Abstract
Background According to major public repositories statistics an overwhelming majority of the existing and newly uploaded data originates from microarray experiments. Unfortunately, the potential of this data to bring new insights is limited by the effects of individual study-specific biases due to small number of biological samples. Increasing sample size by direct microarray data integration increases the statistical power to obtain a more precise estimate of gene expression in a population of individuals resulting in lower false discovery rates. However, despite numerous recommendations for gene expression data integration, there is a lack of a systematic comparison of different processing approaches aimed to asses microarray platforms diversity and ambiguous probesets to genes correspondence, leading to low number of studies applying integration.
Results Here, we investigated five different approaches of the microarrays data processing in comparison with RNA-seq data on breast cancer samples. We aimed to evaluate different probesets annotations as well as different procedures of choosing between probesets mapped to the same gene. We show that pipelines rankings are mostly preserved across Affymetrix and Illumina platforms. BrainArray approach based on updated annotation and redesigned probesets definition and choosing probeset with the maximum average signal across the samples have best correlation with RNA-seq, while averaging probesets signals as well as scoring the quality of probes sequences mapping to the transcripts of the targeted gene have worse correlation. Finally, randomly selecting probeset among probesets mapped to the same gene significantly decreases the correlation with RNA-seq.
Conclusion We show that methods, which rely on actual probesets signal intensities, are advantageous to methods considering biological characteristics of the probes sequences only and that cross-platform integration of datasets improves correlation with the RNA-seq data. We consider the results obtained in this paper contributive to the integrative analysis as a worthwhile alternative to the classical meta-analysis of the multiple gene expression datasets.