transcription factor binding sites, etc.). For the latter we use a different regularization 

constraint that do not enforce sparsity (i.e., L2-norm).  

 

At each sparsity level, we trained our model until convergence. We then calculated the total 

enrichment Z-scores over the 220 cell-type-specific annotations by summing the Z-scores 

estimates over annotations in the same cell group. This resulted in an “enrichment path” 

(reminiscent of the solution path of Lasso 
34

) over the 10 cell-groups as a function of the 

sparsity thresholds (Supplementary Fig. S5). From a Bayesian perspective, perhaps all of the 

enrichment solutions along the path are valid as they imply different degrees of emphasis over 

the annotation groups. Nonetheless, we may choose quantitatively the best model based on 

the penalized log likelihood (Supplementary Fig. S6). 

 

It is worth noting that the cell-type-specific enrichments are updated at each iteration only 

when the corresponding group-level enrichment is above the threshold otherwise they are set 

to zero. Thus, it is possible that one group of annotations dominates over others at some 

iterations and later on becomes zero, if their group-level enrichments become less relevant 

relative to the other groups. Thus, only the annotation groups that persist along the entire 

iterative learning process will in the end exhibit significant enrichment.  

 

As we can clearly observe (Supplementary Fig. S5), the 8 immune traits (from Celiac to UlcerCol 

panels) display the highest aggregate enrichment scores corresponding to the immune cell 

group over other annotations consistently across all of the sparsity thresholds tested (i.e., 0.1-

0.9). In contrast, many psychiatric traits such as ADHD, BPD (BPD2), EduYear, IQ, MeanPut, 
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Neuroticism, SCZ, SubWel exhibit predominant enrichment over the CNS annotation group. 

However, several traits appear to exhibit interesting, combined trends. Bipolar disorder (BPD 

and BPD2), for instance, exhibits strong enrichments for both the CNS and immune annotation 

groups up to the highest sparsity threshold, at which only CNS remains. Alzheimer’s disease 

exhibits strong enrichment in both immune and liver at all sparsity thresholds except for the 

highest one (i.e., 0.9), where only the enrichment for liver group remains. In contrast, 3 

annotation groups namely CNS, connective/bone and liver persist across all thresholds for 

Autism disorder.  

 

2.5 Sparse enrichments identify biologically meaningful cell-type-specific 

epigenomes indicative of distinct and shared trait biology  

We then zoomed into specific epigenomes that exhibit non-zero enrichments for each trait at 

the most lenient and the most stringent sparsity thresholds that we tested above (i.e., sparsity 

threshold � = 0.1 and 0.9, respectively) (Fig. 3a; Supplementary Fig.S7). At both thresholds, the 

enrichment patterns are striking and biologically meaningful. Although the immune and 

psychiatric traits are mainly enriched in immune and CNS annotation groups, respectively, 

individual traits exhibit different enrichments over the cell-specific epigenomes. For instance, at 

the lenient threshold, UlcerCol is enriched for H3K27ac in both stomach smooth muscle and 

duodenum mucosa along with highly specific immune cell-types, which are consistent with the 

disease biology
35,36

.  SCZ, IQ, and EduYear are highly enriched for H3K4me1 in fetal brain and 

H3K27ac in neurophere. Lipid traits namely LDL, HDL, Trigly are enriched in liver-specific 

epigenomes. Coronary artery disease (CorArtDis) is enriched for adipose nuclei in terms of both 

H3K27ac and H3Kme1, and it exhibits an enrichment pattern similar to the one of lipid traits, 

which is consistent with previous findings
37

. At the most stringent threshold (Fig. 3a), the 

enrichment patterns are more pronounced over the known disease groups and some of the 

weaker enrichments observed at the lenient thresholds vanish, retaining only the most 

explanatory epigenomes for each trait. As comparison, we applied a non-sparse variant of the 

model to the same data and observed much less interpretable enrichment pattern where all of 
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the annotations exhibit non-zero enrichments due to the inter-group correlations 

(Supplementary Fig. S8). 

 

We then correlated the traits by their enrichment estimates over the 220 cell-type-specific 

annotations (Fig. 3b; Supplementary Fig.S7). At both sparsity thresholds, we observed salient 

and meaningful disease clustering, largely consistent with the known disease groups. This 

implies functional co-enrichments of the related traits despite the distinctive GWAS loci 

associated with many of the related traits we observed in the individual studies. Compared to 

the low sparsity threshold, the modularity becomes much more prominent at the high sparsity 

threshold. Intriguingly, Autism exhibits salient co-enrichments with both the lipid traits and 

some of the psychiatric traits, implying its intricate disease etiology. 

 

We next sought to examine the correlated effects of annotations with respect to each trait. To 

this regard, we calculated the inverse covariance of the non-zero enrichment coefficients at the 

lenient threshold (� � 0.9), which is the pairwise partial correlation between annotations 

whilst controlling for the effect of all of the other annotations. Interestingly, this results in 

meaningful annotation clusters that are relative to the phenotypes of interest (Supplementary 

Fig. S9; Supplementary Data 4). For instance, we observe several annotation modules with 

respect to human intelligence. In particular, non-tissue-specific annotations such as DHS, DGF, 

and H3K4me1, and enhancer activities -- all associated with transcriptional activation -- are 

highly correlated with each other. Tissue-specific annotations related to metabolism such as 

pancreatic islets and kidney form their own cluster. Notably, the strongest cluster is associated 

with CNS-specific epigenomes such as H3K4me1 in inferior temporal lobe, hippocampus, 

anterior caudate and H3K27ac in neurophere, implying a pleiotropic effect where multiple 

related cell-types are pre-disposed to the disease-causing mutations. 
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2.6 Leveraging functional enrichments to infer risk loci elucidated meaningful 

trait-associated genes and pathways 

To exploit the meaningful genome-wide enrichments learned from the above model, we 

applied the trained model with the most stringent sparsity (��������� � 0.9� to score genome-

wide SNPs and detect SNPs with high posterior probability of associations (i.e., PPA > 0.6), 

which exhibit both prominent SNP-level genetic signal and accumulative functional evidence. 

We define those SNPs as our “lead SNPs”. We chose the most stringent model for the 

subsequent analyses as it places emphasis on the most important annotations and thus 

facilitates further interpretations of the prioritized risk variants by the proposed fine-mapping 

model. Alternatively, one may choose the models that give the highest penalized log likelihood 

(Supplementary Fig. S6). We then constructed risk loci by including SNPs within 100-kb distance 

from the lead SNPs, merging overlapping loci. As a result, we identified 1256 risk loci in total for 

29 out of the 32 traits (Table 1). Notably, many of the risk loci do not harbor genome-wide 

significant SNPs (i.e., p-value < 5e-8) but all of them exhibit sub-threshold significance level (p-

value < 1e-5) (Supplementary Data 5). 

 

We then examined how these risk loci cluster diseases. To this end, we obtained 1703 

approximately independent LD block based on 1000 Genome European population using 

LDetect from recent study
38

 and represented the genetic signal of each LD block by the highest 

PPA from the overlapping risk loci such that each trait has 1703 PPA values representing a 

distilled version of the genome-wide associations for them. We observed that the phenotypic 

cluster based on PPA is largely consistent with the known disease group (Supplementary Fig. 

S10). This implies some degree of co-localization of risk loci for similar phenotypes. Notably, 

some traits such as T1D, SCZ, EduYear, and Height are more polygenic than other traits.  

 

We then investigated the genomic location of the risk loci and annotated them based on the 

nearest protein-coding genes from the lead SNPs harbored in the loci (Supplementary Fig. S11; 

Supplementary Data 5). Many genes are shared among related traits (Fig. 4). These include 

genes that are nearby sub-threshold risk loci. These shared genes are closely related with the 
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biology of the traits. For instance, Interleukin 10 (IL10), which we found to be associated with 

CrohnDis, UlcerCol, and T1D, is an anti-inflammatory cytokine. Myocyte Enhancer Factor 2C 

(MEF2C) is known to play a role in maintaining the differentiated state of muscle cells 
39

. 

However, mutations and deletions at this locus have been associated with severe mental 

retardation, stereotypic movements, epilepsy, and cerebral malformation. Remarkably, we 

found MEF2C associated with 6 traits: Neuroticism, EduYear, IQ, SCZ, ADHD, and Height. We 

will further investigate the IL10 and MEF2C loci in the next section of the fine-mapping analysis. 

 

In order to further test whether the identified associated genes tend to converge into 

biologically meaningful functional classes or known pathways, we performed gene set 

enrichment analysis on a per trait basis, using the genes nearby the risk loci.  Interestingly, 

overall, we found that the biological processes (BP) and pathways detected as significant are 

consistent with disease biology (Fig. 5 and Supplementary Fig. S12). For example, the three 

most enriched BP for (1) Schizophrenia, (2) Years of education, and (3) Multiple Sclerosis are, 

respectively: (1) modulation_of_synaptic_transmission (p-value < 1.9e-4), 

regulation_of_synaptic_potentiation (p-value <  3e-3), and neuron_differentiation (p-value 

<  3.8e-3); (2) neuron_projection_morphogenesis (p-value < 1.7e-5), neuron_differentiation (p-

value < 1.7e-5), neuron_projection_development (p-value < 5.6e-5); and (3) 

regulation_of_inflammatory_response (p-value < 3.4e-3), defense_response (p-value < 6.6e-3), 

and response_to_wounding (p-value < 6.6e-3). These results are consistent with the known 

developmental/psychiatric, cognitive, and immune nature of the diseases. We include 

enrichment results for all traits in Supplementary Data 6 and 7. Furthermore, under the 

hypothesis that the identified genes are likely to have a functional influence under different 

types of perturbations, we analyzed whether the latter also presents functional constraint as 

evidenced by depletion of deleterious of coding variation within humans.  Using recently 

published scores for loss-of-function (LoF)-intolerance estimated from human exome data 
40

, 

we found that identified genes are under significantly higher constraint compared to 

expectation (p-value < 2.2e-16; Fig 5b). Further, we classified the identified genes in two groups 

according to whether they were found to be associated with 2 or more traits (pleiotropic) or 
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only one (non-pleiotropic). As expected, both pleiotropic (p-value < 3.6e-6) and non-pleiotropic 

(p-value < 4.5e-4) genes have significantly higher constraint scores than expectations. 

Interestingly, however, pleiotropic genes have a more extreme deviation (Fig 5b). Thus, the 

identified genes tend to be more depleted of loss-of-function coding variation relative to 

background expectation, and the degree of constraint is greater in those associated with 

multiple traits. These results further support the potential functional relevance of the identified 

genes and the effects of their disruption by mutation. 

 

Overall, results in this section indicate that our integrative approach recovers biologically 

meaningful genetic associations that converge to candidate genes with likely functional and 

tissue-specific consequences under disruption. 

 

2.7 Integrative fine-mapping prioritizes risk variants based on tissue-specific 

evidence of activity 

To infer causal variants within the risk loci, we further refined the loci by including only the 

SNPs within modest LD of (|�| 	 0.2� with the lead SNPs (PPA > 0.6) for each locus as the 

remaining SNPs are unlikely to underlie the association. Note that we retained SNPs with 

absolute Pearson correlation greater than 0.2 with the lead SNPs to account for opposite effect 

and to better model the corresponding z-scores with a multivariate normal distribution. 

 

We then applied our proposed fine-mapping model (RiVIERA-fmap) to infer the marginal 

posterior distribution of the SNPs being causal within each of the risk loci as well as the locus-

specific enrichments of the reference annotations (Supplementary Data 5; Table 2). The latter 

differ from the genome-wide estimates due to the more confined set of SNPs and the result of 

disentangling causal SNPs from LD-linked SNPs. The inference here is challenging because the 

number of SNPs is much lower in the risk loci relative to the full genome, and the non-causal 

SNPs are often linked with causal SNPs via LD. Therefore, we sought to approach such 

uncertainty by using a novel Bayesian framework (Fig. 1c), where the posterior distribution of 

causal SNPs and enrichment coefficients are approximated by sampling.  
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Specifically, we modelled the prior of locus-specific enrichment coefficients with a multivariate 

normal distribution, where the mean (i.e., Fig. 3) and annotation covariance (i.e., 

Supplementary Fig. S9) were fixed to the ones learned during the global genome-wide 

estimates inferred (stage 1 of the framework) above. Annotations with zero enrichment 

coefficients in the above genome-wide sparse model are not considered in the fine-mapping 

model. We performed Hamiltonian Monte Carlo (HMC) 
41

 to sample from the corresponding 

posterior distribution to approximate the enrichment distribution. We ran our model for 5000 

MCMC iterations. At each iteration, we sampled 100 configurations per locus by Important 

Sampling and calculated the posterior inclusion probability (PIP) of SNPs being causal by 

marginalizing the posteriors over the sampled and weighted causal configurations whenever a 

new set of enrichment coefficients are sampled at the HMC step. The final PIP values are 

averaged to obtain the Bayesian estimates of the SNP causal status. 

 

We first assessed the functional implication of the SNPs by testing their overlap with 

independent evidence suggestive of function. First, we calculated the significance of overlap of 

the prioritized SNPs with eQTL SNPs from GTEx (version 6) whole-blood samples. To account for 

LD in the eQTL data, we retained only the SNPs in both eQTL and digital genomic footprint (DGF) 

sites at 6-bp resolution derived from DNaseI data 
42

. We observed that the prioritized SNPs 

taking the top 100 to 500 SNPs based on estimated PIP posteriors are significantly more 

enriched for eQTL compared to prioritized SNPs based solely on the GWAS genetic signals 

(� log �) from GWAS alone (Wilcox signed-rank test p < 0.007, Fig. 6a). Next, we examined 

whether the prioritized SNPs are relatively more evolutionarily conserved. We used the 

PhastCons46Way conservation score based alignments across 46 species obtained from UCSC 

genome browser, and calculated for the top rank SNPs the average conservation. Indeed, our 

prioritized SNPs exhibit significantly higher conservation compared to the SNPs prioritized by 

the GWAS p-values (Wilcox signed-rank test p < 1.72e-6, Fig. 6b). These results suggest that the 

additional information provided by tissue-specific evidence of regulatory activity (i.e., 

epigenomic annotations), indeed seems to help finely localize variants more likely to have a 
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functional impact. This observation thus highlights the utility of having a method able to 

automatically integrate genetic and epigenetic evidence, while at the same time pointing to 

likely tissues-of action. 

 

2.8 Examples of fine-mapped loci 

We then zoomed into the specific loci to see what SNPs are attributable to the observed locus-

specific functional enrichments (Table 2). To this end, we visualized the inference results on a 

locus-by-locus basis and identified many interesting high-risk non-coding SNPs that potentially 

disrupt the regulation of nearby genes. Interestingly, many of the genes are also highly 

expressed in the relevant tissues, consistent with the epigenomic enrichment. For the sake of 

concreteness, we are going to discuss only five loci, considering traits from the five predefined 

phenotypic groups. 

 

As the first example, we zoomed into the FTO locus, which based on the present analysis is 

associated with both BMI and T2D (Fig. 4). FTO is known to be associated with obesity-related 

traits 
43

 
44

. The locus is within a tight LD block, including many SNPs that exhibit high significant 

p-values (Fig. 6c). Nonetheless, by modeling the effect of LD and leveraging the genomic and 

epigenomic enrichments, we prioritized a SNP (rs1421085) that is supported by many lines of 

functional genomics evidence, including overlap with super enhancer, H3K27ac, H3K4me1 

activity in brain anterior caudate region. Moreover, the SNP is also correlated with the FTO 

gene expression in skeletal muscle samples from GTEx, thereby providing further evidence to 

the specificity of its functional potential. Importantly, the very same SNP has been recently 

experimentally validated by our group 
44

. In particular, the T-to-C single-nucleotide mutation at 

rs1421085 disrupts a conserved motif for the ARID5B repressor, which leads to derepression of 

a pre-adipocyte enhancer and a two-fold increase of IRX3 and IRX5 expression during early 

adipocyte differentiation 
44

. This fact, strongly demonstrate the utility of the proposed 

framework, as it learnt in a completely unbiased and automatic way a non-coding genetic 

perturbation that has previously shown to mechanistically lead to a cellular phenotype directly 
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impacting obesity.  Thus, the identified variants constitute testable hypotheses about the 

mechanisms underlying the genetic association. 

 

As the second example, we focus on a risk locus (chr1: 25661137-25860915) harboring four 

comparable SNPs, which exhibit strong evidence of enhancer (H3K4me1/H3K27ac) activity in 

liver tissues (Supplementary Fig. S14a). The nearest gene to these variants is TMEM57, which 

encodes a membrane protein with poorly characterized function 
45

. Interestingly, TMEM57 is 

also the proposed target gene of the top SNP (rs10903129), prioritized based on GTEx eQTL 

analysis in several relevant tissues including aorta and tibial artery tissues. Notably, LDL 

cholesterol level is one of the main causes of cardiovascular disease 
45

 
46

 but the potential role 

of TMEM57 in both traits remains to be elucidated. However, we do not rule out the 

possibilities that genes other than the nearest might be affected by the same SNP. As proposed 

by recent transcriptome-wide association studies, there were cases that the nearest gene is not 

necessarily the target gene of the variants 
47

. For instance, note that LDLRAP1 (Low Density 

Lipoprotein Receptor Adaptor Protein 1) is also within close vicinity of the same locus and thus 

may also be affected by the mutation although we could not find corroborating GTEx eQTL 

results. We also examined the inferred posterior distribution of the functional enrichments of 

both the baseline and tissue-specific annotations and found that the most enriched annotations 

for LDL are extended coding regions and H3K27ac activity in liver (above 90% Bayesian credible 

interval) (Supplementary Fig. S13). 

 

As the third example, we illustrate IL10 locus, which exhibits a pleiotropic association with 

three related traits (CrohnDis, UlcerCol, and T1D) (Supplementary Fig. S14b). Four SNPs in this 

locus exhibit not only high genetic signals but also prominent epigenomic signatures in immune 

cells, implying functional relevance to the immune disorders. As the fourth example, we 

examined the NBEAL1 locus associated with CorArtDis. NBEAL1 is known to be associated with 

myocardial infarction gene  
48,49

. Because of the extensive LD (Supplementary Fig. S14c), 

identifying the causal variants based only on the GWAS genetic signals is difficult. However, 

when combining with various functional genomic and epigenomic reference annotations as well 
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as modelling the z-score distribution as a function of the LD reference panel, we identified only 

one variant (rs2351524) with high posterior probability (PIP > 0.6). Remarkably, the SNP is also 

associated with the gene expression of NBEAL1 based on GTEx data from coronary and aorta 

artery samples, as well as the nearby gene CARF in atrial appendage heart. This observation 

supports a likely disruptive role of the prioritized variant in the regulation of gene expression 

specific to disease relevant tissues. 

 

Finally, we highlight the gene locus MEF2C, which interestingly was found to be associated with 

four different cognitive/psychiatric traits (EduYear, IQ, SCZ, ADHD) as well as human height (Fig. 

4). This finding demonstrates the benefit of analyzing and comparing multiple traits in parallel, 

which enables the discovery of promising pleiotropic loci. MEF2C codes for myocyte-specific 

enhancer factor 2C, a transcription activator that binds specifically to the MEF2 element 

present in the regulatory regions of many muscle-specific genes 
39

. However, it is known to play 

an important role in hippocampal-dependent learning and memory, by suppressing the number 

of excitatory synapses and thus regulating basal and evoked synaptic transmission 
50

. It is also 

crucial for normal neuronal development, distribution, and electrical activity in the neocortex 
51

. 

We prioritized a top SNP (rs41352752) in this locus, which, for example, in the IQ-associated 

locus exhibits much stronger functional evidence or brain regulatory activity, such as super 

enhancer, H3K27ac in inferior temporal and middle frontal lobe, relative to other SNPs with 

comparable genetic signal in the same locus (Supplementary Fig. S14d). Again, this example 

demonstrates how our integrative modeling framework is able to provide functionally 

supported hypothesis for experimental follow-up studies. 

 

3 Discussion 

Dissecting molecular mechanisms underlying genetic association with complex traits, ultimately 

mapping genotypes to phenotypes, is becoming more feasible thanks to the recent availability 

of large-scale functional genomics data 
8,52-54

. One natural approach is to incorporate various 

genome-wide reference annotations in the form of prior evidence within a Bayesian framework 
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to infer the functional variants that underlie the genetic signals 
11,19,20,23,55,56

. However, given 

hundreds of collinear annotations, it is challenging to identify and interpret those annotations 

that are more specifically enriched with genetic signal. This limitation reflects the mixed success 

while trying to do so 
16,19,56,57

. Moreover, it is often difficult to harmonize the identification of 

causal variants (i.e., fine-mapping), which are restricted to only a set of loci 
21,23,58

, with the 

specific identification of genome-wide relevant annotations 
16

. Here we propose a novel 

efficient framework to address that challenge. 

 

Our main contributions are the following. First, using the proposed efficient genome-wide 

model, we demonstrate that overall the traits we investigated exhibit meaningful and 

statistically significant enrichments for tissue/group-specific epigenomes when modeled 

together. Second, using a novel sparse group-guided model, we identified significant cell-type-

specific epigenomes that are highly relevant to the traits of interest, thereby suggesting the 

target cell types of action for follow-up experimental investigation. Moreover, we showed that 

the majority of the traits aggregate in clusters based on the epigenomic enrichment profiles, 

and that the uncovered clusters are consistent with known trait/disease groups. Because many 

of these traits do not share the same risk loci, our results imply a model in which genetic 

perturbations associated with complex traits converge into downstream regulatory 

mechanisms that are shared across related tissues. Furthermore, we demonstrate a novel way 

to detect modules of functional annotations with respect to a target trait, by exploiting the 

covariance of the enrichments directly from the trained model. One caveat of this approach is 

the assumption of traits being measured from non-overlapping samples, as we assume that z-

scores are independent across traits, which is not necessarily the case. While independence 

seems to hold for most traits that we investigated, we cannot eliminate the possibility that 

common disease clusters are indirectly related to overlapping samples between some traits. 

 

Third, we harness the meaningful enrichments that we learned by incorporating them as priors 

in a novel Bayesian fine-mapping model. As a result, the prioritized variants exhibit not only 

strong genetic signals but also strong evidence of tissue specific regulatory activities. This is 
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especially important for many cases where the causal variants are in a strong LD with other 

variants. For instance, we are able to recapitulate the causal variant in FTO locus that was 

previously validated in a mouse model to have causal effect on obesity by analyzing the publicly 

available BMI GWAS summary statistics. In addition, there are many variants that we prioritized 

and appear to be as promising as the validated SNP based on multiple lines of supporting 

evidence, from both genetic and epigenomic data, thereby providing a valuable repertoire of 

hypotheses for the research community interested in experimentally dissecting GWAS loci. 

 

Additionally, RiVIERA is implemented as an R package so that it can be easily to apply to other 

datasets. As inputs to the software, users need to supply RiVIERA with summary statistics, 

reference annotations, and LD information to estimate genome-wide functional enrichment 

estimates, infer risk loci, fine-map risk variants all with the same software package. As for the 

computational resource needed to run the full analysis described in the paper, the genome-

wide model will require at least 32 GB RAM to load 1-5 million SNPs and hundreds of 

annotations in memory, whereas the fine-mapping model require much less memory for the 

refined set of risk loci. Both models typically finish in a few hours on a single-core modern CPU. 

 

As future works, the current framework can be extended in many ways. First, causal genes 

could be inferred beyond individual variants by jointly modeling both the GWAS data and eQTL 

data taking into account not only the SNP-level annotations but also gene-level network 

information such as signalling pathways or protein-protein interactions. Second, for traits that 

are associated with the same pleiotropic loci, we may provide the users an option to infer the 

joint posterior of SNP associations with multiple traits 
21

. Third, the current model can also be 

easily adapted to model trans-ethnic GWAS using separate LD matrices, as effectively 

demonstrated by the trans-ethnic version of the PAINTOR model 
22

. Fourth, instead of using the 

linear logistic prior model, we will explore other models that take into account the spatial 

information of the genomic sequence as well as local epigenomic context around each SNP. 

Fifth, the group-guided sparse model can be further improved by imposing richer structure such 

as a hierarchical tree structure over the annotations with increasing cell-type-specificity going 
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from the root to the leaf nodes. Finally, to facilitate dissemination of our fine-mapping results, 

we will consider the possibility of having an on-line portal for users to explore the model 

inference in an interactive way. Thus, the present work provides a useful building block for 

more complex modeling tasks and user-friendly applications for GWAS dissection. 

 

All together, we consider that the proposed framework provides a valuable demonstration of 

the power gained by integrating functional epigenomic data from ENCODE and Roadmap 

Epigenomics Consortia, population genetic data in terms of LD from 1000 Genome Project, 

tissue-specific genotype-expression information, and genetic signals from large GWAS consortia 

in order to dissect genetic signal in terms of specific molecular mechanisms, hereby going from 

an agnostic data-driven approach to a refined set of specific biological hypotheses that 

constitute experimentally actionable  items in dissecting functional genetics. 

 

4 Methods 

4.1 Learning genome-wide epigenomic enrichments 

To detect genome-wide functional genomic and cell-group-specific enrichments, we propose an 

efficient mixture model learning approach with expectation-maximization updates. In particular, 

we developed two models namely (1) RiVIERA-ridge and (2) RiVIERA-glass. The first model 

RiVIERA-ridge does not impose sparsity and uses L1-norm constraint on the enrichment 

coefficients, which works well on small number of approximately independent annotations, 

whereas the second RiVIERA-glass model builds upon RiVIERA-ridge and exploits group-level 

sparsity, which confers much more interpretable enrichment estimates over hundreds of the 

cell-type-specific annotations. Below we describe the main components of the two models. 

Interested readers can refer to extended details in Supplementary Note. 

 

4.1.1 Non-sparse RiVIERA-ridge model 

We model the p-values of the SNPs using a two-component Beta mixture model, which is 

similar to some of the previous works 
20,56,59

. The null and signal component correspond to 
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whether the SNPs are in or outside of a risk locus, which is reflected by the high and low p-

values, respectively. Here we assume that the SNP signals � are conditionally independent 

given their latent indicators � (for being in the risk loci or not). Specifically, suppose there are N 

SNPs, the expected complete log likelihood is defined as follows: 

 

ln ���, �|�, �, �� � � � ���� � ��
�	
�,���

ln�����|������� � �|�� , ��� 
where 

����|�� � ����|�, 1� � ����� 

����|��� � ����|��, 1� � !���|0,1� � 1 

���� � 1|�� , �� � "�� ����� # ��� $ %�
�

 

����� � ���� , �, �� � 1����� � 1|�� , ������|�, �� � 1����� � 1|�� , �� # ����|��, �� � 0��1 � ���� � 1|�� , �� 

 

where "�&� � 1/�1 # exp��&�� and �� and � are the null and causal mean p-values for the 

non-risk and risk locus, respectively. We estimate � from the data and fix �� to 1, which is 

equivalent to uniform distribution. The parameters + � ���, �, … , ���- are the intercept and 

enrichment coefficients for the K annotations. And ����� � ����|�� , �, �, �� is the posterior 

probabilities of association (PPA) 
60

. 

 

By applying the Bayes rule, the posterior probability of the model parameters is expressed as 

follows: 

. � ln ���, �|�, �, �� / ln ���, �|�, �, �� # ln ���� # ln ���� 

 

Here we assume ln ���� � ∑ ln 1���|0,1��  and ln ����� � ln 1���|2�, 1� and ���� follows 

a uniform prior and its value does not affect the posterior as long as it is greater than zero. 

2� � log�%�� � log�1 � %��, where %� � 0.001, implying apriori the probability of a SNP being 

a risk-associated variant is 0.001.  
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Our goal is to optimize the objective function Q with respect to the enrichment parameters +. 

Notably, the optimization procedure requires the evaluation of �����, which in turns depend on 

the model parameters. Thus, we use EM algorithm to update these parameters: 

1. Initialize �  � 0.1, %� � 0.001, 2�  �  ��  � ln�%�� � ln�1 � %��; 

2. E-step: update ����; 

3. M-step Update � and + by Newton-Raphson update; 

4. Repeat step 2 and 3 until convergence. 

Because both the E-step and M-step maximize the objective function, the algorithm guarantees 

convergence. 

 

4.2 Significance testing for functional enrichments 

To test for the significance of function enrichment for annotation 4, we compute the 

corresponding z-score from the enrichment coefficients �� � ��

��
�
�

~1�0,1�, where 6"�� is the 

4�� diagonal element of the covariance matrix 7�, which is the inverse of the negative Hessian 

matrix estimated using the converged model. 

 

4.3 Group-sparse model to learn cell-type-specific enrichments over hundreds 

of epigenomic annotations 

To learn a cell-type-specific enrichment model, we proposed a group-guided update algorithm. 

The objective function of the model parameters specified above stays the same except for the 

change of the prior constraint over + from univariate Gaussian (or L2-norm) to a constraint 

function that leverages group-level information over the annotations (i.e., L1/L2-norm): 

 

ln ��+� � � � ��8� ����
�

� � � ��||+||
�

 

which imposes a L1-norm over each annotation group and a L2-norm over annotations within 

each group. The gradients of the objective function with respect to the annotation enrichment 
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weights are defined everywhere except when ∑ ����� � 0. Based on KKT condition, the optimal 

solution for group g is zero if 9:;�� �� � <�:9� = �� 
24,25

. 

 

However, the standard Group Lasso approach does not work well for our problem in practice 

due to the highly unbalanced number of annotations in each cell group and perhaps non-

standardized binary annotation variables in order to facilitate interpretations. For instance, 

there are 67 immune epigenomic annotations, 34 CNS epigenomic annotations, and only 6 

annotations in the Liver group. Inspired by the idea of Group Lasso, however, we propose a 

group-guided sparsity condition. Specifically, for each SNP > and annotation group ?, we define 

the group-level annotation as ���
���  � min�1, ∑ ������ . Thus, ���

��� � 1 if any annotation 4 in 

group ? is positive otherwise zero. In practice, we also included a set of non-tissue-specific 

baseline annotations, which we impose the same L2-norm regularization as the group-level 

weights. 

 

At each iteration, we update the group-level enrichments +��� using RiVIERA-ridge model with 

the group level annotations. We then set the annotation group ? to active if the corresponding 

enrichment z-score is greater than a fraction of maximum z-scores among all the group-level 

annotations ��  	 � max�����. We then cycle through the active annotation groups and update 

the corresponding cell-type-specific annotations within each group using Newton-Raphson 

method, where the Hessian matrix is calculated only within the group. For the inactive 

annotation groups, we set the corresponding weights of the cell-type-specific annotations to 

zero. After model converges, we calculate z-score over all of the non-zero coefficients. 

 

In practice, when the enrichment of only a few cell groups (usually fewer than three groups for 

most traits that we investigated in this paper at fairly lenient sparsity threshold �) are active, 

this approach is more efficient than the original Group Lasso because at each iteration we do 

not need to calculate the gradients and Hessian matrix over all of the cell-type-specific 

annotations but instead only need to calculate the gradients and Hessian matrix of the group-

level annotations as well as only the cell-type-specific annotations within each active group. 
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4.4 RiVIERA-fmap fine-mapping model 
 

4.4.1 Likelihood of SNP causal configurations 

The proposed fine-mapping algorithm RiVIERA-fmap builds upon some of the existing fine-

mapping methods 
17,18,23,26

 by utilizing multivariate normal theory to model the likelihood of the 

z-scores given a specific causal configurations C�, which is a binary vector with one (zero) 

indicating the SNP is (not) causal within the locus. We assume that the unobserved effect size D 

follows multivariate normal (MVN) with zero mean and covariance dictated by the phenotypic 

variance explained by the causal SNPs "�� multiplied by the variance of the residual error "��: 

D ~ 1�E, "��"��C��, which is assumed in a way that F can be integrated out. 

 

Specifically, due to conjugate prior of the Gaussian distributions, we can integrate out the effect 

size D  to obtain the closed form expression of the z-score likelihood: � ~ 1�0, Σ�� #
Σ���H"��C��Σ��, where covariance of the likelihood is a function of the LD matrix Σ��, H is the 

effective sample size of the GWAS, and "�� is the variance explained per SNP. In practice the z-

score is often estimated by Wald statistics �̂� � ���
 !"���#, which follows standard normal under the 

null. 

Taking the Bayes factor of the likelihood of a particular causal configuration over the likelihood 

of the null model of zero causal variant reduces the inference to only the likelihood of the 

candidate causal SNPs �J���|K��, "��� � 1���|E, Σ�� # Σ���H"��C��Σ���/1���|E, Σ���. Since we 

usually do not know H"�� , we treat them as a single parameter H"�� $ L�. Moreover, instead of 

inferring a global additive variance, we infer the distribution of the locus-specific variance L�� for 

each locus l. 
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4.4.2 Epigenomic-informed functional priors 

We use a logistic function of weighted linear combination of annotations plus the intercepts to 

infer the prior distribution of each SNP: %�� � "�∑ ������ # M�� �, where "��� �  1/�1 #
exp����� and �� is the weight for annotation 4 and ����  is the annotation 4 for SNP > in locus �.  

 

The weights + � ��, ��, … , �$�- are interpreted as the “enrichment” parameters. We model 

the prior distribution of these weights + as a K-dimensional multivariate normal distribution 

over K annotations +~1�N, 7�� with the O P 1 mean vector and the O P Ocovariance matrix 

set to the genome-wide enrichment estimates and the covariance calculated using RiVIERA-

glass model (Section 4.2 and 4.3). 

 

The intercepts for each locus M� captures the belief for each SNP being causal in the absence of 

the annotations (i.e., %�� � "�M��). We assume  M�~1�?�%��,1�, where the mean as log-logit 

function ?�%�� � log�%�� � log�1 � %�� implies that the prior probability of an un-annotated 

SNP to be causal is %� � 
%&'"(�,�.�#, where Q� is the number of SNPs in the locus and 0.01 is 

the default (and user defined) maximum prior allowed. 

 

4.4.3 Approximate posterior inference of causal configurations by sampling 

The posterior over a configuration R� for locus � is proportional to the product of the likelihood 

and the prior described above: 

��R�|�� , Σ��, ;� , +, L��� � ����|R� , Σ��, L�����R�|;� , +�∑ ����|R-� , Σ��, L�����R-�|;� , +�*�
  

The marginal likelihood in the denominator requires evaluation of exponentially large number 

of configurations (i.e., 2(�  for Q� SNPs in locus �), which is intractable. Efficient approximation 

of the marginal likelihood based on sampling schemes have been proposed in some recent 

works such as FINEMAP and FastPAINTOR 
18,21

. Inspired by these works, we developed two 

sampling schemes: (1) Stochastic shotgun sampling by neighborhood search (Supplementary 

Note); (2) Importance Sampling. In our application to the real data, we chose the Important 

Sampling scheme due to its less reliance on the similarity between the 1000-Genome reference 
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LD matrix and the (unavailable) in-sample LD matrix obtained directly the GWAS individuals, 

which has profound impact on the summary-statistics-based fine-mapping performance 
61

.  

 

The intuition behind Importance Sampling is that only the configurations containing SNPs with 

high individual signals in terms of either the marginal SNP z-scores or SNP posteriors are likely 

to real. Therefore, instead of directly sampling configurations from the actual posterior 

distribution, which is impractical, we sample from a much easier proposed distribution that 

mimics some of the properties of the desired posterior distribution. In our case, a natural 

choice of the proposed distribution is the special case in our fine-mapping problem, where each 

locus contains exactly one causal SNP and a configuration is generated by sampling causal SNPs 

as independent Bernoulli trials according to their normalized posteriors: 

��S��|�� , ;� , L��, +� � 1����|0,1 # L��%��∑ 1�����|0,1 # L��%���(���
 

��R�|�� , ;�, L��, +� � TU��S��|�� , ;�, L��, +�V���U1 � ��S��|�� , ;� , L��, +�V����
�

 

To correct the bias caused by sampling from the proposed distribution, we evaluate the 

configuration posteriors as follows: 

��R�|��, 7� , ;�, +, L��� � �J���|R� , 7� , L�����R��∑ �J���|R��, 7� , L�����R���*
�
�	 �

 

where the importance weight is defined as: 

��R�� � ��R�|�� , ;�, +���R�|��, ;� , L��, +� 

 

4.4.4 Marginal posterior inclusion probabilities for each SNP 

We marginalize these posteriors over all of the configurations W� to infer posterior inclusion 

probabilities (PIP) for each SNP: ��S��|�� , 7� , �� , �, L��� � ∑ �S�� � 1���S�|�� , 7� , ���, L�����	 � . In 

principle, we would like to infer the expectation of SNP being causal, integrating out all of the 

model parameters, which is not tractable. As described next, we employ Markov Chain Monte 

Carlo (MCMC) sampling methods to approximate the integral:  
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��S��|�� , 7�, ;�� � X � �S�� � 1���R�|�� , 7� , ;� , +, L���
*�	 �

��+, L���Y+YL��
Z 1[ � � �S�� � 1���R�|��, 7� , ;� , +, L�����+, L���

*�	 ��
 

4.4.5 Inferring the distribution of model parameters by Markov Chain Monte Carlo 

(MCMC) 

Given the posterior distribution ��\�� of the sampled configurations for each locus �, we 

perform Hamiltonian Monte Carlo (HMC) to sample the model parameters ] � ^+, _, `�a 
41

. To 

derive gradients of each model parameters (as required by the HMC method), we define the 

expected complete log posterior as follow: 

Q �  E�log ��]|d��
� log ��+�
# � log���M����L����

�

# � � ��R�� log ��R�|+, M� , ;�� # � � ��R�� log ����|R� , Σ� , L���
*��*��

  

where ��R�� � ��R�|��, 7� , ;� , +, L��� is the posterior distribution over all of the configurations 

sampled at iteration t. Notably, to have a closed-form expression of the objective function, here 

we assume the z-scores from different loci are conditionally independent given their causal 

configurations (i.e., the last term). This generally holds true for loci that are far from each other 

for which we can ensure by merging any loci within 100-kb (or more) genomic distance. The 

gradients of . with respect to the parameters 
+,
+-  can be easily obtained to enable HMC 

sampling. 

4.4.6 Summary of the RiVIERA-fmap inference algorithm 

The unknown parameters are +, _, `�, where the enrichment parameters + is a O P 1 vector 

for O annotations, the intercepts _ is a e P 1 vector for e loci, and variance explained per locus 

`. is  also a e P 1 vector for e loci. We summarize the inference algorithm as follow: 
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1) Initialize the mean and covariance for + to be N and 7� obtained from the genome-wide 

estimates by RiVIERA-glass, M� � log�Q�� � log �1 � Q�� for each locus � with Q� SNPs, and  

`� � f for all loci; 

2) Given the model parameters +, _, `�, infer posterior of causal configurations ��R/� /
��R�|�� , 7� , �� , �, L��� and evaluate and save PIPs ��S��� � ∑ �S�� � 1�*� ��R/� for each SNP > 

in each locus �. 

3) Given ��R/�, jointly sample the model parameters +, _ for all annotations and all loci by 

HMC; 

4) Given ��R/�, jointly sample the variance term `� for all loci by HMC; 

5) If all +, _, `� are accepted at step 3 and 4, do step 2; 

6) Repeat step 3 and 5 for [ MCMC iterations; 

7) Estimate PIP for each SNP by averaging over the PIP evaluated at [� g  [ MCMC iterations 

��S��� � 
0�

∑ ��S��"�#�� . 

 

4.5 Preprocessing GWAS summary statistics 

Overall, the summary statistics of the 32 GWAS traits were downloaded from public domains at 

the GWAS consortia website. Table 1 summarizes the data from each individual GWAS study. 

For each study, we first removed strand-ambiguous SNP (T/A, C/G) and SNPs with supporting 

sample sizes lower than a threshold (10,000 individuals). We then imputed summary statistics 

using ImpG (v1.0.1) (https://github.com/huwenboshi/ImpG) 
27

 to 1000 Genome Phase 1 

(version 3) data. Only the imputed SNPs with imputation quality measured as ��  	  0.6 were 

retained. Risk loci overlapping with the major histocompatibility complex (MHC) region 

(chr6:28477797-33448354; hg19) were removed from further analyses. For select risk loci, we 

calculated the LD for each risk locus by Pearson correlation between the SNPs within each locus 

using the 1000 Genome European individual-level genotype data. 
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4.6 LD pruning 

We ran PriorityPruner (version 0.1.4) (http://prioritypruner.sourceforge.net/) to recursively 

remove SNPs that are in high LD (�� 	 0.6� with the most significant SNPs within 100-kb 

distance. As a result, all of the SNPs from each trait were either labeled as tagged (i.e., pruned) 

or selected SNPs. We then took only the selected SNPs for the genome-wide enrichment 

analyses using the proposed RiVIERA-ridge and RiVIERA-glass models described in the main text. 

 

4.7 Functional genomic and cell-type-specific Annotations 

We annotated each 1000-Genome SNP by the 272 annotations obtained from LD score 

regression database (https://data.broadinstitute.org/alkesgroup/LDSCORE/) 
16

. There are 52 

baseline annotations
62

 and 220 cell-type specific annotations over 10 cell groups. The 220 cell-

type-specific annotations were originally generated by the ENCODE and Roadmap Epigenomic 

Consortium
8
 and represent 100 well defined cell types over four different histone marks namely 

H3K4me1, H3K4me3, H3K27ac, and H3K9ac. 

 

4.8 Transforming LD matrices to invertible matrices 

Our fine-mapping method requires the LD matrix to be invertible in order to evaluate the MVN 

density function and calculate the derivatives of the variance explained `�. In practice, many LD 

matrices are not invertible due to finite sample sizes. This posed a problem when fitting our 

model. To remedy the problem, we transformed all of the LD matrices to invertible matrices 

using a Kernel-based regularized least squares (KRLS). Similar LD-transformation methods were 

also proposed elsewhere 
22

. Specifically, we fit a KRLS model one per locus by using the 

corresponding LD as the predictors and z-scores as the response variable. We implemented the 

KRLS using the existing R package KRLS 
63

, which finds the best fitting function by minimizing a 

Tikhonov regularization problem with a squared loss, using Gaussian Kernels as radial basis 

functions. The original LD matrix is then transformed as 71 � O # �C. We then further 

converted the transformed LD matrices to correlation matrices by the R function cov2cor to 

obtain the final transformed LD matrices. The transformed LD matrices have average Pearson 
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correlation > 0.9 with the original LD matrices in terms of the off-diagonal values. Throughout 

this paper, we used the transformed LD matrices instead of the original LD matrices.  

 

4.9 Pathway and GO term enrichment and loss-of-function constraint analysis  

Gene set enrichment analysis was performed by hypergeometric test, assessing over-

representation of genes annotated with GO biological process and canonical pathways in the 

Molecular Signatures Database (MSigDB) 
64

. Gene loss-of-function (LoF)-intolerance scores (pLI 

scores) 
40

. The observed mean pLI score for pleiotropic genes was estimated as the in-sample 

mean, whereas for non-pleiotropic genes it was estimated by randomly resampling sets of 

matching size. A null distribution was estimated by randomly resampling with replacement 

from all scored genes sets of matching size 10,000 times. Significance of deviation from 

expectation was assessed by computing a z-score and corresponding p-value. 

 

4.10 Code availability 

RiVIERA software (version 0.9.3) implemented as a standalone R package is freely available 

from Github repository (https://yueli-compbio.github.io/RiVIERA). 
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Figure Legends 

Figure 1. Integrative approach to infer tissue-specific enrichments and risk mutations. (a) 

Workflow to infer epigenomic enrichments and risk SNPs. Taking as inputs GWAS summary 

statistics, functional reference annotations, and reference LD, RiVIERA-glass infers the genome-

wide tissue-specific enrichments in a sparse and interpretable fashion. The output enrichments 

are then incorporated into the Bayesian priors of the fine-mapping RiVIERA-fmap model. The 

final outputs are locus-specific the posterior probabilities of the SNPs. (b) Intuition behind the 

enrichment learning algorithm of sparse group-guided RiVIERA-glass model. The learning 

iterates by alternating between two steps: in step A, we learn the cell-group enrichments using 

cell group annotations; in step B, we choose to investigate further the cell-type-specific 

annotations only if the corresponding cell group exhibit prominent enrichment. The output is a 

sparse interpretable enrichment over the 32 traits investigated in this paper. (c) General 

framework of the proposed Bayesian fine-mapping RiVIERA-fmap model depicted in 

probabilistic graphical model (PGM), where the circles are the variables with defined 

parametric distribution. The outputs are a set of risk loci visualized based on the genetic signals, 

SNP posteriors, gene tracks, and the top supportive functional annotations. 

Figure 2. Cell group epigenomic enrichments of 32 distinct traits. Cell-group enrichments were 

inferred by training the proposed RiVIERA-ridge model over 10 cell-group annotations plus as 

intercepts the 52 baseline annotations to account for general non-tissue-specific enrichments. 

The enrichments are displayed as barplot of the –log10 p-values, where the horizontal line 

indicates p-value < 0.01 after Bonferroni correction for multiple testing (i.e., 330 tests in total). 

Figure 3. Inferred sparse cell-type-specific epigenomic enrichments. We inferred the 

enrichments of the 220 cell-type-specific epigenomes for the 32 distinct traits using the 

proposed group-guided sparse RiVIERA-glass model. The enrichment patterns were displayed as 

heatmap for the annotations that have non-zero enrichment in at least one of the traits. The 

colors of the trait text indicate pre-defined disease group to facilitate comparison between 
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traits. (b) Trait-by-trait correlation across the 220 inferred epigenomic enrichments. Traits were 

ordered based on their correlation. For both plots, the sparsity was set to 0.9 (i.e., the most 

sparse model among the 9 sparsity tested thresholds). Supplementary Fig. S7a illustrates the 

enrichments of the least sparse model, which gives qualitatively similar results. 

Figure 4. Risk genes associated with two or more traits. We annotate the loci by the nearest 

genes and obtained risk genes that are common in at least two traits. Genes nearby risk loci are 

enriched for biologically meaningful pathways and gene ontology terms for select traits.  

Figure 5. Functional enrichments of the risk genes. (a) Genes nearby risk loci are enriched for 

biologically meaningful pathways and gene ontology terms for select traits. Gene set 

enrichment analysis shows significant over-representation of biological processes (BP) and 

pathways consistent with disease biology. (b) Within-human coding constraints on associated 

(risk) genes. Genes nearby risk loci are under significantly higher constraint than background 

(non risk) genes, as estimated exome-based loss-of-function (LoF)-intolerance scores. Genes 

associated with more than one trait (Pleiotropic) have a more extreme deviation than risk 

genes associated with only one trait (Non-pleiotropic). All identified risk genes as a group have 

significantly higher constraint scores than expectations. 

Figure 6. Prioritized SNPs are enriched for functional elements in the risk loci. We performed 

fine-mapping using the proposed Bayesian RiVIERA-fmap model for each trait and examined the 

prioritized SNPs based on the posterior inclusion probability (PIP) for their functional evidence. 

(a) Prioritized SNPs are enriched for eQTL SNPs. We took the top 100 to 500 SNPs based on 

either the GWAS -logP or PIP. At each ranking, we assessed the hypergeometric enrichment of 

the SNPs for eQTL SNPs obtained from GTEx whole blood samples.  The Wilcox rank-sum one-

sided test was performed by comparing the enrichments scores from PIP-ranked SNPs with the 

those from SNPs ranked by -logP. (b) Prioritized SNPs are highly conserved. Similar to (a), we 

compared the average conservation score from PhastCon46way for the top ranked SNPs by 

either GWAS -logP or PIP. (c) Fine-mapping example for the FTO locus. The tracks from top to 

bottom display respectively the -logP genetic signals, top SNP within each locus, posterior of 
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the SNPs, Ensembl genes, and the top 20 annotations weighted by the PIP of the SNPs in the 

loci and the averaged enrichments inferred by the model across all loci. 

Tables 

Table 1 Summary statistics of the 33 GWAS datasets analyzed in this paper 

Phenotype Data Source hosted 

by GWAS Consortium 

Abbreviation Disease 

Group 

Inferred 

risk loci 

Body mass index GIANT BMI Anthropom 17 

Height GIANT Height Anthropom 133 

Alzheimer's disease iGAP Alzheimer NeuroDegen 9 

Anorexia nervosa PGC Anorexia NeuroPsych 7 

Attention Deficit 

Hyperactivity Disorder PGC 

ADHD NeuroPsych 16 

Autism PGC Autism NeuroPsych 1 

Bipolar disorder PGC BPD NeuroPsych 5 

Bipolar disorder 2 GWAS Catalog BPD2 NeuroPsych 9 

Depression symptom SSGAC DeprSym NeuroPsych 4 

Ever smoked PGC EvrSmk NeuroPsych 0 

Intelligence CTG IQ NeuroPsych 70 

Major depressive disorder PGC MDD NeuroPsych 0 

Mean putamen ENIGMA MeanPut NeuroPsych 3 

Neuroticism SSGAC Neuroticism NeuroPsych 26 

Posttraumatic Stress 

Disorder PGC 

PTSD NeuroPsych 0 

Schizophrenia PGC SCZ NeuroPsych 151 

Subject well being SSGAC SubWel NeuroPsych 14 

Year of education SSGAC EduYear NeuroPsych 187 

Coronary artery disease CARDIoGRAMplusC4D CorArtDis Heart 19 

Celiac disease Immunobase Celiac Immune 14 

Crohn disease IBD Genetics CrohnDis Immune 53 

Multiple sclerosis Immunobase MultipScl Immune 23 

Primary biliary cirrhosis Immunobase PrimBilCir Immune 26 

Rheumatoid arthritis Immunobase RheuArth Immune 24 

Systemic lupus 

erythematosus Immunobase 

Lupus Immune 64 

Type 1 diabetes Immunobase T1D Immune 200 

Ulcerative colitis IBD Genetics UlcerCol Immune 37 

Fasting Glucose MAGIC FastGlu Metabolic 10 

Hemoglobin A1c MAGIC HbA1C Metabolic 10 
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High density lipoprotein GLGC HDL Metabolic 44 

Low density lipoprotein GLGC LDL Metabolic 42 

Triglycerides GLGC Trigly Metabolic 25 

Type 2 diabetes DIAGRAM T2D Metabolic 13 
 

Table 2 fine-mapped top loci for each trait 

Trait Group RSID P PIP Gene Top cell-specific annotations 

BMI 
Anthropo

m 
rs142108

5 
3.07701E-

62 
0.737393

618 FTO 
Anterior_caudate-H3K4me1-

CNS 

Height 
Anthropo

m 
rs574291

5 
2.99572E-

10 
0.993061

006 PML 
Penis_foreskin_fibroblast_prim

ary-H3K4me1-Connective/Bone 

CorArtDis Cardiac 
rs112260

8 
9.71643E-

10 
0.927548

279 
SMARC

A4 
Penis_foreskin_fibroblast_prim

ary-H3K4me3-Connective/Bone 

Celiac Immune 
rs985196

7 
1.45588E-

22 
0.929248

546 LPP CD19-H3K27ac-Immune 

CrohnDis Immune 
rs252205

7 
7.2293E-

22 
0.980238

669 C5orf56 
CD8_primary-H3K4me3-

Immune 

Lupus Immune 
rs130198

91 
1.64658E-

83 1 IL1F10 CD19-H3K27ac-Immune 

MultipScl Immune 
rs799952

43 
1.05876E-

10 
0.995227

742 ITPR3 
CD56_primary-H3K4me3-

Immune 

PrimBilCi

r Immune rs653178 
2.44325E-

07 
0.999312

247 ATXN2 
Mobilized_CD34_primary-

H3K4me1-Immune 

RheuArth Immune 
rs745563

64 
1.39477E-

78 
0.994845

808 BAK1 Th1-H3K27ac-Immune 

T1D Immune 
rs994155

5 5.513E-11 1 FEZ2 
CD4_memory_primary-

H3K4me1-Immune 

UlcerCol Immune 
rs606249

6 
1.47309E-

12 
0.993530

076 ARFRP1 
Mobilized_CD34_primary-

H3K4me1-Immune 

FastGlu 
Metaboli

c rs560887 
4.59687E-

75 
0.991801

762 G6PC2 
Pancreatic_islets-H3K4me3-

Adrenal/Pancreas 

HbA1C 
Metaboli

c 
rs169262

46 
3.11077E-

54 1 HK1 
Peripheralblood_mononuclear_

primary-H3K4me1-Immune 

HDL 
Metaboli

c 
rs180096

1 
1.04888E-

15 1 HNF4A Liver_(BI)-H3K4me1-Liver 

LDL 
Metaboli

c 
rs495302

3 
3.34464E-

33 1 ABCG8 Liver-H3K27ac-Liver 

T2D 
Metaboli

c 
rs790314

6 
5.54551E-

65 
0.808544

014 TCF7L2 
Fetal_lung-H3K4me1-

Cardiovascular 

Trigly 
Metaboli

c rs439401 
1.14785E-

30 
0.999667

231 

CTB-

129P6.1

1 Liver-H3K27ac-Liver 

Alzheime

r 
NeuroDe

gen 
rs124598

10 
6.24022E-

43 1 

CTB-

129P6.1

1 Liver_(BI)-H3K4me1-Liver 
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a. Workflow to infer epignomic enrichments and risk SNPs

b. RiVIERA-ench: cell-group-guided enrichments learning
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Figure 1. Proposed method to infer functional enrichments and risk SNPs

P

BSL ...

...

...

+ +CNS IMN LIVADN ...

...

...

+
Base

lin
e

Adre
nal

Bra
in

/C
NS

Im
m

une

Liv
er

GWAS

Cell-group annotations

Which cell-groups

are important?

Step A. Learning cell-group enrichments

......

...
...

...

BSL P

GWAS

...

...

... CNS IMNADN

Adre
nal

Bra
in

/C
NS

Im
m

une

...

Step B. Learning cell-specific enrichments

Which cell-types

are important?

...

c. RiVIERA-fmap: proposed Bayesian fine-mapping model to infer causal variants

Inferred interpretable enrichments

ii. Proposed Bayesian model

Linkage

Disequilibrium

Genetic asscoation

Epigenomic

Annotation

Enrichment parameters

Causal posterior

Empirical prior

Prior parameters

estimated by the

joint sparse model

i. Input data

Genetic likelihood

* *
** ** *

*

** *

* *

*

*

*

*

*

*

*

* *

** ** **

* * *

*

* ***

** *

* *

* *

** *

* **

* ** * ** **

**

***

*

* ***

*

* ***

*

*

* ***

* *

*** *

* ** ** * ** ** *
* ** *** * *

*** ** ** * *

* *

* *

* ** ** ** ** ** *
* * ** * * *

**

* ** * *
**
** *

*

*

*

*

* *
*

*
*

*

*

* *

* *

* *

*

* *

*

*

* *

* **

*

*

**

*

**

Ad
re

na
l/P

an
cr

ea
s

C
ar

di
ov

as
cu

la
r

C
N

S

C
on

ne
ct

ive
/B

on
e

G
as

tro
in

te
st

in
al

Im
m

un
e

Ki
dn

ey

Li
ve

r

O
th

er

Sk
el

et
al

 m
us

cl
e

c

Tr
a

it
s

Cell-type-specific Annotations

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/059345doi: bioRxiv preprint 

https://doi.org/10.1101/059345
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Cell group epigenomic enrichments of 32 traits
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a. Cell-type specific enrichments b. Trait correlation at cell-type level enrichments
Figure 3. Group-guided inferred tissue-specific enrichments
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Figure 4. Risk genes associated with two or more traits
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Figure 5. inferred loci reveal disease-relevant biologial processes.CC-BY-NC-ND 4.0 International licensea
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Figure 6. Prioritized SNPs are enriched for functional elements in the risk loci
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