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Tumors are composed of an evolving population of cells subjected to tissue-specific 1 

selection, which fuels tumor heterogeneity and ultimately complicates cancer driver 2 

gene identification. Here, we integrate cancer cell fraction, population recurrence, and 3 

functional impact of somatic mutations as signatures of selection into a Bayesian 4 

inference model for driver prediction. In an in-depth benchmark, we demonstrate that 5 

our model, cDriver, outperforms competing methods when analyzing solid tumors, 6 

hematological malignancies, and pan-cancer datasets. Applying cDriver to exome 7 

sequencing data of 21 cancer types from 6,870 individuals revealed 98 unreported 8 

tumor type-driver gene connections. These novel connections are highly enriched for 9 

chromatin-modifying proteins, hinting at a universal role of chromatin regulation in 10 

cancer etiology. Although infrequently mutated as single genes, we show that 11 

chromatin modifiers are altered in a large fraction of cancer patients. In summary, we 12 

demonstrate that integration of evolutionary signatures is key for identifying 13 

mutational driver genes, thereby facilitating the discovery of novel therapeutic targets 14 

for cancer treatment. 15 

 16 

Since the 1970s, tumors have been considered the product of evolutionary forces such as 17 

positive selection of highly proliferative cancer genotypes or negative selection of non-18 

adaptive cancer genotypes1. Analogous to the evolution of multi-cellular organisms, random 19 

somatic mutations in cancer cells interplay with natural selection, creating phenotypic 20 

diversity and allowing for adaptation2,3. It has been shown that this process of clonal evolution 21 

follows different paths depending on the background genotype of patients4,5, the tissue 22 

microenvironment6, and the functional redundancy of acquired somatic mutations7. This leads 23 

to increased molecular diversity, ultimately contributing to intra- and inter- tumor 24 

heterogeneity3. This heterogeneity, ubiquitously present in tumor types8,9,10,11, hampers the 25 

identification of driver genes and hence limits the number of therapeutic targets to be 26 

detected12. 27 

Next generation sequencing (NGS) allows mutational screening across thousands of tumors 28 

uncovering the extent of cancer heterogeneity13,14,15. Recent methods have used NGS to infer 29 

tumor phylogenies by estimating the cancer cell fraction (CCF) of variants present only in the 30 

tumor (somatic mutations)16,17,18,19,20. Consequently, evaluation of solid tumors has uncovered 31 

common mutations coexisting with region-specific mutations21,9,22,15, and studies in 32 

hematological malignancies have revealed clonal and sub-clonal variants in the same 33 

sample8,23,24. These efforts have shed light into the extent of sub-clonal versus clonal genetic 34 

variation observed across tumors, highlighting that sub-clonal mutations accumulate 35 

predominantly in a neutral fashion52 and that the average cancer cell fraction (CCF) is higher 36 

for driver than for passenger mutations25. Nonetheless, CCF has not been applied as a 37 

feature for the identification of mutational driver genes. 38 
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Current solutions for identifying driver genes rely on the recurrent mutation of genes across a 1 

large number of cancer patients26, the genomic context where they occur13, the functional 2 

impact of mutations27, and the clustering of mutations within functional protein domains28. 3 

However, statistical methods based on mutation recurrence and context alone have not been 4 

able to classify infrequently mutated genes as drivers3. To this end, methods based on 5 

molecular selection signatures, such as functional impact and mutation clustering, have been 6 

combined to identify these elusive driver genes29, but without considering CCF. A large 7 

number of tumor samples will continue to be sequenced at increasing depth of coverage, 8 

allowing for accurate identification of sub-clonal mutations and, therefore, requiring integrative 9 

models to differentiate early and late driver from passenger genes. Knowledge of the driver 10 

gene landscape is key to improve diagnosis, selection of treatment, monitoring of progression, 11 

and identification of treatment resistant sub-clones at earlier time points30. 12 

Here, we present cDriver, a novel Bayesian inference approach to identify and rank 13 

mutational driver genes using multiple measures of positive selection. We benchmark our 14 

results against standard tools on public tumor datasets. Finally, we apply cDriver to 6,870 15 

cancer exomes to uncover associations between driver genes and tumor types, identifying 16 

novel connections highly enriched for chromatin modifying proteins, expanding the current set 17 

of prognostic markers for cancer treatment. 18 

 19 

Results 20 

Evolutionary signatures used by cDriver 21 

To identify driver genes, we have developed cDriver (Supplementary Fig. 1, online 22 

methods), a Bayesian model that integrates signatures of selection of somatic point 23 

mutations (SNVs and short indels) at three levels: i) population level, the proportion of 24 

affected individuals (recurrence), ii) cellular level, the fraction of cancer cells harboring a 25 

somatic mutation (CCF), and iii) molecular level, the functional impact of the variant allele 26 

(Fig. 1). cDriver is the first method that incorporates recurrence (Fig. 1a), CCF (Fig. 1b), and 27 

functional impact (Fig. 1c) to identify mutational driver genes based on a probabilistic 28 

framework. By definition, a driver event involves the acquisition of a somatic mutation 29 

conferring a selective advantage at the cellular level2, therefore mutations found at the root of 30 

the tumor evolutionary tree, or mutations leading to a selective sweep, will consistently be at 31 

high CCF. Conversely, it is possible that passenger somatic mutations in the last common 32 

ancestor of the cancer clone (i.e. predating malignant transformation) hitch-hiked with a driver 33 

event31, reducing discriminating power of CCF as a signature of positive selection.  34 

To test if CCF discriminates between driver and passenger mutations and is not solely a 35 

signature of timing, we compared the CCF distribution of somatic mutations in a set of 36 

published driver and non-driver genes (Fig. 2) (Online methods). We observed that the 37 

median CCF of nonsilent mutations was significantly higher in driver genes than in non-driver 38 
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genes in a pooled set of 16 TCGA tumor studies (Mann-Whitney P Value < 1e-323), in 1 

curated data of 12 tumor types32 (P Value = 1.5e-120), in a solid tumor (BRCA, P Value = 2 

1.7e-86), and in a hematological malignancy (CLL, P Value = 4.7e-07).  Importantly, a 3 

significant difference was also observed when comparing the median CCF of nonsilent to 4 

silent mutations in driver genes, demonstrating that positive selection is specifically acting on 5 

nonsilent mutations in driver genes. Moreover, there is no difference in median CCF between 6 

nonsilent mutations in passenger genes and silent mutations in any gene, indicating that the 7 

observation is not caused by a systematic bias (e.g. gene length bias). We observed similarly 8 

significant results across 14 out of 16 tested tumor types (Supplementary Fig. 10). 9 

Considering that a fraction of passenger mutations likely occur prior to malignant 10 

transformation, CCF alone may be insufficient to pinpoint all driver genes. Similarly, not all 11 

oncogenic mutations show high functional impact scores (Supplementary Fig. 13) and not all 12 

driver genes are highly recurrent in a cohort. cDriver overcomes these limitations by 13 

integrating recurrence, CCF and functional impact as signatures of positive selection at a 14 

population, cellular, and molecular level, respectively (Online methods).  15 

 16 

Benchmarking cDriver performance in different tumor types 17 

To assess the performance of cDriver, we benchmarked against four frequently used driver 18 

gene identification methods using precision, recall, and F-score (Online methods).  cDriver, 19 

OncodriveFM27, OncodriveCLUST28, MuSiC26, and MutsigCV13 were run on three public 20 

cancer datasets. These datasets consisted of 762 cases of breast cancer (BRCA)32, 385 21 

cases of chronic lymphocytic leukemia (CLL)33, and 3,205 cases from a pool of 12 tumor 22 

types (Pancan12)32 (Supplementary table 1).  Results of each method for each dataset were 23 

sorted by P values or posterior probabilities to compare ranked driver genes.  24 

 25 

Benchmarking in breast cancer (BRCA) and chronic lymphocytic leukemia (CLL) 26 

To benchmark competing methods when analyzing solid and hematological tumor data, we 27 

assembled a list of 33 and 22 gold standard (GS) genes for Breast Cancer (BRCA) and 28 

chronic lymphocytic leukemia (CLL), respectively (Supplementary Table 2, Online 29 

Methods). We found that cDriver outperforms all other methods in both BRCA (Fig. 2a) and 30 

CLL (Fig. 2b), showing the highest F-score, as well as similar or better recall and precision as 31 

the second best method (Supplementary Fig. 2).  32 

To reveal if cDriver was able to identify significant mutational driver genes not highly ranked 33 

by other methods, we developed a model to estimate a rank cutoff for a desired FDR (Online 34 

methods). At significance level (FDR 0.1), we found 36 driver genes for BRCA and 23 for 35 

CLL. We next looked at genes in the GS (Fig 3c, d, upper panel) and cDriver significant 36 

genes not present in the GS (Fig 3c, d, lower panel). On one hand, we observed that five 37 

GS BRCA genes and six GS CLL genes were not significant in any method, suggesting that 38 
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these genes are likely affected by variation other than somatic point mutations. On the other 1 

hand, cDriver significantly found 12 genes in BRCA and 11 genes in CLL not present in the 2 

tumor-specific GS (Fig. 3c, d, lower panel). Although most of these genes were highly 3 

ranked by at least one other method, two genes were highly ranked and significant only by 4 

cDriver, KDM6A and EGR1. The former was recently reported to play a role in a rare 5 

aggressive breast cancer34, while the latter was found related to CLL using gene expression 6 

and network analysis35, reaffirming their putative role in tumor etiology. Several of the 7 

remaining 21 genes not in the GS, such as MYH14, MED23, and ZFP36L1 in BRCA, and 8 

ZNF292, FUBP1, and DTX1 in CLL, had also been implicated in tumor development36,33,37,38. 9 

 10 

Benchmarking in a pan-cancer dataset of 12 tumor types  11 

Capitalizing on the large number of whole exome sequencing (WES) studies published by 12 

TCGA, we benchmarked all methods on a high quality (curated) dataset of 12 tumor types 13 

(Pancan12)32 using five published gold standards (GS)39,32,40,30,28 (Online methods). Across 14 

~3,200 samples, cDriver and oncodriveFM performed best in F-score using Cancer Gene 15 

Census (Fig. 4a) with and without filtration of non-expressed genes (Supplementary Fig. 3). 16 

Noteworthy, only MuSiC benefited extensively from this post-filtration step. In addition, 17 

cDriver outperformed all other methods amongst the top 50 ranked genes across all gold 18 

standards using F-score, recall, and precision (Supplementary Fig 4). We also noticed that 19 

significance thresholds used by different methods often do not coincide with their respective 20 

F-score peak independently of the GS used, e.g. Music and OncodriveFM are often far from 21 

optimal F-score at significance level (Fig 4a circles in F-score curves, Supplementary 22 

Table 3). At significance level cDriver suggests a cutoff at 418 genes for Pancan12 23 

(Supplementary Fig. 11) close to the optimal F-score. At significance level cDriver had the 24 

best F-score in three out of five GS and at least the second-best F-score in all GS 25 

(Supplementary Table 3). 26 

To assess whether cDriver contributes to combinations of complementary methods28, we 27 

calculated two ensemble F-score curves using all methods with and without cDriver (Online 28 

methods). Inclusion of cDriver increased the F-scores especially in the long tail between 29 

ranks 150 and 800 (Fig. 4b). Likewise, to evaluate the contribution of CCF integration to the 30 

performance of our method, we benchmarked it using only recurrence, recurrence and 31 

functional impact, recurrence and CCF, and the combination of all three signals (Online 32 

methods). We observed that CCF and functional impact independently improve F-score but 33 

show best performance in combination, corroborating the importance of cancer cell fraction 34 

for the identification of mutational drivers (Fig. 4c). 35 

The top 30 genes predicted by cDriver showed a high median CCF, although with a large 36 

variance (Fig. 4d). Despite all of these genes were present in the gold standard, several of 37 

them are missed by other methods (Fig 4e). For example, oncodriveFM missed FLT3 due to 38 

a cluster of medium impact mutations (Supplementary Fig. 5a) and OncodriveCLUST 39 
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missed several tumor suppressor genes, since loss of function mutations in these genes do 1 

not necessarily cluster (e.g. PBRM1, Supplementary Fig. 5b). MutsigCV missed KEAP1 and 2 

MTOR in this dataset, but it was able to find these genes with larger sample size13.  3 

We next investigated whether cDriver identifies a particular function commonly missed by 4 

oncodriveFM by looking at significant genes in only one of the methods using Gene Ontology 5 

analysis (Supplementary Fig. 12a). Interestingly, we found that tyrosine kinase related 6 

genes were enriched in the group of genes predicted only by cDriver (Supplementary Fig. 7 

12c). Tyrosine kinase related genes have a well-described role in tumor initiation, mostly 8 

associated to oncogenes61, reflecting the importance of CCF as an independent 9 

discriminatory signature in addition to functional impact (oncodriveFM). Conversely, 10 

processes enriched in the group of genes predicted only by oncodriveFM were related to 11 

binding activity (Supplementary Fig. 12d).  12 

In summary, cDriver performed favorably in individual tumor types and in Pancan12 13 

independently of applied GS, allowing us to explore an extended landscape of driver genes 14 

across multiple tumor types. 15 

 16 

Tumor type – driver gene landscape across 21 cancers 17 

To obtain a comprehensive list of driver genes in an extended TCGA dataset, we ran cDriver 18 

on each and on a pooled set of 21 tumor types comprised of 6,870 samples (Pancan21, 19 

Supplementary Table 4). While on average the median number of significant driver genes 20 

detected per tumor type was 31 (Supplementary Table 6), we observed that several genes 21 

in the ‘long tail’ were a) close to significance, b) mutated in a large fraction of patients, and c) 22 

previously reported as cancer drivers in other tumor types. We therefore hypothesized that 23 

well-known driver genes with a strong positive selection signature in one or more tumor types 24 

have been missed in other cancers due to a weaker selection signature. To test this 25 

hypothesis we created a list of 216 genes with a strong positive selection signature, i.e. genes 26 

that were significant (FDR<0.1), highly ranked (top 10 of at least one tumor type or top 200 in 27 

Pancan21) and penetrant (at least 2% affected patients in at least one tumor type or across 28 

Pancan21). We next screened for these genes in the long tail of each cancer type (up to rank 29 

100), ultimately defining a “tumor type-driver gene” (TTDG) landscape composed of 511 30 

TTDG connections (Supplementary Table 5, Supplementary Figure 7). 31 

We investigated whether the TTDG landscape reveals novel connections between driver 32 

genes and tumor types not previously published. First, we assessed the number of PubMed 33 

records obtained when querying each of the 216 genes using the MeSH term “neoplasm”, 34 

resulting in 189 (87%) genes with at least one and 141 (65%) genes with at least five 35 

neoplasm-related PubMed records.  Next, we queried the gene name in combination with 36 

each specific tumor term (Online methods). We identified 98 (20%) novel TTDG connections 37 

consisting of 63 genes with no publication reporting recurrent somatic mutations in the 38 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/059360doi: bioRxiv preprint 

https://doi.org/10.1101/059360
http://creativecommons.org/licenses/by-nc-nd/4.0/


connected tumor type (Supplementary Table 7). Furthermore, the network of these genes 1 

had significantly more interactions than expected in the STRING database (Adj. P 2 

value=2.22e-15, Supplementary Fig. 8). Surprisingly, 18 of these interacting genes were 3 

annotated as chromatin modifiers in the gene ontology database (Adj. P value=1.3e-10, 4 

STRING) and were significantly enriched also when considering only cancer genes (18 out of 5 

63 versus 78 out of 504 CGC, Fisher’s exact P Value=0.0125), revealing an underappreciated 6 

role of chromatin modification and chromatin organization in several tumor types. Importantly, 7 

we found that in 18 out of 21 tumor types, 20% to 80% of patients were affected by a 8 

mutation in one of these chromatin-modifying proteins (Supplementary Fig. 9), with an 9 

average of 40.2% across all tumor types. 10 

Finally, we individually investigated the TTDG connections of two known therapeutic targets, 11 

CHD4 (Fig. 5a) and SMARCA4 (Fig. 5b). We found that chromodomain helicase 4, CHD4, 12 

acts as a driver for seven tumor types, while initially it was only associated to endometrial41 13 

and ovarian carcinoma (Fig. 5c). CHD4 is a tumor suppressor and core member of the 14 

nucleosome remodeling and deacetylase (NuRD) complex42, which has been linked to 15 

multiple cellular processes including cell cycle regulation, DNA damage repair, and chromatin 16 

stability43,44,45. Survival analysis showed that bladder carcinoma patients with mutations in 17 

CHD4 have better prognosis than patients with other mutated drivers (Fig. 5e). SMARCA4 18 

has a known role in lung cancer and esophageal carcinoma, and it was found recurrently 19 

mutated in pancreatic, breast, lung, and prostate cancer cell lines46. However, the importance 20 

of this gene as a driver in tumorigenesis has been neglected in others cancers such as head 21 

and neck and liver carcinomas (Fig. 5d). It is the core subunit of a SWI/SNF complex and has 22 

several binding motifs to other tumor suppressors proteins47,48. Most of the mutations fall in 23 

the active domains SNF2 (Fig. 5b) involved in the unwinding of the DNA. Additionally, we 24 

observed that liver carcinoma patients carrying a mutation in SMARCA4 have a poor 25 

prognosis (Fig. 5f). In summary, all novel TTDG connections could be exploited as potentially 26 

therapeutic targets ultimately increasing the number of options for cancer prognosis. 27 

 28 

Discussion 29 

Evolutionary signatures are imprinted in tumor genomes, and cDriver leverages them at the 30 

population, cellular, and molecular level to identify cancer driver genes. For the first time, we 31 

integrate these measures into a Bayesian framework to detect driver genes in three different 32 

tumor datasets, and to discover 98 unreported “tumor type - driver gene” connections across 33 

21 tumor types. We show that these novel connections are strongly enriched for chromatin 34 

modifying proteins and have prognostic relevance, revealing an unexplored landscape of 35 

therapeutic targets. 36 

Tumor heterogeneity complicates the discovery of cancer driver genes. Somatic mutations in 37 

these genes are under different selective pressures leading to complex tissue- and patient- 38 

specific clonal structures. Previous studies have shown that cohort recurrence and functional 39 
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impact represent evidence of positive selection at the population and molecular level, 1 

respectively49,28. On one hand, the number of patients carrying a mutation in a gene hints at 2 

the importance of this gene for cancer etiology. On the other hand, mutations severely 3 

affecting protein function are more likely to be relevant for tumor formation50. Remarkably, 4 

while former studies have demonstrated that driver mutations rise in frequency within the 5 

tumor cell population51,25, while passenger mutations accumulate neutrally following a power-6 

law distribution52, cancer cell fraction of mutations has been neglected as a feature for cancer 7 

driver prediction. 8 

We found that integrating cancer cell fraction in our model increases the number of true driver 9 

genes detected. This makes an intuitive sense because positively selected (driver) mutations 10 

are expected to be present in a large fraction of cancer cells. While this can also be the case 11 

for hitchhiking passenger mutations, we demonstrate that nonsilent driver mutations are 12 

found at a significantly higher CCF than all other types of mutations. The difference in CCF 13 

indicates that most passenger mutations occur after the driver mutations and accumulate in a 14 

neutral fashion, as previously suggested25,52. In summary, driver mutations accumulate as a 15 

function of selection and time, while passenger mutations accumulate solely as a function of 16 

time. On the other hand, it is possible that CCF also reduces the impact of technical artifacts 17 

arising from low allele fraction of false positive calls, but such effect should be independent of 18 

the mutation type. The accuracy of CCF calculation depends on correct estimates of tumor 19 

purity and tumor ploidy, as well as adequate coverage of mutated positions. We expect that 20 

ultra-deep and single cell sequencing will further improve the power to detect mutations in 21 

small fractions of the tumor, making CCF an indispensable feature for accurate driver gene 22 

prediction.  23 

Different types of driver genes are functionally constrained by different evolutionary pressures. 24 

Therefore, combining complementary signatures for mutational driver identification28, we 25 

show that functional impact and CCF equally improve performance, and their combination 26 

outperforms the use of each independently. Interestingly, genes missed by oncodriveFM 27 

(functional impact bias) but identified by cDriver (using CCF and functional impact) are 28 

enriched in a well-known group of genes involved in tumor initiation, the tyrosine kinases. 29 

These results indicate that selection signatures at the molecular, cell, and population level are 30 

complementary, likely due to different underlying biological principles. In addition, we 31 

demonstrate that cDriver improves performance when combined with canonical methods, 32 

ultimately detecting infrequently mutated driver genes missed by other approaches.  33 

The total number of cancer genes driving tumorigenesis is still incomplete. Multiple gold 34 

standard datasets have been assembled in the literature (from 100 to 600 genes), none 35 

constituting a definite set of cancer driver genes. Although this is a limitation when 36 

benchmarking different methods, we show that the performance order is consistent across 37 

five applied gold standards. Moreover, in this study none of the methods achieved a recall 38 

higher than 30% against Cancer Gene Census, suggesting that many genes have a role in 39 
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tumorigenesis not related to positive selection of nonsilent point mutations. Indeed, all 1 

methods tested here neglect other types of complex variation that may be driving cancer 2 

malignancy. These events are also under selection such as, positive selection of copy 3 

number alterations, fusion genes, regulatory, and synonymous mutations, as well as negative 4 

selection of cancer essential genes.  5 

Our study also highlights the importance of prior information on driver gene prediction. A gene 6 

that is highly mutated (known driver) in one tumor type is probably a driver in other tumor 7 

types, even if it is infrequently mutated. We show that 63 genes highly ranked in one tumor 8 

type have been neglected in other cancers, despite a low, but substantial number (up to 10%) 9 

of affected patients. Interestingly, this list of novel “tumor type – driver gene” connections 10 

includes 18 chromatin-modifying proteins, extending the well-known and important role of 11 

chromatin remodeling in cancer46,44. These genes are global regulators of transcription 12 

activity and often act in a tissue-specific manner. According to a network analysis, all 18 13 

genes are interacting or co-localized, suggesting that a single hit is needed to drive 14 

tumorigenesis. Indeed, we found that mutations in the 18 chromatin-modifying proteins affect 15 

a large fraction of cancer patients (Supplementary Table 7). The genes CHD4 and 16 

SMARCA4 demonstrate how the landscape of tumor type – driver gene connections can be 17 

exploited to identify novel therapeutic targets, especially for patients without a canonical 18 

driver mutation. 19 

In conclusion, we show that an extensive landscape of therapeutic targets awaits exploration. 20 

We demonstrate that integrating cellular prevalence of somatic mutations as part of multiple 21 

signatures of tumor evolution allows for improved discovery of driver genes. As a result, it 22 

facilitates identification of novel tumor type - driver gene connections, which are key for 23 

improved cancer diagnosis, monitoring, and targeted treatment selection. 24 

 25 

Methods 26 

Methods and any associated references are available in the online version of the paper. 27 
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 10 

Online Methods 11 

Data. Pancan12 somatic mutation data. Filtered MAF files from 12 tumor types were obtained 12 

from synapse (syn1729383). Allele counts, ploidy status, and histological purity estimates 13 

were merged into a single MAF file containing information for 3,276 samples and 617,354 14 

mutations described elsewhere32. Allele counts for 782 samples not available from synapse 15 

were obtained from DCC-Firehose MAF files. Damage probability scores were added by 16 

applying a sigmoid transformation to CADD scores53 with mean and scale factor of 2. 17 

Individual MAF files for each cancer were produced in order to perform downstream analysis. 18 

Expression values for this dataset were also obtained from synapse (syn1729383). 19 

Pancan21 somatic mutation data. The MAF files for 6,485 exome samples from 20 20 

tumor types were downloaded from DCC-Firehose and combined with 385 CLL cases to 21 

obtain a large dataset of 21 tumor types (Supplementary Table 4). Allele counts were 22 

transformed to VAF and CADD scores were added for each mutation. We removed 23 

duplicated samples and updated the gene symbols using the Hugo Gene Symbol database. 24 

Colon and rectal tumors were merged into one tumor type giving us a final set of 20 tumor 25 

types. All curated MAF files used in this study were uploaded to synapse (syn5593040). 26 

 CLL somatic mutation data. 385 CLL tumor-normal pairs sequenced by WES were 27 

analyzed using an in-house pipeline. Reads were aligned to hg19 using BWA-mem54 and 28 

BAM files were post-processed (indel realignment, base quality recalibration) using GATK 29 

(https://www.broadinstitute.org/gatk/). Mutect55, Indelocator 30 

(https://www.broadinstitute.org/cancer/cga/indelocator), and ClinDel (unpublished) were used 31 

to produce a set of somatic SNVs and Indels. 27,625 mutations were annotated using eDiVA 32 

(www.ediva.crg.eu) to obtain several features including effect on gene and protein sequence, 33 

allele counts, CADD functional impact score, and population allele frequencies. Somatic 34 

SNVs that have a high number of occurrences across all paired normal samples, i.e. are likely 35 

germline variants (ND occurrence > 10), or a high rate of exclusion by MuTect across all 36 

samples (more than five times excluded) were excluded from the analysis. Indels falling within 37 

30 bp of a repeat masked region were removed. Additionally, to reduce common false 38 

positive in detecting indels, we excluded indels that were reported in exons not expressed in 39 

B-lymphocytes. We used tophat and cufflinks to calculate FPKMs for 270 CLL RNA-seq 40 

μ =15
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samples. We considered exons not to be expressed if they had an average or median 1 

fragment per kilobase per million (FPKM) < 1. Finally, we produced a MAF file excluding 2 

variants in segmental duplications, common in the population (AF in EVS or 1000GP > 1%) or 3 

with alternative allele fraction (VAF) < 0.05. CADD damage score and VAF were added to 4 

each mutation in the final data. Ploidy values and cancer cell fraction of CNVs were obtained 5 

using the in-house developed tool clinCNV (unpublished). 6 

 7 

CCF distribution analysis. We estimated cancer cell fraction of mutations for Pancan12, 8 

Pancan20, and CLL-ICGC mutation data using the function CCF of the cDriver package. For 9 

each tumor type we obtained the current set of significant driver genes from the IntoGen 10 

website, having at least one significant prediction in the pooled and the individual cancer 11 

analysis. These drivers have been predicted based on recurrence (mutSigCV), functional 12 

damage bias (oncodriveFM), or clustering (oncodriveClust), but none of the predictors 13 

considered CCF. Somatic mutations were divided into 4 sets, including nonsilent mutations in 14 

driver genes, nonsilent mutations in passenger genes, silent mutations in driver genes, and 15 

silent mutations in passenger genes. We compared the CCF distribution for each group using 16 

Wilcoxon-Mann-Whitney statistical test for each cancer type separately (based on the most 17 

recent TCGA/ICGC releases) as well as for curated (Pancan12) and non-curated (Pancan16) 18 

pan-cancer sets. In this analysis we only included tumor types for which at least 10 significant 19 

drivers were found (16 tumor types in total). 20 

 21 

cDriver package. We have developed cDriver, an R package to identify mutational driver 22 

genes using NGS data from cancer genome studies (Supplementary Fig. 1).  cDriver uses a 23 

MAF file (v2.4) as input data with additional mandatory column (i) variant allele frequency 24 

(VAF), and optional columns (ii) damage score, (iii) ploidy, (iv) histological purity, and (v) 25 

cancer cell fraction of the CNV. These measures can be obtained from current cancer 26 

genome or exome sequencing studies and public genome annotation databases. cDriver can 27 

use any mutation annotated as indel, missense, nonsense, splice, TSS, nonstop, and silent 28 

variant following the MAF column variant type. 29 

One of the conceptual advances of our method is the inclusion of cancer cell fraction 30 

(CCF). Although any current method for CCF calculation can be used with cDriver, we 31 

provide a simple function to estimate CCF of SNVs and indels based on VAF, ploidy, CCF of 32 

overlapping CNVs, and tumor purity. The CCF estimation by cDriver highly correlates with the 33 

cellular prevalence calculated by PyClone18, while taking only seconds to compute for the 34 

complete TCGA pan-cancer data. 35 

To account for the variability of the background mutation rate (bmr) between genes, 36 

cDriver uses silent mutations to locally estimate the expected number of nonsilent mutations. 37 

To this end, we applied a classical formula (Ka/Ks or dNdS ratio) to detect selection bias in 38 

comparative genome analysis to incorporate CCF of silent mutations. However, somatic 39 

mutations are rare for most cancers and many genes do not harbor silent mutations, 40 
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restricting the usefulness of Ka/Ks. Therefore, cDriver calculates an average bmr using the 1 

CCF-adjusted Ka/Ks formula and a pre-calculated bmr taken from the literature13.  2 

Next, cDriver calculates posterior probabilities per gene using two Bayesian models, 3 

(i) the “cancer hazard model” and (ii) the “driver model”. The first model requires the 4 

incidence of the tumor in the population as prior probability, while the second requires a list of 5 

known driver genes (e.g. any gold standard used in this study) to estimate prior and likelihood 6 

values. The “cancer-hazard model” estimates the posterior probability of developing cancer if 7 

the focal gene is mutated, given evidence from the data, i.e. somatic mutations of the gene in 8 

a cohort of cancer patients. The “driver inference model” estimates the posterior probability 9 

that a gene is a true cancer driver given evidence from the data.  10 

As a final step, cDriver can provide an optimum rank-cut off value by estimating FDR 11 

at each rank based on a null model. cDriver default estimates the optimum rank for each 12 

Bayesian model and suggest the best rank cut-off as the average value between both ranks.  13 

In summary, cDriver combines recurrence, CCF, and functional impact as a 14 

foreground measure, and an averaged background mutation probability as a measure to 15 

calculate posterior probabilities for each gene. In the next sections each step is described in 16 

detail. 17 

 18 

Step 1) Estimation of cancer cell fraction per gene.  19 

CCF calculation. We developed a function for estimation of Cancer Cell Fraction (CCF) per 20 

gene as part of the cDriver package (for details see Supplementary note), although any 21 

method can be used to estimate the CCF subsequently used for driver prediction (e.g. 22 

PyClone). Intuitively, we assumed that the variant allele should be observed in approximately 23 

half of the reads if it is a clonal heterozygous variant in a diploid locus. In this case, CCF is 24 

calculated as the variant allele frequency (VAF) multiplied by two and corrected for the purity 25 

of the cancer sample. All other cases are described in the supplementary note. 26 

 27 

Step 2) Background mutation rate models. 28 

CCF-adjusted counts of nonsilent and silent mutations. First, we adjusted the classic 29 

formula for detecting selection from comparative data56 to estimate the expected number of 30 

nonsilent mutations under no selective pressures (i.e. neutral evolution).  This formula is the 31 

ratio between the rate of nonsynonymous substitutions (��) per nonsynonymous sites (��) 32 

and the rate of synonymous substitutions (��) per synonymous sites (��): 33 

 
����

�
�� ��

��� ��
�  (1) 

 34 
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Next, we adapted the formula to take into account cancer cell fraction of mutations by 1 

calculating ��  and ��  as the sum of CCF of silent and nonsilent mutations, respectively, 2 

resulting in ��
��� and ��

���. The CCF-adjusted �� ��
⁄  formula is: 3 

 
��
���

��
���

�
��
��� ��

�
��
��� ��

�  (2) 

 4 

 5 

Expected number of nonsilent mutations per gene. We estimated the expected ��
����  for 6 

each gene in a cancer cohort-specific manor based on the observed number of CCF-adjusted 7 

silent mutations in coding regions (��
���) within the provided cohort (e.g. WES data from 8 

BRCA, CLL, Pancan12, Pancan21). The total number of sites (��  and ��) was taken from 9 

Lawrence et al13. Under the assumption of neutral selection (��
��� ��

���� � 1), we estimated 10 

an expected ��
����  as: 11 

 ��
���� � ��

��� � ����

 (3) 

 12 

Zero counts of silent mutations. To avoid zero or very low (��
����  << 1) expected nonsilent 13 

mutations in equation 3, we defined a minimum ��
��� . We assume that one nonsilent 14 

mutation per gene in the cohort can occur by chance and should not be considered a positive 15 

selection signal.  Thus, for a gene with zero silent mutations observed (or where CCF of silent 16 

mutations is very low), we added a pseudocount to silent mutations such that equation (2)  17 

��
��� ��

���� � 1  (neutral), assuming one nonsilent mutation, and recalculated ��
����  in 18 

equation (3).  19 

 20 

Background mutation probability based on the expected number of nonsilent 21 

mutations. After obtaining the expected ��
����  for every gene we calculated the probability 22 

that a patient has at least one nonsilent mutation in a gene X, P(X>=1). To this end, we 23 

approximated the average number of somatic nonsilent mutations in a healthy cohort  24 

using the cancer cohort. Here, we assume that the majority of clonal mutations detected 25 

( ������ � 0.85
  are passengers present before tumor initiation. We recognize that the 26 

number of somatic nonsilent mutations not caused by cancer varies from patient to patient. 27 

We set the number of trials, r, to the average number of mutations per patient in the cohort. In 28 

one trial the probability of success is given by ��
���� for gene X  divided by the sum of ��

���� 29 

(r)
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across all genes. Following this assumption, we estimated the probability Ρ
� � 1� in r trials 1 

using a binomial distribution: 2 

 Ρ
� � 1� � 1 � Ρ
� � 0� � 1 � �1 � ��
����

∑ ��
����

		
��
��

�
�

 (4) 

 where Ρ
� � 0� is a probability for a gene X to have no nonsilent mutations, and derived as 3 

Ρ
� � 0� � ��
�
���
1 � ����� � 
1 � ���  where p is probability of success 4 

(��
���� ∑ ��

����
��
������ ). 5 

 6 

Background mutation probability based on other mutation rate estimates. To 7 

compensate for the lack of power of the CCF-adjusted �� ��
⁄  model for genes, we additionally 8 

incorporated the non-coding mutation rate (ncmr) provided by Lawrence et al13. For each 9 

gene the ncmr and the gene length were used to calculate the number of total expected 10 

mutations (silent and nonsilent) ���. Under the assumption of neutral evolution (�� ��
⁄ � 1), 11 

we determined the expected number of nonsilent mutations following a rearrangement of the 12 

classical formula into: 13 

 
��� � ���

1 � �� ��
�  

(5) 

 Similarly to the previous model, we calculated the probability that a gene has at least 14 

one nonsilent mutation using the binomial distribution formula, but without CCF: 15 

 Ρ
� � 1� � 1 � Ρ
� � 0� � 1 � �1 � ���∑ ���
		
��
��

��

 (6) 

  16 

Given the continuous progress on technologies, it is likely that more specific somatic mutation 17 

rates will be calculated in the future, so in addition cDriver could integrate any measure of 18 

background mutation rate. Here, we used as final background mutation probability (bmp) the 19 

average bmp obtained by the two methods described above (CCF-adjusted �� ��
⁄  and ncmr).  20 

 21 

Step 3) Bayesian inference models 22 

Cancer-hazard inference model. In the first model, we adapted Bayes formula to calculate a 23 

posterior probability of developing cancer given that a focal gene is mutated as 24 

Ρ�������|�	 ��
� �
Ρ��	 ��
|������� � Ρ��������

Ρ��	 ��
|������� � Ρ�������� � Ρ��	 ��
|�������� � Ρ���������
 

 

(7) 

 25 

where the prior probability for developing cancer,  Ρ�������
, is the incidence of the cancer 26 

type in the population. The likelihood, Ρ��� ���|������
, that a cancer patient carries a 27 
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nonsilent mutation in a gene of interest is estimated from the cohort.  To this end, we used 1 

the sum of CCF times the adjusted-CADD damage probability per gene across all patients: 2 

 Ρ
��������  "# $ ����|&$�&�'� � ∑ (()	 � (*++	


	�� �  (8) 

where  is the index of the patient and n the total size of the cohort. If a patient did not have 3 

any nonsilent mutation, then CCF was equal to zero. If two nonsilent mutations were found in 4 

a patient in the same gene of interest, we used the mutation with the highest CCF.  5 

 We defined the marginal probability of having a nonsilent mutation as the sum of the 6 

numerator of (1), plus the conditional probability of having a nonsilent mutation in a healthy 7 

population Ρ��� ���|�������
 times the probability of a healthy individual  Ρ��������
. We 8 

denoted  Ρ��� ���|�������
  as the somatic background mutation probability (bmp). To our 9 

knowledge there is no large enough cohort of healthy people examined for tissue specific 10 

somatic mutations, therefore direct estimation from data is not possible. However, we 11 

estimated an upper bound of the bmp as described in the previous section. 12 

 13 

Driver inference model. In the second model, we calculated the posterior probability that a 14 

gene is a cancer driver given the mutation data in the studied cohort using the formula: 15 

 Ρ�������|	
 �
�� � Ρ�	
 �
�|�������� � Ρ��	
 �
�|���������� � Ρ��������
� Ρ�	
 �
�|�������� � Ρ��	
 �
�|���������� � Ρ�������� �

Ρ�	
 �
�|��

�	����� � Ρ��	
 �
�|��

�	������� � Ρ���

�	�����
 (9) 

where � is equal to ∑ ���� � ��  �
�

��	  and � is total size of the cohort.  16 

 To estimate a prior probability of a gene being a driver we need to consider that most 17 

tumor types can be caused by mutations in a different set of genes. Depending on which 18 

tumor type or group of cancers (‘pan-cancer’) we were analyzing, the number of known driver 19 

genes differs and hence the prior probabilities change (e.g. ovarian cancers are in most 20 

cases caused by mutation in TP53, while the number of published genes involved in CLL 21 

ranges from 20 to 40, depending on the study). We estimated the prior probability that a 22 

random gene is a driver as equal to the ratio between the number of known driver genes of 23 

the cancer type and the total number of protein coding genes:  24 

 Ρ
,'�-�'� � . ,'�-�' /���� . /����  (10) 

 25 

 The number of driver genes can be approximated as the number of published driver 26 

genes for a particular cancer type. If the cancer has not been studied yet, or if we deal with 27 

pan-cancer sets of multiple cancer types, the prior can be approximated using any gold 28 

standard list of cancer driver genes.  29 

Because of inter-tumor heterogeneity genes that are known to be cancer drivers in a 30 

given tumor type will not necessarily be mutated in all patients. The probability that a gene is 31 

mutated given that it is a known driver can be estimated as: 32 

i
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 Ρ
�� "# |,'�-�'� � #"# $ ���� �� ,'�-�'�#�$ ��� � � #,'�-�'�  (11) 

where we assume that all drivers have the same chance to be mutated. As this assumption is 1 

weak the cDriver package allows the user to define better estimates for this likelihood.  2 

The probability that a gene is mutated given that it is not a driver 3 

Ρ��� ���|!�����"��
  is estimated from the background mutation rate as described 4 

previously.  5 

The other terms in the equation, Ρ���� ���|#�$%��
  and Ρ���� ���|!�����"��
 were 6 

calculated as the complementary events of Ρ��� ���|#�$%��
  and  Ρ��� ���|!�����"��
 7 

described above. 8 

 9 

Step 4) Optimum rank cut off selection 10 

Significant rank selection based on weighted sampling of a null model. To generate an 11 

optimum rank cut off for our two bayesian models, we calculated a null model based on 12 

random assignment of new gene labels based on the background mutation probability (bmp) 13 

vector. The BMP vector is generated from the observed silent mutation data as described 14 

previously. Then, we run our Bayesian model as we would with the cancer cohort to obtain 15 

posterior probabilities per gene under a null model. We repeat this 100 times to be sure that 16 

probabilities are stable between each run and we are not catching unlucky random 17 

assignment of gene names. Finally, cDriver calculates the optimum threshold by comparing 18 

the ranking of the true set versus the null model, assuming a false discovery rate of 10% 19 

(FDR < 10%, any value can be selected by the user) 20 

 21 

Running competing methods for cancer driver gene identification. (i) MuSiC on 22 

Pancan12 and BRCA: gene coverage files and results from the MuSiC suite for the Pancan12 23 

dataset (including all BRCA cases used here) were obtained from synapse (syn819550, 24 

syn1713813, syn1734155). For this set of results, we only considered genes that were less 25 

than 0.05 FDR in at least two out of three measures. The rank order was based on the P-26 

values given by the CT test, followed by the LRT test, followed by the number of cases 27 

affected. MuSiC on CLL dataset: gene coverage files for 385 samples were generated from 28 

tumor-normal BAM files using the function calc-bmr available in the MuSiC suite. The region 29 

of interest files (ROI) were downloaded from synapse and merged to avoid duplicates. For 30 

comparative analysis we used the sorted list returned by the tool. (ii) MutSigCV on all 31 

datasets: we ran MutSigCV using default parameters on all datasets, assuming full coverage 32 

and using the example covariate space provided in the source code. (iii) OncodriveClust and 33 

(iv) oncodriveFM: The analysis was performed by the group of Nuria Lopez-Bigas. (v) cDriver 34 

on all dataset:  We ran cDriver using default parameters. Prior values used for the cancer-35 

hazard model are shown in Supplementary Table 1 and 3.  36 

 37 
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Benchmarking. For comparative analysis of several competing methods we tested datasets 1 

that differed in the number of samples, the number of mutations, the tissue-of-origin, and the 2 

purity of the tumor on different gold standard datasets. We downloaded published lists of 3 

significantly mutated genes (SMGs) from: 1) Kandoth et al., 201332, 127 significantly mutated 4 

genes across 12 tumor types; 2) Lawrence et al., 201430, 261 cancer genes predicted from 21 5 

tumor types; 3) Tamborero et al., 201328, 435 cancer genes predicted by a combination of 6 

multiple algorithms. For benchmarking purposes, we only used the 291 genes labeled ‘high 7 

confident’; 4) Cancer Gene Census39, list of 547 manually curated cancer driver genes; 5) Xie 8 

et al., 201440, list of 556 cancer-associated genes; 6) Landau et al., 20138, a list of 21 CLL 9 

specific genes and 7) TCGA breast 201257, 35 breast cancer genes. 10 

The gold standard genes for breast cancer consisted of the union of dataset (7), and 11 

breast cancer genes found in (2) and (4) plus the top 20 genes identified in COSMIC. For CLL 12 

we merged dataset (6) and CLL genes found in (2) and (4) plus the top 20 genes identified in 13 

COSMIC. Subsequently, we manually curated this list by checking the number of PubMed 14 

records found by querying the HUGO gene name and the corresponding MeSH term for 15 

breast cancer and CLL. We excluded histone genes that have no relevant publication 16 

associating them to recurrent somatic mutations. Results for Pancan12 were benchmarked 17 

using datasets 1-5. Single tumor types (i.e. CLL and breast cancer) were benchmarked 18 

against the tumor specific gold standards assembled as described above.  In addition, we 19 

compared the performance of the methods on Pancan12 with and without filtration of non-20 

expressed genes. 21 

Furthermore, we benchmarked our method cDriver under several scenarios and 22 

parameter settings: the F-score curve for (i) cDriver using a simple recurrence model where 23 

no CCF or functional impact was used and the background model did not include CCF-24 

adjusted Ka/Ks, (ii) cDriver using only functional impact, (iii) cDriver using CCF adjusted 25 

mutation counts and the CCF-adjusted Ka/Ks background model, and (iv) cDriver using all 26 

signatures of positive selection. Lastly, we benchmarked an ensemble of complementary 27 

methods (MuSic, MutSigCV, OncodriveFM, OncodriveClust) including and not including 28 

cDriver. For this, we calculated a combined rank and calculate the Fscore. We used “Borda 29 

count” ranking method with truncated ranks (up to two times the gold standard size) but using 30 

ranks of only the three best methods.  31 

For visualization purposes we show only genes that were ranked up to twice the 32 

number of gold standard genes given no further improvement was achieved by any tool 33 

beyond these thresholds. 34 

 35 

Defining the landscape of tumor type–driver gene connections in Pancan21. We ran 36 

cDriver on each of the 21 tumor types separately (syn5593040, Supplementary Table 4) and 37 

in the pooled Pancan21 dataset. Next, we used the union of the top 10 genes for each tumor 38 

type (except for ovarian and thyroid carcinoma) and the top 200 genes of the pooled 39 

Pancan21 cDriver results to create a list of high confidence driver genes. For each of these 40 
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genes, we noted their presence among the top 100 ranked genes of each tumor type to 1 

define a “tumor type – driver gene” (TTDG) connection. We defined genes found in the top 10 2 

of only one tumor type and not in the top 100 of any other tumor type as highly tumor specific. 3 

 4 

Identification of novel TTDG connections by PubMed mining. For each high confidence 5 

gene, we queried the HUGO symbol together with the MeSH term “neoplasm” (i.e. 6 

“ATM[TIAB] AND neoplasm[MH]”) against the PubMed database in order to test if the gene 7 

have been associated to any cancer type. The HUGO symbol had to be found in the title 8 

and/or abstract. Next, for each TTDG connection we queried the HUGO symbol together with 9 

the MeSH term of the associated tumor type. Based on the PubMed mining results, we used 10 

the following criteria to detect novel TTDG connections: (i) the tested gene was among the 11 

top 200 of the Pancan21 analysis, (ii) the gene had at least 5 neoplasms-related PubMed 12 

records, (iii) the gene was among the top 100 of the corresponding tumor type (defined by its 13 

TTDG connection), (iv) the gene had zero or one TTDG specific PubMed record, and, (v) if 14 

one TTDG specific PubMed entry was retrieved, we required that the publication did not 15 

report recurrent somatic mutations for that gene in the tumor type of interest. 16 

 17 

Protein interaction and functional enrichment analysis. We used STRING v10.058 to find 18 

the connectivity among the novel TTDGs reported. We input the list of genes into the 19 

webserver and retrieved the network using all STRING features except text-mining and 20 

database evidence. STRING provides built-in analysis functions to detect protein-protein 21 

interactions and to perform GO term enrichment analysis. For the latter, STRING performs a 22 

Hypergeometric test and corrects for multiple testing using Benjamini and Hochberg. GO term 23 

enriched in the analysis of the specific oncodriveFM results only versus cDriver results only 24 

were input into the analysis platform REVIGO 59 to find semantically relevant terms. 25 

 26 

Individual gene analysis. To visualize the somatic mutations on the gene structure we used 27 

MutationMapper60. We input our list of nonsilent mutations for genes individual genes from 28 

the Pancan12 dataset. The clinical data (defined as processed data, level 2, by TCGA) for the 29 

patients was downloaded from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). 30 

Kaplan-Meier curves and log-rank p-values for the selected genes were calculated using the 31 

R package Surv, patient-gene pairs were classified as affected if they presented at least one 32 

of these types of mutations 'Frame_Shift_Del', 'Frame_Shift_Ins', 'In_Frame_Del', 33 

'In_Frame_Ins', 'Missense_Mutation', 'Nonsense_Mutation', 'Splice_Site', 34 

'Translation_Start_Site', 'Nonstop_Mutation'. Multiple testing correction was performed using 35 

Benjamini and Hochberg for the selected connections of chromatin modifiers.  36 

 37 

Code availability. The latest version of the cDriver R package, with documentation and 38 

example data sets, is freely available at github.com/hanasusak/cDriver. 39 

 40 
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 1 

Figure 1. Signatures of positive selection observed from tumor sequencing data. 2 

(a) Large-scale sequencing experiments of patient cohorts reveal the mutational landscape of 3 

a cancer across a population. Somatic mutations under positive selection (circle and star) are 4 

expected to be more frequent than somatic mutations that confer no selective advantage 5 

(triangle and pentagon). As a result, most of the current algorithms consider recurrently 6 

mutated genes as drivers and randomly mutated genes as passengers. (b) Illustrative model 7 

of clonal evolution showing four time points. Each clone is represented by a unique genotype, 8 

and is depicted as a group of cells (ellipsoids) with the same background color. Shapes inside 9 

the cell represent mutations. Two types of mutations under positive selection are illustrated: a 10 

tumor-initiating driver (red circle) and a late-driver causing clonal expansion (blue star). The 11 

initial driver mutation causes the emergence of the first malignant clone (last onko-common 12 

ancestor, LOCA) and it propagates to all daughter cells, thus having a high cancer cell 13 

fraction (CCF) at all time points. The second driver mutation confers a selective advantage 14 
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over the rest of the clones, generating a selective sweep in the last time point. Two types of 1 

passenger mutations are shown: early passengers or hitchhikers (green triangle) present at a 2 

high CCF since they appeared before the emergence of the LOCA and late passenger 3 

(purple pentagon) present only in a small fraction of cancer cells. The CCF value describes 4 

the total fraction for each mutation at the last time point. (c) Highly damaging mutations are 5 

expected to be under selection given they disrupt the normal protein function. In contrast, 6 

passenger mutations are mostly neutral and are not expected to have a bias towards high 7 

functional damage. In this study we integrate signals depicted in a-c in one model for driver 8 

gene identification. 9 

 10 

Figure 2. CCF distribution for four groups of somatic mutations in four cancer datasets. 11 

We obtained the CCF distribution for nonsilent driver, nonsilent passenger, silent driver, and 12 

nonsilent passenger gene mutations and compared the significance of the differences 13 

between each pair of them. CCF of nonsilent driver mutations is significantly higher compared 14 

to all other groups. Importantly, CCF of nonsilent driver is significantly higher compared to 15 

silent mutations in driver genes and the latter were not significantly different from silent or 16 

nonsilent mutations in passenger genes (*Pancan12 represent the highly filtered dataset 17 

published in32). 18 

 19 
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1 
Figure 3. Benchmarking of cDriver and other driver identification methods in breast 2 

cancer (BRCA) and chronic lymphocytic leukemia (CLL) datasets. 3 

F-score for cDriver (solid blue line) and four other driver identification algorithms using BRCA 4 

(a) and CLL (b) datasets. Results of each method were transformed to ranks by ordering P 5 

values or posterior probabilities. The P value cutoff for significance is shown as a circle in 6 

each of the curves. For visualization, F-score is shown to rank 66 for BRCA and 44 for CLL 7 

(twice the number of genes in the gold standards), since all methods reach the F-score peak 8 

before these ranks (c, d). We compared the results for all methods irrespective of the  P value 9 

using only the ranking for BRCA (c) and CLL (d). Gold standard genes were ordered by 10 

mutation frequency and samples were ordered by cancer cell fraction (CCF). The CCF of 11 

each mutation in each gene-patient pair is indicated by the red color gradient. On the right, 12 

gene rankings of each algorithm are indicated by the blue color gradient. White means that 13 

this gene was not ranked under 66 for BRCA (c) and 44 for CLL (d). At the bottom of figures c 14 

and d results for genes not present in the gold standard but highly ranked by cDriver are 15 

shown. 16 

 17 
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 1 

 2 

Figure 4. cDriver results and comparison with other methods for dataset composed of 3 

12 cancers. 4 

(a) F-score for cDriver (solid blue line) and four other driver identification methods using the 5 

Pancan12 dataset (b) F-score for an ensemble approach of all tools with and without our 6 

Bayesian model, cDriver (blue and green lines respectively). (c) F-score for cDriver using: (i) 7 

only a published background model, (ii) including functional impact (FI), (iii) including cancer 8 

cell fraction, CCF, and (iv) a combination of all signals. (d) We ordered the top 30 cDriver- 9 

ranked genes on Pancan12 by their median CCF. (d) Matrix showing whether these top 30 10 

genes were predicted as significant by the other four algorithms (Q value or FDR less than 11 

0.1).  12 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/059360doi: bioRxiv preprint 

https://doi.org/10.1101/059360
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Figure 5.  Novel tumor type - driver gene (TTDG) connections, CHD4 and SMARCA4 2 

Distribution of somatic mutations found in (a) CHD4 and (b) SMARCA4. The domains are 3 

colored following the cBioPortal color scheme. Most of the mutations are evenly distributed in 4 

CHD4, except for two small clusters at the beginning of the protein. In the case of SMARCA4, 5 

mutations tend to accumulate in the domains for ATP hydrolysis or DNA unwinding. TTDG 6 

connection landscape for (c) CHD4 and (d) SMARCA4: the color indicates the number of 7 

pubmed hits related to each MeSH term. The shape indicates the frequency of patients 8 

affected by a mutation in the gene. Survival curves for (e) CHD4 in bladder carcinoma and for 9 

(f) SMARCA4 in liver hepatocellular carcinoma. Patients affected by a mutation are plotted in 10 

red. 11 
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