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Abstract

Bacterial population genomic analyses rely on identification of genetic recombi-
nations, but growing databases represent a challenge for computational methods
to detect these recombinations and interpret sequence ancestry. We introduce
a novel algorithm called fastGEAR which identifies major lineages in diverse
microbial alignments and recombinations between them. The algorithm can de-
tect not only recent recombinations, but also the ancestral ones affecting entire
lineages. Using simulated data, fastGEAR demonstrates outstanding power to
detect ancestral recombination events compared to other state-of-the-art meth-
ods. The utility is further demonstrated by analysing 616 whole genomes of
Streptococcus pneumoniae, providing novel insights into the evolution of recom-
binogenic bacteria.
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Background

Microbial genomes are constantly subjected to a number of evolutionary pro-
cesses, including mutation, gene gain and loss, genetic rearrangement and re-
combination, the latter here broadly defined as any form of horizontal transfer
of DNA. The importance of recombination in prokaryotic evolution has been
recognized for some time (Feil et al., 2001) and genomic studies have become an
important source of data to measure its contribution (Polz et al., 2013). Com-
parative studies of prokaryotic genomes have found that the vast majority of
their genes have been laterally transferred at least once in the past (Dagan and
Martin, 2007; Dagan et al., 2008), with around 20% of genes being acquired
recently (Popa et al., 2011). Furthermore, when measured over shorter time
scales, many bacterial species were found to recombine so frequently that the
impact of recombination on their genetic diversification was shown to be greater
than that of mutation alone (Vos, 2009).

The prevalence of recombination is suggestive of its importance for microbial
evolution, with potential adaptive benefits. Genetic exchange between differ-
ent strains has been argued to play an important role in shaping of bacterial
communities (Polz et al., 2013; Marttinen et al., 2015; Shapiro, 2016) and the
emergence of new bacterial species (Fraser et al., 2007, 2009; Shapiro et al.,
2012). Bacterial recombination has also proved a powerful adaptive weapon
against major forms of clinical interventions: antibiotics and vaccines (Hanage
et al., 2009; Croucher et al., 2011; Perron et al., 2012). As most evolutionary
models (e.g., phylogenetic analysis) assume no recombination, a good under-
standing of the impact of recombination on bacterial genomes is crucial for the
correct interpretation of any genomic analysis.

Currently, popular methods used for detecting recombination include Clon-
alFrame (Didelot and Falush, 2007) and ClonalFrameML (Didelot and Wilson,
2015), Gubbins (Croucher et al., 2014b), and BratNextGen (Marttinen et al.,
2012). The three former approaches follow the line of methods based on phylo-
genetic trees (Husmeier, 2005; Minin et al., 2005; Webb et al., 2009), and look
for clusters of polymorphisms on each branch of a phylogenetic tree. On the
other hand, BratNextGen uses Hidden Markov Models (HMMs) to model the
origin of changes in the alignment, where clonality (lack of recombinations) rep-
resents one origin and other origins represent foreign recombinations. All these
methods specialise in identifying imports originating in external sources, and
are therefore appropriately applied to a single bacterial lineage at a time. Thus,
they rely on another method to identify the underlying population structure,
which limits their ability to provide insight into species-wide patterns of ex-
change. With the recent development of high-throughput sequencing methods
which can process tens of thousands of bacterial whole-genomes, such analyses
have become increasingly interesting and necessary.

Here we present an approach to fulfill such a demand, which identifies both
the population structure of a sequence alignment and detects recombinations be-
tween the inferred lineages as well as from external origins. The method locates
both recent as well as ancestral recombination events affecting entire lineage, as
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shown in Figure 1. Our approach is similar to the popular structure software
with the linkage model (Falush et al., 2003) but with the following crucial differ-
ences: (a) it is computationally scalable to thousands of bacterial genomes, (b)
it provides insight into the mosaicism of entire bacterial populations by inferring
also the ancestral recombination events. As our method can quickly infer the
genomic arrangement of large bacterial datasets, we called it fastGEAR.

We assess the accuracy of fastGEAR using extensive simulations, and com-
pare it to three other state-of-the-art methods. We then use it to analyse
a dataset of 616 whole-genomes of a recombinogenic pathogen Streptococcus
pneumoniae sampled in Massachusetts, USA, in a paediatric carriage study
(Croucher et al., 2013). The results not only efficiently reproduce many pre-
vious findings, but also provide some novel insights into the evolution of S.
pneumoniae as a species.

Results

Our approach is based on a Hidden Markov Model (HMM) of nucleotide fre-
quencies at polymorphic sites of the alignment analysed (see Figure 2). In brief,
we first identify lineages in the alignment, and in these lineages we infer ‘re-
cent recombinations’ as foreign genetic fragments present in a subset of strains
in the lineage. We then identify ‘ancestral recombinations’ as foreign genetic
fragments present in all strains in the lineage. Finally, we test for significance
of both recent and ancestral recombinations. The comprehensive description of
the approach is given in Methods and details in text S1.

Performance on simulated data

To give an example of fastGEAR performance, we performed coalescent simu-
lations involving P = 3 lineages with a given effective population size for each
lineage Ne and the most recent common ancestor (MRCA) time T . We then
simulated recombination events between them in three different modes: recent,
intermediate and ancestral. Finally, we compared the resulting, true population
structure with the one inferred by fastGEAR in Figure 3. We see that fastGEAR
not only correctly identifies the lineages, but also finds all recombinations. The
inference of recent recombinations is generally better than the inference of an-
cestral recombinations. Of particular importance is that fastGEAR does much
better at predicting the direction of recombination events for recent recom-
binations. Such direction is difficult, if not impossible, to determine for older,
ancestral recombinations. However, we see that the population genetic structure
is correctly inferred in all three examples, even in the difficult case of multiple,
overlapping recombinations occurring at different time scales.

To systematically assess performance of fastGEAR we performed two differ-
ent sets of in silico experiments. First, we examined how well fastGEAR detects
recombinations for different population parameters. To this end, we varied
the within-population distance (achieved by changing Ne) and the between-
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population distance (achieved by changing T ). The results are shown in Figure
S1. We see that fastGEAR generally detects recombinations well, particularly
the recent ones as they share higher resemblance to the origin and are thus by
definition easier to detect. The false-positive rate was low for all types of re-
combinations detected and did not vary with the between- or the within-lineage
distance. By contrast, we observed that the proportion of detected recombina-
tions was highly dependent on the between-lineage distance. This is because
in the absence of clear population genetic structure, populations are relatively
closely related and there are too few polymorphisms to signal the presence of
a recombination. Furthermore, a higher within-lineage distance often affected
the inference of ancestral recombinations as it generated the intra-lineage pop-
ulation genetic structure. Thus, as expected, performance of fastGEAR depends
on the underlying population genetic structure.

In the second set of experiments, we compared the performance of fastGEAR
to other recombination-detection methods: structure, Gubbins and Clonal-
FrameML. To compare with the former two phylogeny-based approaches that
are designed to be used in a lineage-by-lineage manner, we ran fastGEAR both
using entire alignment and on each lineage individually. The results are shown
in Figure 4. First, we saw a comparable performance of fastGEAR to struc-
ture in detecting recent and intermediate recombinations. The two methods
are generally quite similar in their approach, however structure explores the
entire parameter space using MCMC whereas fastGEAR uses the most probable
clustering and point estimates for hyperparameters. It is therefore not surpris-
ing that in all the examined cases structure slightly outperformed fastGEAR

in the proportion of detected recent and intermediate recombinations (typically
by around 10%-20%) but at a much higher computational cost (between 1.5-2
orders of magnitude; see Figure S2). However, in reality structure may not
always perform better as it was here run knowing the true value of the number
of populations K and the true lineage memberships of different strains as priors,
while fastGEAR had no such knowledge. We thus conclude that the performance
of fastGEAR to detect recent recombinations, when run with entire alignment,
was comparable to that of structure but in a fraction of CPU time.

We found the performance of fastGEAR run in a lineage-by-lineage manner
to be lower than when using the full alignment. This is because fastGEAR, sim-
ilarly to structure, gains its statistical power from having actual origins of
recombinations. In spite of the decreased power, the lineage-by-lineage results
were comparable to Gubbins, which in addition uses the information about the
ancestry of sequences in the alignment and exploits it when detecting recombi-
nations. Conversely, the performance of the lineage-by-lineage runs of fastGEAR
was clearly lower than the one of ClonalFrameML, but comparable when run on
the entire alignment. However, the ClonalFrameML analysis was conditioned
on the true phylogeny. The difference in detection power between Gubbins and
ClonalFrameML could stem from the former using a more conservative multiple-
testing correction in recombination-detection.

Importantly, throughout simulations fastGEAR detected ancestral recombi-
nations equally well to recent and intermediate recombinations. This is par-
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ticularly encouraging as none of the other methods could detect those events.
The false detection rate of ancestral recombinations was generally zero with the
exception of very distant lineages, and even then it was only 0.3 recombinations
per alignment on average. In spite of such an encouraging result, caution is
warranted when interpreting the results, in which we recommend both visual
inspection of Bayes factors and the good understanding of the used dataset (see
also Discussion).

Analysis of Streptococcus pneumoniae data

We next applied fastGEAR to a whole-genome collection of 616 isolates of S.
pneumoniae to infer the bacterial population structure and analyse the distri-
bution of recombinations, both recent and ancestral, across the genome. To
this end, we analysed the COGs independently (see Methods). The goal of the
analysis was to gain a detailed view of the relationships between the strains in
the data set, and ultimately to better understand the impact of recombination
on pneumococcal evolution.

High-resolution view of population structure

To investigate the population structure of the entire collection of isolates, we
calculated the proportion of shared ancestry (PSA) matrix, which summarizes
the fastGEAR results for all 2,113 COG alignments. Specifically, for each pair
of isolates we analysed the population structure at each COG with putative lin-
eages and the list of recent and ancestral recombinations detected in the COG.
If the COG was present in both isolates, we computed the proportion of the
length of the COG sequence in which the two isolates were assigned to the same
lineage. If the COG was absent in either or both of the isolates, they were not
compared at this COG; if multiple copies of the gene were found, then all pos-
sible comparisons between the two isolates were included, and correspondingly
taken into account in the total length of sequence compared.

The resulting PSA matrix together with a previously published core-gene-
based phylogeny and 15 monophyletic sequence clusters (SCs), which can be
taken as lineages, is shown in Figure 5. Overall, the PSA results are highly
concordant with the tree and the SCs. First, strains within SCs share almost
all of their ancestry, such that the average PSA within different SCs ranges
from 85% up to 98%, which is visible as blocks of high PSA on the diagonal.
Second, these blocks correspond well to the clades of the phylogeny. Third, the
sequence cluster SC12, which has previously been identified as ‘atypical’, non-
encapsulated pneumococci (Croucher et al., 2014a) and appears distant from the
rest of the population in the phylogeny, shares considerably less of its ancestry
(approximately 60%) than other SCs share with each other. We also note that
the polyphyletic SC16, which includes all strains in the phylogeny which are
not part of SCs 1-15 (and is this not shown), consists of multiple blocks of
high PSA. These individual groups are similar to other SCs, with the difference
that they just are too small to be identified as separate SCs. Thus, we see

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2016. ; https://doi.org/10.1101/059642doi: bioRxiv preprint 

https://doi.org/10.1101/059642
http://creativecommons.org/licenses/by-nc/4.0/


that fastGEAR can produce a high-resolution view of the bacterial population
genomic structure. Even though the PSA matrix and the phylogeny are in good
accordance, our results highlight some details of the population structure not
apparent in the phylogeny; for example, a pair of isolates between SC5 and SC8
in Fig. 5 that seem to share a large proportion of their ancestry with SC8.

A conspicuous feature of the PSA matrix is the lack of hierarchy between
different SCs. Indeed, the different lineages (except for SC12) are approximately
equidistant from each other, sharing from 71% to 81% of their ancestry, a pattern
that can be explained by frequent recombination between the SCs (Fraser et al.,
2007; Marttinen et al., 2015). To better demonstrate this, we computed the
amount of private ancestry for each strain, defined as the proportion of the strain
where the origin was not found in any other SC than the one to which the strain
belonged (Figure S3). The results show that all SCs have very little private
ancestry; even the divergent SC12 has only about 15% of its ancestry private,
i.e., not found in any other SC. These findings are consistent with the analysis
of accessory genome content, which hypothesised that SC12 pneumococci may
constitute a different streptococcal species altogether (Croucher et al., 2014a).

To investigate the impact of recombination on the core genome further, we
analysed the population structure of 96 housekeeping genes from an extended
MLST set (Crisafulli et al., 2013). The results for all the 96 genes are shown in
Figure S4, for a subset of 25 genes in Figure 5, and for all core genes (i.e., present
in at least 95% of the isolates) in Figure S5. Two observations are particularly
striking. First, we see that for the vast majority of genes the inferred number
of lineages is much smaller than 15 (median: 3, 95% quantile: 2-6). Second, the
population structure is highly variable across the genome including at the 96
most essential genes, significantly deviating from a clonal model of diversification
(Figures S6 and S7). These findings lead to two important conclusions: (i) the
pneumococcal-wide population structure, as represented by the SCs, emerges
as the average of highly variable population structures of individual genes, and
(ii) variable population structures of individual genes reflects their different
evolutionary histories, and thus imply high rates of recombination at almost all
bacterial genes, even the most conserved ones.

Population structure of clinically relevant genes

We next investigated the population structure of clinically relevant genes, in-
cluding three penicillin-binding proteins, which determine resistance to beta-
lactam antibiotics (pbp1a, pbp2b and pbp2x ), and common genes at the vaccine-
targeted capsule biosynthesis locus (dexB, wzg, wzh, wzd, wze, located upstream
the cps locus, and rmlA, rmlC, rmlB, rmlD, located downstream the cps locus).
Interestingly, as pbp1a and pbp2x are located in the vicinity of the capsular lo-
cus, we investigated the relationship between the population structure of these
two protein groups.

The results are shown in Figure 6. As expected, we found a very strong asso-
ciation between the population structure of wz-genes (present in all serotypes),
the rhamnose synthesis operon genes (present in about half of serotypes) and the
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actual serotypes. Conversely, we saw no association between these three groups
and the dexB gene. This likely reflects the fact that recombination events driving
serotype switching often span the wz- and rml-genes but not dexB, and that the
former two groups are likely to be horizontally transferred together. A probable
explanation for this is the selective pressure to maintain the serogroup as recom-
bination breakpoints in the middle of the locus would likely disrupt the genetic
content of the locus (Croucher et al., 2015). Interestingly, our analysis pointed
to rmlA gene as one of recombination hotspots (see also next subsection) but no
such hotspots were found in within the wz-genes. One possible explanation is
that there may be a possible stronger epistatic interaction between wz-genes and
the capsule-determining genes compared to between rml-genes and the capsule-
determining genes.

Furthermore, we saw a strong association between the population structure
of capsular genes and the bacterial lineages (sequence clusters or SCs), and
this is expected due to a known strong association between pneumococcal lin-
eages and serotypes. Within-lineage serotype variation was well reflected in
changes in the capsular population structure, thereby well reflecting the histor-
ical serotype-switching events. These changes were consistent with a previous
lineage-by-lineage phylogenetic analysis of such events (Croucher et al., 2015).
Additionally, our analysis revealed other serotype-switching recombinations out-
side the 15 monophyletic clusters.

The population structure of the three β-lactam genes was very strongly
associated, with mosaicism in one gene being a good predictor of the mosaicism
in the other two genes. This confirms previous findings which suggested a strong
epistatic interaction of these genes (Croucher et al., 2013). To further investigate
the association between mosaicism and resistance at those genes, we applied a
simple linear model and examined how well increased levels of MIC can be
explained by the number of recent and ancestral recombinations in β-lactam
genes. We found a strong positive correlation between ancestral and recent
recombinations in both pbp2b (p = 4.05 × 10−12 for recent recombinations;
p < 2.2 × 10−16 for ancestral recombinations) and pbp1a (p < 2.2 × 10−16

for recent recombinations; p < 2.2 × 10−16 for ancestral recombinations) with
elevated MICs (see Figure S8). However, such associations were not seen for
pbp2x (p = 0.59 for recent recombinations; ancestral recombinations associated
with a significant tendency to lower MICs), which fastGEAR finds to be the
most extensively modified of these genes. This relationship is likely due to earlier
findings that mosaicism of pbp2x gene does not result in decreased susceptibility
to penicillin of strains carrying the mosaic allele (Dowson et al., 1994).

Comparison of recombination levels across different proteins

We next compared the levels of recent and ancestral recombination between dif-
ferent proteins. Consistent with a constant rate of recombination over the his-
tory of this population, both measures were significantly correlated (R2 = 0.46,
p < 2.2 × 10−16) with the mean number of recent recombinations almost twice
the number of ancestral recombinations (1.4 vs. 2.7). However, in 20% of genes

7

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2016. ; https://doi.org/10.1101/059642doi: bioRxiv preprint 

https://doi.org/10.1101/059642
http://creativecommons.org/licenses/by-nc/4.0/


we found a greater number of ancestral recombinations which could reflect a
complex relationship between recombination rate and selection (see Figure S9).
Among the genes with the highest number of ancestral and recent recombina-
tions (Tables 1 and 2 respectively) we found many loci previously identified as
recombination hotspots. These proteins can be classified into several groups.

The first group are mobile genetic elements, which include integrative and
conjugative elements, prophages, phage-related chromosomal islands and inser-
tion sequences. This is not surprising as frequent between- and within-lineage
recombination of mobile genetic elements has reported previously (Croucher
et al., 2014a). The second group are proteins which are engaged in the inter-
actions with the host. Pneumococcal surface protein C (pspC ), which plays a
central role in pathogenesis of the pneumococcus, was a top hit for both re-
cent and ancestral recombinations (Kadioglu et al., 2008). Another top hit, as
discussed above, was the first of the rhamnose genes (rmlA; cf. Fig. 6), which
often serves as a breakpoint in serotype switching events. We also found a
high number of recent recombinations in the zinc metalloprotease zmpA, which
cleaves human immunoglobulin A1 (Weiser et al., 2003). The third group are
genes involved in determining resistance to antibiotics, including sulphamethox-
azole resistance (folC ), as well as β-lactams (pbp1a, pbp2b and pbp2x ) discussed
above (see also Figure S10). With the exception of the mosaic zmpA sequences,
these proteins were previously identified as recombination hotspots in globally
disseminated lineages (Croucher et al., 2011, 2014c).

We also found highly recombinogenic proteins which have not been previ-
ously identified as recombination hotspots. One example is the chromosome
partitioning SMC protein, which functions in chromosomal segregation during
cell division (Britton et al., 1998) and is one of the top hits in both recent
and ancestral recombinations. Other genes that were also inferred to undergo
high levels of recombination are phenylalanyl- and valyl-tRNA synthetases, en-
zymes that attach the amino acids phenylalanine and valine to their cognate
tRNA molecules during the translation process. Previous reports show that re-
combination and horizontal gene transfer frequently occur in aminoacyl-tRNA
synthetases (aaRS ) (Woese et al., 2000). The horizontal acquisition of aaRS
variants may be implicated in resistance to antibiotics (Woese et al., 2000),
and at least one atypical additional aaRS has been found on Pneumococcal
Pathogenicity Island 1 (Croucher et al., 2009). Although within-species recom-
bination of aaRS has not been widely investigated, our results suggest that this
process plays an important role in the evolution of pneumococci.

Discussion

In this article we introduced a novel tool called fastGEAR to analyse the popu-
lation genetic structure in bacteria. Specifically, fastGEAR identifies major lin-
eages and infers recombination events between them as well as those originating
from outside the sample population. Simultaneous inference of the population
structure and between-population recombinations using Hidden Markov Models
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is analogous to an earlier approach called structure (Falush et al., 2003) but
is novel in terms of both the ability to infer ancestral exchanges between those
populations and computational scalability. When tested on simulated data,
fastGEAR demonstrated a comparable accuracy to structure but in a frac-
tion of CPU time (cf. Figure S2). Unlike ChromoPainter/fineStructure (Lawson
et al., 2012) – another related method that investigates the similarity of human
haplotypes using other haplotypes as possible origins for the target haplotype –
fastGEAR is designed for detecting recombination between groups of sequences.
Thus, our method is a notable addition to the currently available approaches for
recombination detection in bacterial genomes, particularly so due to its ability
to cope with increasingly large collections of whole-genome data.

Event though fastGEAR detected ancestral recombinations exceptionally well
in simulated data, a few points should be kept in mind when interpreting the re-
sults. First, the term ‘ancestral’ is relative and does not have to reflect the time
of recombination; it merely reflects the fact that the recombination happened
before the strains in the affected lineage diverged. In fact, ancestral recombi-
nations which occurred recently will be easier to detect than ancestral recombi-
nations which occurred a long time ago. This is because our method, broadly
speaking, is opposite to the clonal-frame-like approaches (Didelot and Falush,
2007; Croucher et al., 2014b; Didelot and Wilson, 2015), where recombinations
are divergent segments among highly similar sequences; here the ancestral re-
combinations are highly similar segments between diverse lineages. Second, it
is important to emphasise that fastGEAR cannot reliably infer the direction
of ancestral recombinations because this would require additional assumptions
about relationships between the ancestral sequences. In the results presented
we have resolved this issue by always marking the lineage with fewer strains as
recombinant, assuming that lineage sizes are indicative of their ages, but the
potential of sampling bias should be considered when interpreting results.

Although our method does not assume a phylogeny, it nevertheless relies
on some lineages between which recombinations are detected, and inferring the
lineages is an important first step on which reliable downstream analysis can be
based. Assuming consistent lineages over the length of one gene is more justified
than over larger genomic regions, as demonstrated also by our results. For this
reason we chose to analyse the S. pneumoniae data gene-by-gene, rather than
concatenating multiple genes for joint analysis. The gene-by-gene analysis has
additional benefits of being straightforward to parallelize and possible to apply
to whole-genome core alignments. The latter is particularly appealing as it
permits insight into the population structure and evolution of diverse microbial
datasets. For these reasons, this is the way we currently recommend to use the
method in practice. One downside of the gene-by-gene analysis is that there is no
straightforward way for making inferences about long recombinations spanning
multiple genes.

Our statistical approach combines HMMs to identify putative recombina-
tions with a post-processing step to compute the significances of the recombina-
tions. These steps use information in the sequence data differently: the HMMs
are based on allele frequencies at polymorphic sites, whereas the significances are
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computed using variations in SNP frequency along the sequence. The need for a
separate post-processing step follows from the limitation of the HMMs that they
can only tell whether two lineages are the same or different, but not how differ-
ent they are. Consequently, very close or distant lineages are easily handled by
the HMMs, but there always seems to be some intermediate distance for which
HMMs may produce short segments of false positive recombinations, regardless
of the exact way the HMM is formulated (for example, we experimented with
various ways to handle the hyperparameters). The post-processing will produce
a bias towards removing short, diverged segments as longer ancestral recombi-
nations often reach higher significance. This is useful from a biological point
of view because such sort segments may also emerge as a combined result of
mutation and positive selection. By assigning higher significance to longer frag-
ments the chance of those fragments representing horizontal and not vertical
evolution is increased. Nevertheless, a visual check of significance and a good
understanding of the data analysed is highly recommended.

The usefulness of fastGEAR became evident when we applied it on a large
collection of whole-genomes of Streptococcus pneumoniae from Massachusetts,
by analysing the population structure of all individual genes present in at least
fifty isolates (COGs). To give an example of computational efficiency of the
algorithm, we recorded the runtime for the three penicillin-binding proteins
(pbp1a, pbp2x, pbp2b), which had particularly complex population structures.
On a 2.3 Ghz laptop, these were: 329, 308 and 234 seconds, respectively, reflect-
ing the approximate linear scaling of the runtime with respect to the number
of polymorphic sites (823, 720, 558 SNPs in the three datasets, respectively).
For the majority of genes the run time was around two minutes or less. The
analysis of all COGs produced for the first time a high-resolution view of the
species-wide population structure. The population structure was consistent with
previous studies of the fifteen major monophyletic groups but it also permitted
insight into the ancestral composition of smaller clusters as well as the relation-
ships between the clusters. Analysis of recombinations within individual genes
not only correctly identified many known major recombination hotspots in the
pneumococcus but also pointed to potentially novel ones (SMC protein, valS,
aaRS ).

Furthermore, our method also provided insight into clinically-driven evolu-
tion of S. pneumoniae. First, we found a strong relationship between individual
recombination events (both recent and ancestral) and adaptation to clinical
forms of intervention, including resistance to β-lactam antibiotics and serotype
switching at vaccine-targeted capsular locus. Second, and perhaps surprisingly,
fastGEAR did not find evidence for strong linkage between the capsular and
neighboring genes, including those that confer penicillin resistance. There are
reports of simultaneous transfer of these clinically important regions both from
natural populations (Brueggemann et al., 2007; Coffey et al., 1999) and in vitro
studies (Trzciński et al., 2004). Our observations might indicate divergent se-
lective pressures exerted by antibiotics in the community, and host immunity.
However it is known that the prevalence of penicillin is higher in some serotypes
than others, so our results suggest that in the majority of cases this is con-
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vergent evolution rather than a single event. All of these approaches demon-
strate the potential of fastGEAR to efficiently provide insight into the important,
epidemiologically-relevant changes in the population structure.

Interestingly, our analysis also provided some fundamental understanding of
the evolution of S. pneumoniae. The analysis of the population structure of
the core genome itself demonstrated a highly variable and mosaic structure of
individual core genes, including 96 essential housekeeping genes. This shows
the scale of genome-wide recombination of the pneumococcus and highlights its
major role in the evolution of bacterial lineages. These results also indicate an
important limitation of phylogenetic approaches to studying the evolution of
the pneumococcus and likely other highly recombinogenic bacteria: while core
genome based trees are likely to efficiently reproduce within-lineage ancestry
patterns, their deeper branches may not well represent the between-lineage re-
lationships at many individual genes, but rather emerge as an average over
various population structures at different loci.

While developed and tested with bacterial genomes in mind, there is nothing
in the method per se to exclude it from the analysis of other pathogens, including
viruses. Nevertheless, fastGEAR assumes the isolates to be haploid, for which
reason we expect fastGEAR to be particularly useful in questions related to
microbial evolution.

Conclusions

fastGEAR offers a novel approach to simultaneously infer the population struc-
ture and recombinations (both recent and ancestral) between lineages of diverse
microbial populations. We expect the method will bring novel insight into the
evolution of recombinogenic microbial species, particularly so when recombina-
tion rates are high enough for the species concept to be challenging to define.

Methods

Overview of the algorithm

Here we give a general high-level description of the method, and the details are
presented in supplementary text S1. The algorithm takes as input an alignment
of bacterial DNA sequences and performs the following four tasks:

1. Identify lineages in the alignment.

2. Identify recent recombinations in the lineages, where the ‘recent recombi-
nations’ are defined as those that are present in a subset of strains in a
lineage.

3. Identify ancestral recombinations in the lineages, where the ‘ancestral re-
combinations’ are defined as those that are present in all strains that
belong to the lineage.
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4. Test of significance of the putative recombinations.

The distinction between recent and ancestral recombinations is whether the
recombination event happened before or after the most recent common ancestor
of the lineage in which it was detected (Fig. 1).

(1) Identifying lineages To identify lineages in a data set, we start by
running a previously published clustering algorithm (Corander and Marttinen,
2006) included in the Bayesian Analysis of Population Structure (BAPS) soft-
ware (Corander et al., 2003). This produces C strain clusters which represent
population structure among the strains. However, the clusters as such are not
optimal for recombination analysis for two reasons. First, the algorithm may
assign two otherwise identical sets of sequences into distinct clusters due to one
of the sets experiencing a recombination event, resulting in a poor represen-
tation of the overall population structure. Second, the algorithm may detect
clusters that have diverged very recently, and the closeness of such clusters may
result in added noise in recombination detection. Due to these reasons, given
the clustering pattern, we infer lineages using a Hidden Markov Model (HMM)
approach (Fig. 2A). In more detail, we compare allele frequencies for each clus-
ter pair using a HMM, where the hidden states of the HMM represent equality
of the frequencies at the polymorphic sites. All pairwise comparisons are sum-
marised as a distance matrix, which tells the proportion of the length of the
sequences where two clusters are considered different. We apply the standard
complete linkage clustering with cutoff 0.5 to this distance matrix, resulting in a
grouping of clusters into L groups, which are taken as lineages in the data. This
means that two clusters will usually be considered as part of the same lineage if
their sequences are considered similar for at least 50% of the sequence length,
although this is not strictly enforced by the complete linkage algorithm.

(2) Detecting recent recombinations To identify recent recombinations,
we analyse each lineage by applying a HMM approach for strains assigned to
the lineage, this time with hidden states representing the origins of the different
polymorphic sites in the strain (Fig. 2B). Possible origins are the other lineages
detected in the data, as well as an unknown origin, not represented by any strain
in the data. The positions which are assigned to a different origin than the
identified lineage of the strain are considered recombinations. After analysing
all strains in the lineage, the hyperparameters of the HMM are updated. Further
iterations of detecting recombinations and updating hyperparameters are carried
out until approximate convergence. The final reported recent recombinations
are those sequence positions where the probability of the assigned lineage is less
than some threshold, where we have used a conservative threshold value equal
to 0.05. If a sequence position is considered recombinant, then the origin is set
to be the lineage with the highest probability at this position. We note that
also the full probability distributions are available from our implementation.

(3) Detecting ancestral recombinations To identify ancestral recombi-
nations, we analyse all lineage pairs using the same approach as in step (1), such
that the latent variables for the different sequence positions have two possible
states, either the lineages are the same or different, with the recent recombi-
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nation sequences treated as missing data. Putative ancestral recombinations
between lineages correspond to regions of the alignment where the inferred lin-
eages are the same - hence a portion of the genome in isolates that are overall
assigned to different lineages, may be considered to be part of the same lineage.
However, it is important to note that the direction of a recombination can not be
identified using this approach. To resolve this issue, we always mark the lineage
with fewer strains as the recombination recipient in our results. The convention
may be justified by the principle of maximum parsimony, as it results in fewer
strains in the data set carrying a recombinant segment (but see Discussion).

(4) Test of significance The HMMs produce probabilities for sequence
positions of having their origins in the different lineages, which can be used as
a measure of statistical strength of the findings. However, in our experiments
we encountered two kinds of false positive findings: first, recent recombinations
in strains that were outliers in the data set; second, ancestral recombinations
between lineages that were diverged to the verge of not being considered the
same by the HMM, but not completely different either (see Discussion on the
limitations of the HMMs). To prune these false positive findings, we monitor
the locations of SNPs between the target strain and its ancestral lineage (for re-
cent recombinations) or between the two lineages (for ancestral recombinations)
within and between the claimed recombinant segments. We apply a simple bi-
nomial test to compute a Bayes factor (BF; (Bernardo and Smith, 2001, see,
e.g.)), that measures how strongly the changes in SNP density support a recom-
bination, and we use a threshold BF=1 for recent recombinations and BF=10
for ancestral recombinations for additional pruning of recombinations proposed
by the HMM analyses. These thresholds represent a compromise between false
positive rate and power to detect recombinations. Recombinations with the BF
less than the threshold are not reported at all, and the estimated BFs for the
remaining recombinations are included in the output.

Simulations

Details of simulations are given in supplementary text S1. In brief, to generate in
silico data we first created a phylogeny using a coalescent simulation framework
(Excoffier et al., 2013) assuming P = 3 demes which diverged T generations ago,
each with a clonal population of effective size Ne and with mutation rate µ. A
sample of n isolates was drawn from each population. An alignment of length
L was created conditional on the phylogeny and recombinations were simulated
by donating a homologous DNA fragment from a prespecified donor population
to the target population, after which the fragment evolved according to the phy-
logeny of the target population. Recent recombinations were assumed to occur
on average several generations before the present; intermediate recombinations
were assumed to occur sometime between present and the youngest of all P
most recent common ancestors for each population; ancestral recombinations
were assumed to occur before the oldest of all P most recent common ancestors
for each population. The recombination size was modelled as a geometrically
distributed variable with Γr being the mean size of recent and intermediate re-
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combinations and Γa the mean size of ancestral recombinations. We assumed
on average Rr recombination events per population for recent recombinations
(with targets chosen randomly), Ri recombination events per population for in-
termediate recombinations and Ra recombination events in total for ancestral
recombinations.

The accuracy of fastGEAR was assessed by quantifying the number of wrong
recombinations (false-positives) and missed recombinations (false-negatives). To
account for non-independence of recent and ancestral recombinations affecting
multiple isolates, we clustered similar recombinations together with 95% iden-
tity threshold and counted each cluster as a single event. Inferred recombi-
nations were then compared to true recombinations by comparing the isolates
in which they occurred and position at which they occurred (assuming any
overlap), which determined the number of false-positives and the proportion
of all recombinations detected. Due to the difficulties in identifying direction
of recombination, a detected recombination was considered a true-positive if
the resulting population structure was correct, even if the recipient was not
identified correctly.

Data from Streptococcus pneumoniae

We analysed a collection of 616 Streptococcus pneumoniae genome strains sam-
pled in Massachusetts, for which whole-genome sequences were described in the
original publication (Croucher et al., 2013). The assembled data were scanned
for putative protein-coding sequences, which were grouped according to their
similarity, resulting in 5,994 clusters of orthologous genes (COGs). From these,
we selected into our analysis those with at least 50 sequences, and we only in-
cluded proteins that were within 75% and 125% of the median length of the
COG. After this filtering, we kept COGs with at least five distinct protein se-
quences included in the data set, resulting in a total of 2,113 COGs included into
our analysis. Unique sequences were aligned with Muscle (Edgar, 2004). All
DNA sequences associated with each protein sequence were then back-translated
into a full codon alignment. A core alignment was constructed using COGs
present once in each genome assembly. This alignment was previously used to
produce a maximum likelihood phylogeny of the data, and analysed by BAPS to
produce 16 sequence clusters (SCs), of which 15 were monophyletic (Croucher
et al., 2013).
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Figure 1: Simulations of bacterial recombinations. The diagram shows
the underlying simulation method, and here the case of P = 2 populations is
considered: blue and red. Populations were simulated under a clonal model of
evolution for a given set of parameters (see Methods). Three types of recombina-
tions were then simulated using the clonal alignment. Ancestral recombinations
(event 1) occurred before the most recent common ancestor of both populations,
and thus were present in all isolates of the recipient lineage. Intermediate re-
combinations (case 2) occurred sometime between the time when populations
emerged and present time (t = 0), and thus were typically present in multiple
isolates. Recent recombinations (case 3) occurred in the last few generations,
and thus were typically present in few isolates.
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Figure 2: Hidden Markov models to detect recombination. (A) Hidden
Markov model used for identifying lineages and inferring ancestral recombina-
tions. Each column represents a polymorphic site in the alignment and rows
represent strains. The observed states of the chain are nucleotides within each
cluster (in the case of identifying lineages) or lineage (in the case of identify-
ing ancestral recombinations). The latent states of the chain represent identity
of allele frequencies in the two lineages at the polymorphic sites. (B) Hidden
Markov model used for identifying recent recombinations. The observed states
are frequencies within each lineage and the latent states are the possible origins
of the target strain. The possible origins include all observed lineages plus an
unknown state.
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Figure 3: Visual assessment of the inferred population genetic struc-
ture. The figure shows the population genetic structure of the simulated data.
In each panel, the rows correspond to sequences, columns correspond to posi-
tions in the alignment and colours show different populations. The left column
shows the simulated, true structure while the right column shows the popula-
tion genetic structure inferred by fastGEAR. The order of the sequences in both
columns is identical, and the colours are assigned randomly, thus populations
are in the same order (1,2,3) but can be of different colour on the left and on
the right. Three figure rows correspond to three different simulation scenar-
ios: only recent recombinations (top), only ancestral recombinations (middle),
and all three types of recombinations (bottom). The following parameters were
used in the simulations: P = 3, n = 20, Ne = 50, T = 2 × 104, µ = 2 × 10−6,
L = 10kb (all rows); Γr = 800 and Rr = 5, Ri = Ra = 0 (top panel); Γa = 800
and Ra = 3, Rr = Ri = 0 (middle panel); Γa = 500, Γr = 500 and Ra = 3,
Ri = 4 and Rr = 6 (bottom panel).

21

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2016. ; https://doi.org/10.1101/059642doi: bioRxiv preprint 

https://doi.org/10.1101/059642
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4: Comparison of fastGEAR to other bacterial recombination de-
tection methods. The figure shows performance of fastGEAR in detecting
recombinations when compared to other recombination-detection methods for
bacterial genomes: structure, Gubbins and ClonalFrameML. Top row shows
results for recent, middle row for intermediate, and bottom row for ancestral
simulated recombinations. Both recent and intermediate simulated recombina-
tions were detected by fastGEAR in the same way as ’recent’ recombinations.
The left column shows the false detection rate, namely, the mean number of
false-positive recent recombinations per strain (top/middle) and ancestral re-
combinations per alignment (bottom). The right column shows the proportion
of detected true recombinations. Horizontal axis shows the between-population
distance per 100bp (simulated by varying T between 103 and 2 × 104). Dif-
ferent lines show performance of different approaches. Blue line shows results
of structure run for 400,000 generations (200,000 burn-in), with true popu-
lations set as prior and with three independent chains to test for convergence
of the MCMC. Green line shows results of ClonalFrameML conditioned on the
true phylogeny and run on lineage-by-lineage basis. Magenta line shows results
of fastGEAR run on the full alignment. Red line shows results of fastGEAR run
lineage-by-lineage. Green line shows results of Gubbins run lineage-by-lineage.
Each point represents the mean of ten independent simulations. The follow-
ing parameters were used in the simulations: P = 3, n = 30, µ = 2 × 10−6,
L = 20kb, Σr = 300, Σa = 600 and Rr = 5, Ri = Ra = 5.
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Figure 5: Population structure in the pneumococcal data The phylogeny
and the sequence clusters (SCs) on the left show the core-genome-based tree
with 15 major monophyletic clusters. Middle panel shows fastGEAR output
for 25 out of 96 housekeeping genes, as discussed in the text; results for all 96
genes are qualitatively the same and shown in Figure S4. The colors represent
different lineages identified in the analysis. The results for the different genes
were obtained by running fastGEAR independently, but the lineage colors at
different genes were permuted to approximately minimize the average entropy
of the colour distributions of the strains over all the genes. White colour denotes
missing data. The PSA matrix on the right shows the proportion of shared
ancestry between the isolates in the data set, ranging from blue (distant) to
yellow (closely related).
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Figure 6: Detailed results for the clinically relevant genes in the pneu-
mococcal data. The phylogeny on the left shows the population structure and
the SCs in the data. The annotation on the right-hand side of the phylogeny
shows the serotype of isolates for the 20 most common serotypes. The main
panel shows the fastGEAR outputs for penicillin-binding proteins and capsule-
flanking genes, whose names are shown above and locations in 670-6B reference
(Genbank: CP002176) are shown below. Note that the colours of the lineages
in the results are selected independently of the colours of the serotypes.
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COG Number
SNPs

Number
sequences

Clusters Lineages Number
ancestral

Gene name

CLS00019 788 288 17 10 58 Pneumococcal surface protein C
CLS00082 818 2149 24 17 51 Insertion sequence IS1167
CLS01094 543 616 21 8 47 Chromosome partition protein Smc
CLS00114 618 2320 25 19 39 Insertion sequence IS1381
CLS00092 297 325 14 11 34 Bacteriophage DNA binding pro-

tein
CLS00949 1177 378 10 7 32 Tn5252 relaxase
CLS00355 720 616 12 7 31 Penicillin-binding protein 2x
CLS01539 191 616 20 10 30 Ribosomal protein L11 methyltran-

ferase
CLS01729 332 612 14 7 23 Two component system histidine

kinase
CLS02405 258 336 11 7 23 Capsule locus glucose-1-phosphate

thymidyl transferase RmlA
CLS00543 320 616 22 9 22 Phenylalanyl-tRNA synthetase

(PheS)
CLS02258 310 229 11 7 22 Protein found in phage-related

chromosomal islands

Table 1: COGs with the highest number of ancestral recombination events (>20)
identified by fastGEAR
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COG Number
SNPs

Number
sequences

Clusters Lineages Number
recent

Gene name

CLS00019 788 288 17 10 69 Pneumococcal surface protein C
CLS01094 543 616 21 8 69 Chromosome partition protein Smc
CLS00355 720 616 12 7 57 Penicillin-binding protein 2x
CLS00543 320 616 22 9 40 Phenylalanyl-tRNA synthetase

(PheS)
CLS00534 536 616 16 5 37 Valyl-tRNA synthetase (ValS)
CLS01539 191 616 20 10 37 Ribosomal protein L11 methyl-

transferase
CLS00380 583 606 23 4 35 Large cell wall surface anchored

protein
CLS01435 558 615 12 4 34 Penicillin-binding protein 2b
CLS02424 2021 248 10 4 34 Zinc metalloprotease A
CLS00326 490 616 11 7 31 Folylpolyglutamate synthase

(FolC)
CLS00824 263 614 17 7 31 Transporter
CLS01432 393 616 15 8 29 Cell wall synthesis protein MurF
CLS00114 618 2320 25 19 28 Insertion sequence IS1381
CLS00389 326 597 15 5 28 Choline binding protein C/J
CLS00185 284 616 18 6 27 Glucose-inhibited division protein

GidA
CLS01729 332 612 14 7 27 Two component system histidine

kinase
CLS02317 741 97 7 5 27 Phage protein
CLS00357 574 614 9 5 26 ATP-dependent protease ATP-

binding protein ClpL
CLS01858 242 613 19 5 26 Mannosidase
CLS01987 138 565 20 6 26 Membrane protein
CLS02463 421 64 9 6 26 Part of large cell wall surface an-

chored protein PsrP

Table 2: Genes with the highest number of recent recombination events (>25)
identified by fastGEAR
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