
Fast gene set enrichment analysis

Gennady Korotkevich1, Vladimir Sukhov1,2, and Alexey
Sergushichev1,*

1Computer Technologies Laboratory, ITMO University, Saint
Petersburg, 197101, Russia

2JetBrains Research, Saint Petersburg, Russia
*corresponding author, e-mail: alserg@itmo.ru

Abstract

Preranked gene set enrichment analysis (GSEA) is a widely used
method for interpretation of gene expression data in terms of bio-
logical processes. Here we present FGSEA method that is able to
estimate arbitrarily low GSEA P-values with a higher accuracy and
much faster compared to other implementations. We also present a
polynomial algorithm to calculate GSEA P-values exactly, which we
use to practically confirm the accuracy of the method.

1 Main

Preranked gene set enrichment analysis [1] is a widely used method for ana-
lyzing gene expression data. It allows to select from an a priori defined list of
gene sets those which have non-random behavior in a considered experiment.
The method uses an enrichment score (ES) statistic which is calculated based
on a vector of gene-level signed statistics, such as t-statistic from a differential
expression test. Compared to a similar method of calculating Fisher P-values
based on overlap statistic it does not require an arbitrary thresholding. This
also allows the method to identify pathways that contain many co-regulated
genes even with small individual effects.

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

The method has a major drawback of it’s implementations being slow.
As the analytical form of the null distribution for the ES statistic is not
known, empirical null distribution has to be calculated. That can be done
in a straightforward manner by sampling random gene sets as was done in
the reference implementation [1] and reimplementations [2, 3]. In this case
for each of the input pathways, an ES value is calculated. Next, a number
of random gene sets of the same size are generated, and for each of them
an ES value is calculated. Then a P-value is estimated as the number of
random gene sets with the same or more extreme ES value divided by the
total number of generated gene sets (a formal definition is available in the
section 2.1). However, a large number of gene set samples are required for
the test to have a good statistical power, in particular due to correction for
multiple hypotheses testing.

Here we present a fast gene set enrichment analysis (FGSEA) method
for efficient estimation of GSEA P-values for a collection of pathways. The
method consist of two main procedures: FGSEA-simple and FGSEA-multi-
level. FGSEA-simple procedure allows to efficiently estimate P-values with
a limited accuracy but simultaneously for the whole collection of gene sets,
while FGSEA-multilevel procedure allows to accurately estimate arbitrarily
low P-values but for individual gene sets.

FGSEA-simple procedure is based on an idea that generated random gene
set samples can be shared between different input pathways. Indeed, consider
M gene sets of the sizes K1 6 K2 6 . . . 6 KM = K and a collection of n
independent samples gi of size K (Fig 1a). As in the naive approach, due
to gi being independent samples of the size K the P-value for the pathway
M can be estimated as a proportion of samples gi having the same or more
extreme ES value as the pathway M . However, for any other pathway j we
can construct a set of n independent samples of size Kj by considering the
prefixes gi,1..Kj

. Again, given a set of independent samples, the P-value can
be estimated as a proportion of the samples having the same or more extreme
ES value.

The next important idea is that given a gene set sample gi of the size K
the ES values for all the prefixes gi,1..j can be calculated in an efficient manner
using a square root heuristic (Fig 1b). Briefly, a variant of an enrichment
curve is considered: the genes are enumerated starting from the most up-
regulated to the most down-regulated, with the curve going to the right if
the gene is not present in the pathway, and the curve goes upward if the
gene is present in the pathway. It can be shown that the enrichment score

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

can be easily calculated if the most distant from the diagonal curve point
is known. Let us split K genes from the gene set into b ≈

√
K consecutive

blocks of size
√
K and consider what happens with the curve when we change

the prefix from gi,1..j−1 to gi,1..j by adding gene gi,j. The curve in the blocks
to the left of gi,j are not changed at all, while the blocks to the right of gi,j
are uniformly shifted. This observation allows us to consider the prefixes
in an increasing order and update the position of the most distant point
in O(

√
K) time. Briefly, for the each block which is either not changed or

shifted the update procedure takes O(1) time, while for the changed block
the update procedure is proportional to its size and takes O(

√
K) time.

Finally, aggregating the blocks takes additional O(
√
K) time. Overall this

results in time complexity of O(K
√
K) to calculate ES values for all the

prefixes. In total, the time complexity of the calculating P-values for the set
of M pathways is n(K

√
K + M), which gives around O(K logK√

K
) speed up

compared to a naive approach. The full description of the algorithm is given
in the section 2.3.

As an example we ran FGSEA-simple and the reference implementations
on the same example dataset of genes differentially regulated on Th1 acti-
vation [4] against a set of 700 Reactome [5] pathways (see section 2.2) and
compared the resulting nominal P-values (Fig 1c). Both methods were ran
with n = 10000 and the results are indistinguishable from each other up
to the random noise inherent to both methods. However, on this example
the reference implementation (version 4.0.1 has been used) took about 420
seconds, while FGSEA-simple finished in about 4 seconds. The two order of
magnitude speed-up is consistent with the theoretical one due to the algo-
rithm time complexity. Given a highly parallel implementation of FGSEA-
simple, its performance allows to routinely achieve nominal p-values on the
order of 10−5 and use standard procedures to correct for multiple hypothesis
testing, like Benjamini-Hochberg procedure, for thousands of gene sets.

However, accurately estimating P-values lower than 10−6 with FGSEA-
simple can be impractical or even infeasible. To estimate such low P-values
we developed FGSEA-multilevel method, which is based on an adaptive
multi-level split Monte Carlo scheme [6]. The method takes as an input
an ES value γ > 0 and a gene set size K, and calculates the probability
PK(ES > γ) of a random gene set of size K to have an enrichment score
no less than γ. The method sequentially finds ES levels li for which the
probability PK(ES > li) is approximately equal to 2−i (see Fig 2a for a toy
example). The method stops when li becomes greater than γ and the P-value

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

Figure 1: Preranked gene set enrichment analysis can be sped up by sharing
sampling information between different gene set sizes. a, It is sufficient to
generate n independent samples of size KM to calculate empirical distribution
for any sizes Kj 6 KM by considering only the prefix of the samples of the
size Kj. b, For a given gene sample enrichment scores for all the prefixes can
be efficiently calculated by employing a square root heuristic. The heuristic
allows to recalculate enrichment score after adding one gene to gene set in
time proportional to the square root of the gene set size. The enrichment
curve is split into O(

√
K) blocks such that one block (“redo”) containing

the added gene takes (O(
√
K) time to update and other blocks (“keep” and

“shift”) take O(1) time. c, The P-values calculated with the FGSEA-simple
method are consistent with the reference implementation, but the results are
obtained hundreds times faster.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

can be crudely approximated as 2−i.
The intermediate li thresholds are calculated as follows. First, a set of

Z (an odd number, parameter of the method) random gene sets of size K
are generated uniformly and ES values for them are calculated. The median
value of the ES values is calculated and assigned to l1. By construction, the
probability PK(γ > l1) of a random gene set to have an ES value no less
than l1 can be approximated as 1

2
. Next Z−1

2
generated gene sets with the

ES values less than l1 are discarded, while Z−1
2

gene sets with the ES values
greater than l1 are duplicated. This results in a sample of Z gene sets with
the ES values no less than l1, but the distribution is non-uniform. However,
it can be made into a uniform sample with a Metropolis algorithm. On each
Metropolis algorithm step each gene set sample is tried to be modified by
swapping a random gene from the set with a gene outside of the set. The
change is accepted if an enrichment score of the new set is no less then
current threshold l1, otherwise the change is rejected. Metropolis algorithm
guarantees, that after enough steps the sample becomes close to uniformly
distributed. Thus, a median of the enrichment scores (l2) would correspond
to probability of 1

2
for a gene set to have an enrichment score no less than l2

given it has an enrichment score no less than l1:

PK(ES > l2 | ES > l1) ≈
1

2
.

Which means
PK(ES > l2) ≈ 2−2.

The same procedure is applied to calculate the next li values.
The iterations stop when li becomes greater than γ. On this iteration the

probability of a random gene set to have a ES value no less than γ can be
approximated as:

1

2i−1
· #{samples with ES > γ}

Z
.

When estimating small P-values it becomes practical to carry out the
estimation in log-scale. In particular, the values become practically unbiased
both in median and mean sense and it becomes simple to estimate the error
(see section 2.5.4).

The full formal description of the algorithm is available in the section 2.5.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

For the example dataset we show that P-values are as low as 10−26 for
some of the pathways and the results are consistent with FGSEA-simple P-
values ran on 108 permutations (Fig 2b). Note, that FGSEA-multilevel cal-
culation with sample size of Z=101 took only 10 seconds working on a single
thread while 108 permutations on FGSEA-simple took 40 minutes working
in 32 threads.

To further prove the approximation quality of FGSEA-multilevel algo-
rithm we developed an exact method for calculating GSEA P-values, but
limited to integer weights. The method is based on dynamic programming,
the full description is given in section 2.4. The complexity of the algorithm
is O(NKT 2), where N is the number of genes, K is the size of gene sets and
T is the sum of the top K absolute values of gene-level statistics. With a
number of optimizations this method allows to calculate P-values for rounded
weights in the example dataset in a couple of hours.

When run on the same integer weights FGSEA-multilevel and the exact
method give highly concordant results (Fig 2c). Additionally, using the exact
P-values as a control real errors can be compared with the estimated ones.
We show, that the FGSEA-multilevel error estimation are highly concordant
with the real errors (Fig 2d) for a wide range of P-values (from 10−4 to
10−100), gene set sizes (from 15 to 250) and sample sizes (from 101 to 1001).

In practice FGSEA-multilevel method is combined with FGSEA-simple.
First, for all the input pathways FGSEA-simple method can be run with a
limited sample size. Next, for the pathways that have high relative error
after FGSEA-simple (i.e. pathways with low p-values) FGSEA-multilevel
method is executed. As many of the pathways in an input collection usually
are not enriched, they have a relatively high P-value and will be batch-
processed with a highly efficient FGSEA-simple algorithm with deterministic
time boundaries. The more interesting pathways with lower P-values will
then be processed with FGSEA-multilevel algorithm individually and the
amount of processing time will depend on their P-values.

Finally, as FGSEA allows to practically estimate the P-values for a large
collections of gene sets, it can lead to a large number of statistically significant
hits with high overlaps. To deal with this issue and make the representation of
FGSEA results more concise we developed a procedure to filter the redundant
gene sets. The procedure is similar to GO Trimming method [7] but is based
on the Bayesian network construction approaches. It considers the significant
pathways one by one and tries to remove gene sets that do not provide new
information given some other pathway already present in the output. In this

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

Figure 2: Adaptive multilevel Monte Carlo sampling scheme can be used to
calculate arbitrarily low P-values. a, A toy illustration of the multilevel split
Monte Carlo scheme for sample size of Z = 5. First, five uniformly random
gene sets are generated and the level l1 of ES is selected that corresponds to
P − value of 1

2
. Then five samples are iteratively modified with Metropolis

algorithm steps to obtain a uniform sample of gene sets with ES value greater
l1. Based on these samples, a threshold l2 is selected that corresponds to P-
value of 1

4
and so on. b, Comparison of GSEA P-values as calculated by

FGSEA-simple method run on 108 samples and FGSEA-multilevel with the
sample size of Z=101. c, Comparison of P-values as calculated with an exact
method and FGSEA-multilevel method. Both methods were run on gene-
level statistic values rounded to integers. d, Comparison between estimated
and an observed error of log2 P-values for different P-values (from 10−4 to
10−100), gene set sizes (from 15 to 250) and sample sizes (from 101 to 1001).

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

Figure 3: An example of FGSEA results as run with FGSEA-multilevel
method for Th0 vs Th1 comparison and Reactome pathways. The analy-
sis was run with samples size of 101. Redundant pathways were filtered.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

case, we consider a pathway P1 to give a new information given a pathway
P2 if the P-value of pathway P1 in the universe of genes from P2 or genes
outside of P2 is less than some threshold. This procedure allows to filter
redundant pathways without requirement of having any explicit hierarchy of
pathways. The full description of the procedure is given in section 2.6. The
table resulting from running FGSEA on the example dataset with filtering
of redundant hits is shown on Fig 3.

To conclude, here we present a method FGSEA for fast preranked gene set
enrichment analysis. The method allows to routinely estimate even very low
P-values and can be used with conjunction with standard multiple hypothe-
sis testing correction methods, such as Benjamini-Hochberg procedure. This,
in turn, allows to analyze even large collections of pathways which require a
very low nominal P-value for the pathway to remain significant after multi-
ple hypothesis testing correction. FGSEA method is freely available as an
R package at Bioconductor (http://bioconductor.org/packages/fgsea)
and on GitHub (https://github.com/ctlab/fgsea).

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

http://bioconductor.org/packages/fgsea
https://github.com/ctlab/fgsea
https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

2 Methods

2.1 Formal definitions

The preranked gene set enrichment analysis takes as input two objects: an
array of gene-level statistic values S for the genes U = {1, 2, . . . , N} and a
list of query gene sets (pathways) P . The goal of the analysis is to determine
which of the gene sets from P has a non-random behavior.

The statistic array S of the size |S| = N for each gene i ∈ U contains a
value Si ∈ R that characterizes the gene behavior in a considered biological
process. Commonly, if Si > 0 the expression of gene i goes up on treatment
compared to control and Si < 0 means that the expression goes down. Ab-
solute values |Si| represent magnitude of the change. Array S is sorted in
a decreasing order: Si > Sj for i < j. The value of N in practice is about
10000–20000.

The list of gene sets P = {P1, P2, . . . , PM} of length M usually contains
groups of genes that are commonly regulated in some biological process.
We assume that the gene sets Pi are ordered by their size (denoted as Ki):
K1 6 K2 6 . . . 6 KM = K. Usually only relatively small gene sets are
considered with K ≈ 500 genes.

To quantify a co-regulation of genes in a gene set p Subramanian et al.[1]
introduced a gene set enrichment score function sr(p) that uses gene rankings
(values of S). The more positive is the value of sr(p) the more enriched the
gene set is in the positively-regulated genes (with Si > 0). Accordingly,
negative sr(p) corresponds to enrichment in the negatively regulated genes.

Value of sr(p) can be calculated as follows. Let k = |p|, NS = Σi∈p|Si|.
Let also ES be an array specified by the following formula:

ESi =

0 if i = 0,

ESi−1 + 1
NS
|Si| if 1 6 i 6 N and i ∈ p,

ESi−1 − 1
N−k if 1 6 i 6 N and i 6∈ p.

The value of sr(p) corresponds to the largest by the absolute value entry of
ES:

sr(p) = ESi∗ , where i∗ = arg max
i
|ESi|.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

For convenience, we also introduce the following notation:

s+r (p) = ESi+ , i+ = arg max
i

ESi,

s−r (p) = ESi− , i− = arg min
i

ESi.

From these two values it easy to find value of sr(p), which is equal to s+r (p)
if |s+r (p)| > |s−r (p)| or s−r (p) otherwise.

Often we will consider only the positive values of the gene set enrichment
score function since:

∀p ∈ P, sr(p) = −s′r(p′),

where p′ = (p′1, p
′
2, ..., p

′
k) = (N − p1 + 1, N − p2 + 1, ..., N − pk + 1) and s′r

corresponds to the gene set enrichment score function for array S ′ such that
S ′i = SN−i+1.

Next, following Subramanian et al for a pathway p we define GSEA P-
value as:

Pvalue(p) =

{
Pk(sr(q)>sr(p))
Pk(sr(q)>0)

if sr(p) > 0,
Pk(sr(q)6sr(p))
Pk(sr(q)60)

if sr(p) < 0,

where q is a random gene set of size k.

2.2 The example data

As the example ranking we used Th0 vs Th1 comparison from dataset GSE14308 [4].
The differential expression was calculated using limma [8]. Only top 12000
genes by mean expression were used. Limma t-statistic was used as gene-
level statistic. The script to generate rankings is available on GitHub: https:
//github.com/ctlab/fgsea/blob/master/inst/gen_gene_ranks.R.

Reactome [5] database was used as an example collection via reactome.db
R package. For the analysis only the pathways of the size from 15 to 500
were used. The script to generate pathway collection is available on GitHub:
https://github.com/ctlab/fgsea/blob/master/inst/gene_reactome_pathways.

R

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://github.com/ctlab/fgsea/blob/master/inst/gen_gene_ranks.R
https://github.com/ctlab/fgsea/blob/master/inst/gen_gene_ranks.R
https://github.com/ctlab/fgsea/blob/master/inst/gene_reactome_pathways.R
https://github.com/ctlab/fgsea/blob/master/inst/gene_reactome_pathways.R
https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

2.3 FGSEA-simple: an algorithm for fast calculation
of GSEA P-values simultaneously for many path-
ways

In this section we describe an algorithm for fast estimation of GSEA P-values
simultaneously for a collection of pathways P . There, for each pathway p a
set of n uniformly random gene sets qi are considered. Then P-value is
estimated as:

#{qi | sr(qi) > sr(p)}+ 1

#{qi | sr(qi) > 0}+ 1

for positively enriched pathway p and as:

#{qi | sr(qi) 6 sr(p)}+ 1

#{qi | sr(qi) 6 0}+ 1

for negatively enriched pathway. These two formulas follow Subramanian
et al. implementation, except of +1 terms, which are recommended by Phip-
son and Smyth [9]. Otherwise, the nominal P-values from FGSEA-simple
and reference implementation are indistinguishable, however FGSEA-simple
works orders of magnitude faster.

2.3.1 Cumulative statistic calculation for the mean statistic

Let first describe the idea of the proposed algorithm on a simple mean statis-
tic sm:

sm(p) =
1

|p|
Σi∈pSi.

The main idea of the algorithm is to reuse sampling for different query
gene sets. This can be done due to the fact that for an estimation of null
distributions samples have to be independent only for a specific gene set size,
while they can be dependent between different sizes.

Instead of generating nM independent random gene sets: n for each of
M input gene sets, we will generate only n random gene sets of size K. Let
πi be an i-th random gene set of size K. From that gene set we can generate
gene sets for a all the query pathways Pj by using its prefix: πi,j = πi[1..Kj].

The next step is to calculate the enrichment scores for all gene sets πi,j.
Instead of calculating enrichment scores separately for each gene set we will

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

calculate simultaneously scores for all πi,j for a fixed i. Using a simple pro-
cedure it can be done in Θ(K) time.

Let us find enrichment scores for all prefixes of πi. This can be done by
element-wise dividing of cumulative sums array by the length of the corre-
sponding prefix:

sm(πi[1..k]) =
1

k
Σi∈πi[1..k]Si.

Selecting only the required prefixes takes an additional Θ(m) time.
The described procedure allows to find P-values for all query gene sets in

Θ(n(K +m)) time. This is about min(K,m) times faster than the straight-
forward procedure.

2.3.2 Cumulative statistic calculation for enrichment score

For the enrichment score Sr we use the similar idea as above: we will also be
sampling only gene sets of size K and from that sample will calculate statistic
values for all the other sizes. However, calculation of the cumulative statistic
values for the subsamples is more complex in this case. In this section we
only be considering the positive mode of enrichment statistic s+r .

It is helpful to look at enrichment score from a geometric point of view.
Let us consider for a pathway p of size |p| = k a graph of N+1 points (Fig. 4)
with the coordinates (xi, yi) for 0 6 i 6 N such that:

(x0, y0) = (0, 0), (1)

xi = xi−1 + [i 6∈ p], ∀i ∈ 1..N, (2)

yi = yi−1 + [i ∈ p] · |Si| ∀i ∈ 1..N. (3)

The calculation of s+r corresponds to finding the point farthest up from
a diagonal ((x0, y0), (xN , yN)). Indeed, it is easy to see that xN = N − |p| =
N − k and yN = Σj∈p|Sj| = NS, while the individual enrichment scores ESi
can be calculated as ESi = 1

NS
yi − 1

N−kxi. Value of ESi is proportional to
the directed distance from the line going through (x0, y0) and (xN , yN) to the
point (xi, yi).

Let us fix a sample π of size K. To efficiently calculate cumulative values
s+r (π[1..k]) for all k 6 K we need a fast method of updating the farthest
point when a new gene is added. In that case we can add genes from π
one by one and calculate values s+r (π[1..k]) from the corresponding maximal
distances.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

0

100

200

300

400

0 2500 5000 7500 10000 12500
rank

st
at

Figure 4: A graph that corresponds to a calculation of enrichment score.
Each breakpoint on a graph corresponds to a gene present in the pathway.
Dotted lines cross at a point which is the farthest up from a diagonal (dashed
line). This point correspond to gene i+, where the maximal value of ESi is
reached

Because we are calculating values for π[1..k] for k 6 K we know in ad-
vance which K genes will be added. This allows us to consider K + 1 points
instead of N +1 for each iteration k. Let array o of size K contain the sorted
order of genes in π: that is, πo1 is the minimal among π, πo2 is the second
minimal and so on. The coordinates can be calculated as follows:

(xk0, y
k
0) = (0, 0), (4)

xki = xki−1 + πoi − πoi−1
− [oi 6 k] , ∀i ∈ 1..K, (5)

yki = yki−1 + [oi 6 k] · |Soi|, ∀i ∈ 1..K, (6)

where we set πo0 to be zero.
It can be shown that finding the farthest up point among (4)–(6) is equiv-

alent to finding the farthest up point among (1)–(3) with (xki , y
k
i) being equal

to (xπoi , yπoi) calculated for p = π[1..k]. Consider xπoi − xπoi−1
. By the defi-

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

nition of x it is equal to:

xπoi − xπoi−1
=

πoi∑
j=1

[j 6∈ π[1..k]]−
πoi−1∑
j=1

[j 6∈ π[1..k]] =

πoi∑
j=πoi−1+1

[j 6∈ π[1..k]] =

πoi − πoi−1
−

πoi∑
j=πoi−1+1

[j ∈ π[1..k]].

By the definition of o, in the interval [πoi−1
+ 1, πoi−1] there are no genes

from π and, thus, from π[1..k]. Thus we can replace the sum with its last
member:

xπoi − xπoi−1
= πoi − πoi−1

− [πoi ∈ π[1..k]] = πoi − πoi−1
− [oi 6 k].

We got the same difference as in (5).
Now consider yπoi − yπoi−1

. By the definition of y it is equal to:

yπoi−yπoi−1
=

πoi∑
j=1

[j ∈ π[1..k]]·|Sj|−
πoi−1∑
j=1

[j ∈ π[1..k]]·|Sj| =
πoi∑

j=πoi−1+1

[j ∈ π[1..k]]·|Sj|.

Again, in the interval [πoi−1
+ 1, πoi − 1] there are no genes from π[1..k].

Thus we can replace the sum with only the last member:

yπoi − yπoi−1
= [πoi ∈ π[1..k]] · |Soi| = [oi 6 k] · |Soi|.

We got the same difference as in (6).
We do not need to consider other points, because points from oi−1 to oi−1

have the same y coordinate and oi−1 is the leftmost of them. Thus, when at
least one gene is added the diagonal ((x0, y0), (xN , yN)) is not horizontal and
oi−1 is the farthest point among oi−1, . . . , oi − 1.

Now let consider what happens with the enrichment score graph when
gene πk is added to the query set π[1..k − 1] (Fig. 5). Let rk be a rank of
gene πk among genes π, then coordinate of points (xi, yi) for i < rk do not
change, while all (xi, yi) for i > rk are changed on (∆x,∆y) = (−1, |Sπk |).

To make fast incremental updates we will decompose the problem into
multiple smaller ones. For simplicity we assume that K+1 is an exact square
of an integer b. Let split K + 1 points into b consecutive blocks of the size b:
{(xk0, yk0), ..., (xkb−1, y

k
b−1)}, {(xkb , ykb), ..., (xk2b−1, y

k
2b−1)} and so on.

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

0

100

200

300

400

0 500 1000 1500 2000 2500
rank

st
at

Figure 5: Update of an enrichment score graph when gene πk ≈ 800 is
added. Only a fragment is shown. Black graph corresponds to a graph for
gene set π[1..k − 1], gray graph corresponds to π[1..k]. A part of the graph
to the left of x = xrk does not change and the other part is shifted to the
top-left corner. The diagonal ((x0, y0), (xN , yN)) is rotated counterclockwise.

For each of b blocks we will store and update the farthest up point from
the diagonal. When we know for each block its farthest point we can find
the globally farthest point by a simple pass in O(b) time.

Next, we show how to update the farthest points in blocks in amortized
time O(b). This taken together with one O(b) pass will get us an algorithm
to update the globally farthest point in amortized O(b) time.

Below we use c = brk/bc as an index of a block where gene πk belongs,
where rk is the ranking of the genes from π, i.e. roi = i.

First, we describe the procedure to update point coordinates. We will
store xi coordinates using two vectors: B of size b and D of size K + 1, such
that xi = Bi/b+Di. When gene πk is added all xi for i > rk are decremented
by one. To reflect this we will decrement all Bj for j > c and decrement
all Di for rk 6 i < cb. The update takes O(b) time. After this update
procedure we can get value xi in O(1) time. The same procedure is applied
for y coordinates.

Second, for each block we will maintain an upper part of its convex hull.
Having convex hull is useful because the farthest point in block always lays

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

on its convex hull. All blocks except c have the points either not changed or
shifted simultaneously on the same value. That means that the lists of points
on the convex hulls for these blocks remain unchanged. For the block c we
can reconstruct convex hull from scratch using Graham scan algorithm [10].
Because the points are already sorted by x coordinate, this reconstruction
takes O(b) time. In total, it takes O(b) time to update the convex hulls.

Third, the farthest points in blocks can be updated using the stored
convex hulls. Consider a block where the convex hull was not changed (every
block except, possibly, block c). Because diagonal always rotates in the same
counterclockwise direction, the farthest point in block on iteration k either
stays the same or moves on the convex hull to the left of the farthest point
on the (k−1)-th iteration. Thus, for each such block we can compare current
farthest point with its left neighbor on the convex hull and update the point
if necessary. It is repeated until the next neighbor is closer to the diagonal
than the current farthest point. In the block c we just find the farthest point
in a single pass by the points on the convex hull.

To show that the updating the farthest points takes O(b) amortized time
we will use potential method. Let a potential after adding k-th gene Φk be
a sum of relative indexes of the farthest points for all the blocks. As there
are b blocks of size b the sum of relative indexes lies between 0 and b2. Thus,
Φk = O(b2). For an update of all b − 1 blocks except c we need to make
tk = b− 1 + z operations of comparing two points, where z is the number of
times the farthest points were updated. This can take up to Θ(b2) time in
the worst case. However, it can be noticed, that potential change Φk −Φk−1
is equal to −z +O(b): the sum of indexes is decreased by a number of times
the farthest points were updated plus O(b) for the block c where the index
can go from 0 to b− 1. This gives an amortized cost of k-th iteration to be
ak = tk + Φk − Φk−1 = b − 1 + z − z + O(b) = O(b). The total real cost of
K iterations is

∑K
k=1 ak + Φ0−ΦK = O(Kb) +O(b2) = O(Kb), which means

amortized cost of one iteration to be O(b).
Taken together the algorithm allows to find all cumulative enrichment

scores sr(π[1..k]) in O(Kb) = O(K
√
K) time. The straightforward imple-

mentation of calculating cumulative values from scratch would takeO(K2 logK)
time. Thus, we have improved the performance O(K logK√

K
) times.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

2.3.3 Implementation details

We also implemented an optimization so that the algorithm does not build
convex hull from scratch for a changed block c, but only updates the changed
points. This does not influence the asymptotic performance, but decreases
the constant factor.

First, we start updating the convex hull from position rk and not from the
start. To be able to do this, we have an array prev that for each gene g ∈ π
stores the previous point on the convex hull if g were the last gene in the
block. This actually is the same as the top of the stack in Graham algorithm
and represent the algorithms state for any given point. As all points h to the
left of g are not changed prevh also remains unchanged and need not to be
recalculated.

Second, we stop updating the hull, when we reach the point on the previ-
ous iteration convex hull. We can do this because every point to the left of g
is rotated counterclockwise of any point to the right of g, which means that
the first point on the convex hull right of g on (k − 1)-th iteration remains
being a convex hull point at k-th iteration.

2.4 An algorithm for exact calculation of GSEA P-
values for integer gene-level statistics

In this section we describe a polynomial algorithm to calculate GSEA P-value
exactly, but only for the case when gene-level statistics are integer numbers:
Si ∈ Z. For simplicity we will consider a problem of calculating the following
probability:

P
(
s+r (q) > γ

)
,

where q is a random gene set of size k. We also assume γ > 0.
Let denote the sum of k largest absolute values of gene ranks by T . The

algorithm will be polynomial in terms of N , k and T .

2.4.1 The basic algorithm

Let us consider a gene set q = {q1, q2, . . . , qk}. Recall the formula for s+(q):

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

s+(q) = ESi+ , where i+ = arg max
i

ESi,

ESi =

0, if i = 0,

ESi−1 + 1
NS
|Si|, if 1 6 i 6 N and i ∈ q,

ESi−1 − 1
N−k , if 1 6 i 6 N and i /∈ q.

First, let rewrite the formula for ESi in an equivalent fashion, grouping
positive and negative summands:

ESi = 1
NS

(
i∑

j=1

[j ∈ q]|Sj|)− 1
N−k (i−

i∑
j=1

[j ∈ q]).

Then for calculating ESi the following values are sufficient:

• i: the index of the current gene;

• c =
i∑

j=1

[j ∈ q]: the number of genes included into the set q among genes

1..i;

• s =
i∑

j=1

[j ∈ q]|Sj|: the sum of the absolute values of gene-level statistics

for genes included in the set among genes 1..i;

• NS =
N∑
j=1

[j ∈ q]|Sj|: the sum of the absolute values of gene-level statis-

tics for all genes in the set.

Knowing the values above, ESi can be calculated as ESi = s
NS
− i−c

N−k .
Notice that NS can take only integer values from 0 to T (for a set of

genes with the largest absolute values of gene-level statistics). Let us split
the desired probability to a sum of independent probabilities based on the
value of NS:

P (s+(q) > γ) =
T∑

NS=0

P

((∑
j∈q
|Sj| = NS

)
∧ (s+(q) > γ)

)
.

Our algorithm will be based on dynamic programming. For each possible
value of NS we will process the genes one by one in increasing order of index
and calculate an array fNS(i, c, s). The value fNS(i, c, s) will contain the
probability for a uniformly random gene set q′ of c genes selected from genes
1..i to simultaneously have the following two properties:

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

1. the sum of the absolute values of gene-level statistics of genes from q′

is equal to s;

2. ESj < γ holds for all j 6 i, where the values of ES are calculated for
the gene set q′ but using the selected values of NS and k, not the ones
calculated for the set q′.

Suppose that we have calculated all values of fNS(i, c, s), then

P

((∑
j∈q
|Sj| = NS

)
∧ (s+(q) < γ)

)
= fNS(N, k,NS)

and

P (s+(q) < γ) =
T∑

NS=0

fNS(N, k,NS).

Finally, the sought probability is equal to:

P (s+(q) > γ) = 1− P (s+(q) < γ) = 1−
T∑

NS=0

fNS(N, k,NS).

Let us find a formula for fNS(i, c, s). The base case of dynamic program-
ming is i = 0 for all NS:

fNS(0, c, s) =

{
1, if c = s = 0,

0, otherwise.

Suppose we want to calculate fNS(i, c, s) for some i > 0. First, calculate

ESi = s
NS
− i−c

N−k

and compare it to γ. If ESi > γ, then fNS(i, c, s) = 0 by definition.
Otherwise, condition “ESj < γ holds for all j 6 i” can be simplified to

“ESj < γ holds for all j 6 i − 1”. This observation allows us to use values
of f that have already been calculated. Consider two cases:

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

1. Gene i does not belong to the set q′. As q′ is a set of c genes chosen
uniformly at random from i genes, this case happens with the proba-
bility i−c

i
. The conditional probability that such set satisfies the two

necessary properties is fNS(i − 1, c, s). Indeed, any set of size c with
the sum of absolute values of gene-level statistics values equal to s,
chosen among genes 1..i − 1 and satisfying the conditions on ES, is a
valid set chosen among genes 1..i. Similarly, if a set does not satisfy
the condition on ESj for some j 6 i− 1, this set should not be counted
towards fNS(i, c, s) since obviously j 6 i.

2. Gene i belongs to the set. This case happens with the probability
c
i
. The probability that this set satisfies the necessary conditions is
fNS(i − 1, c − 1, s − Si). Indeed, any set of size c − 1 with the sum of
absolute values of gene-level statistics equal to s − Si, chosen among
genes 1..i−1 and satisfying the conditions on ES, can be extended with
gene i, thus forming a set of size c satisfying both necessary properties.
Similarly, if a set does not satisfy the condition on ESj for some j 6
i− 1, adding gene i will not fix the situation.

Then we can calculate fNS(i, c, s) using the law of total probability:

fNS(i, c, s) =
i− c
i
fNS(i− 1, c, s) +

c

i
fNS(i− 1, c− 1, s− Si),

in the case when i > 0 and ESi < γ.
Putting all the cases together, we arrive to the final formula for fNS(i, c, s):

fNS(i, c, s) =

1, if i = c = s = 0,

0, if i = 0 and either c 6= 0 or s 6= 0,

0, if i > 0 and s
NS
− i−c

N−k > s+(p),
i−c
i
fNS(i− 1, c, s)+

c
i
fNS(i− 1, c− 1, s− Si), otherwise.

The overall complexity of the algorithm is O(NkT 2). The values of f can
be evaluated sequentially in increasing order of i. It is enough to evaluate
fNS(i, c, s) for 0 6 i 6 N , 0 6 c 6 k, and 0 6 s 6 NS 6 T . Each value of f
can be evaluated in constant time.

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

2.4.2 Optimizations and implementation details

While the algorithm described above is polynomial, a number of further
optimizations are required to make execution on real size inputs feasible.

First, let note that the following property holds: fNS2(i, c, s) > fNS1(i, c, s)
as long as NS2 > NS1. Indeed, ES values calculated using different values of
NS are decreasing when NS is increased. That means all gene sets counted
towards fNS1(i, c, s) should also be counted towards fNS2(i, c, s) if NS2 > NS1.

Following the observation above, instead of calculating values of fNS(i, c, s)
we will consider the values g(i, c, s, b) = fb+1(i, c, s)− fb(i, c, s). These values
will contain the probability of a random gene set q of size k selected uniformly
from genes 1..N to satisfy simultaneously the following three properties:

1. set q contains exactly c genes from the genes 1..i.

2. the sum of the absolute values of gene-level statistics of the first c genes
from q is equal to s;

3. ESj < γ holds for all j 6 i, where the values of ES are calculated for
the gene set q using NS = b+ 1 (and for all higher values of NS);

4. ESj > γ holds for at least one j 6 i, where the values of ES are
calculated for the gene set q using NS = b (and for all lower values of
NS).

The sought probability can be calculated from values of g as follows:

P (s+(q) > γ) = 1− P (s+(q) < γ) = 1−
T∑

NS=0

NS∑
b=0

g(N, k,NS, b).

To calculate the values of g we will use the forward dynamic program-
ming algorithm. In this algorithm we expand a tree of reachable dynamic
programming states, starting from g(0, 0, 0, 0) which is equal to 1.

The states will be considered by “levels” in an increasing order of i. The
values g(i + 1, c, s, b) from (i + 1)-th level are calculated based on level i.
Note, that the sum of values on i-th level is always equal to 1.

To calculate all values from the (i + 1)-th level all non-zero values from
the i-th level are considered sequentially. Let consider state (i, c, s, b) and let
define p = (k− c)/(N − i) – the probability that gene i+ 1 will be added to
the set. The corresponding set G(i, c, s, b) can be divided into two groups.

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

1. The gene sets from G(i, c, s, b) that do not include gene i + 1. These
gene sets are included into gene sets G(i + 1, c, s, b) on the level i + 1.
Thus the corresponding probability g(i, c, s, b) · (1− p) is added to the
value of g(i+ 1, c, s, b).

2. The gene sets from G(i, c, s, b) that do include gene i + 1. These gene
sets are included into G(i + 1, c + 1, s′ = s + |Si+1|, b′) where b′ is
an updated bound. To calculate b′ let note that ESj will be greater

or equal to γ iff s′

NS
− (i+1)−(c+1)

N−k > γ which is equivalent to NS 6

s′
i−j
N−k

+γ
. Thus b′ = max

(
b,

⌊
s′

i−j
N−k

+γ

⌋)
The probability that is added to

g(i+ 1, c+ 1, s′, b′) is equal to g(i, c, s, b) · p.
While the asymptotic number of states remains to be O(NkT 2) the for-

ward dynamic programming allows to consider only “reachable” gene stats
with g(i, c, s, b) > 0. In practice the number of reachable stats can be several
orders of magnitude smaller then the total states.

Furthermore, for the algorithm we can consider only states with g(i, c, s, b) >
ε to be reachable for some small value of ε. If we do not consider the un-
reachable states we would not be able to calculated the desired probability
exactly. However, if we calculate the value of δ as a sum of all the skipped
states values, the desired probability will be calculated with the absolute
error no more than δ.

The algorithm implementation with few other optimizations is available
at: https://github.com/ctlab/fgsea/blob/master/inst/exact/exact.

cpp.

2.5 FGSEA-multilevel: an algorithm for calculation of
arbitrarily low P-values using adaptive multilevel
split Monte Carlo scheme

In this section we describe FGSEA-multilevel algorithm that can accurately
estimate GSEA P-value for a pathway p of size k even when the true P-value
is very small.

Let γ = sr(p) > 0 be the enrichment score of the query pathway p for
which we want to calculate the following value:

P (sr (q) > γ)

P (sr (q) > 0)
,

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://github.com/ctlab/fgsea/blob/master/inst/exact/exact.cpp
https://github.com/ctlab/fgsea/blob/master/inst/exact/exact.cpp
https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

where q is a random gene set of size k. This probability can be rewritten as
follows:

P (sr (q) > γ)

P (sr (q) > 0)
=

P (s+r (q) > γ) · P
(
sr (q) > 0

∣∣ s+r (q) > γ
)

P (sr (q) > 0)
.

First, we focus on determining the probability P (s+r (q) > γ). This prob-
ability can be extremely small, so using a naive sampling gives a bad estima-
tion. We use the adaptive multilevel split Monte Carlo method [6] to solve
this problem.

To estimate the probability P (s+r (q) > γ) we split the enrichment scores
into levels 0 = l0 < l1 < . . . < lt = γ . Then we can define the following prob-
abilities:

P
(
s+r (q) > l1

∣∣ s+r (q) > l0
)

= α1,

P
(
s+r (q) > l2

∣∣ s+r (q) > l1
)

= α2,

. . .

P
(
s+r (q) > lt

∣∣ s+r (q) > lt−1
)

= αt.

Now the probability P (s+r (q) > γ) can be rewritten as
t∏
i=1

αi.

To estimate αi we can draw a sample {qi1, qi2, . . . , qiZ} of size Z from a
conditional distribution P

(
·
∣∣ s+r (q) > li−1

)
. Then

αi ≈
Zi
Z
,

where Zi is the number of elements in the set {qij | s+r (qij) > li}.
Below we show how levels li can be chosen and how to sample from the

corresponding conditional distributions.

2.5.1 Choosing the enrichment score levels

We propose to chose value for a level li as a median of the enrichment scores
for the qij sample. For simplicity Z is required to be an odd number.

Then the procedure for estimating probability P (s+r (q) > γ) consists of
repetition of the following steps:

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

1. On iteration i > 1 sample Z gene sets qij of size k from the distribution

P
(
·
∣∣ s+r (q) > li−1

)
.

2. Set the level l̃i to be equal to the median of values s+r (qji).

3. If l̃i > γ then stop the iterations and set li = γ and t = i, otherwise set
li = l̃i.

As a result, by construction, αi ≈ 1/2 for 1 6 i 6 t− 1. The value of αt
can be approximated as Zt/Z (which is always > 1/2). Together we get the
following expression for estimating the desired probability:

P
(
s+r (q) > γ

)
≈ 2−(t−1) · Zt

Z
.

2.5.2 The conditional sampling implementation

To generate a uniform sample qij from the conditional distribution P
(
·
∣∣ s+r (q) > li−1

)
we use the Metropolis algorithm.

First, we generate a sample q11, q
1
2, . . . , q

1
Z of size Z from the distribution

P(· | s+r (q) > l0). Since l0 = 0 and values of s+r are always non-negative it can
be done by generating a uniformly random subset of size k from the genes
{1, 2, . . . , N}.

Now let consider a sample qi−11 , qi−12 , . . . , qi−1Z ∼ P(· | s+r (q) > li−2) at a
step i > 1. The sample can be sorted in an increasing order of enrichment
score values: s+r (qi−1(1)) 6 s+r (qi−1(2)) 6 . . . 6 s+r (qi−1(Z)). Let d = dZ/2e. The level

li−1 is the median of the values s+r (qi−1j) and, thus, is equal to li−1 = s+r (qi−1(d)).

Let first populate qij in the following way:

qij =

{
qi−1(Z+1−j), if j < d,

qi−1(j) , otherwise.

This gives us a sample from the conditional distribution P
(
·
∣∣ s+r (q) > li−1

)
,

however it is not uniform.
To make the sample uniform we apply a number of the Metropolis algo-

rithm iterations. On each iteration for each gene set qij we apply the following
steps:

1. Choose a random gene g ∈ qij.
2. Choose a random gene g′ /∈ qij.
3. Consider q̃ij = qij \{g}∪{g′}. If s+r (q̃ij) > li−1 then we replace qij with q̃ij.

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

The iterations are repeated until the total number of successful replace-
ments becomes greater or equal to k · Z. In practice, this number of steps
is enough to get a sufficiently uniform sample to obtain a good estimation
of probability, without a significant increase in the running time of the algo-
rithm.

2.5.3 Estimating the P-value

In order to estimate the desired P-value we also need to calculate the prob-
abilities P (sr (q) > 0) and P (sr (q) > 0 | s+r (q) > γ).

To calculate the probability P (sr (q) > 0) we generate gene sets q1, q2, ..., qZ′ ,
where each sample qi is selected uniformly at random from all the subsets of
size k from the set {1, 2, . . . , N}. The samples are generated until the num-
ber of samples qi with sr(qi) > 0 becomes equal to Z. Then the probability
P (sr (q) > 0) is estimated as follows

P (sr (q) > 0) ≈ Z

Z ′
.

To determine the remaining probability P (sr (q) > 0 | s+r (q) > γ) we cal-
culate the number of gene sets in {qtj | s+r (qtj) > γ} with value of the enrich-
ment score function sr is greater than zero. After that, the probability can
be estimated as follows:

P
(
sr (q) > 0 | s+r (q) > γ

)
≈

#{qtj | s+r (qtj) > γ ∧ sr(qtj) > 0}
#{qtj | s+r (qtj) > γ}

.

2.5.4 Estimating log-probability

To properly estimate a logarithm of the desired probability let note that
the j-th order statistic of a standard uniform sample of size Z is a random
variable from the beta distribution Beta (j, Z + 1− j). Therefore, we can
use the properties of the beta distribution and make correct transition to the
logarithm of probability. So for the median value of sample of odd size Z we
have:

E [logαi] = ψ

(
Z + 1

2

)
− ψ (Z + 1) for i ∈ {1, 2, . . . t− 1},

where ψ is digamma function. In the same way, we can calculate the expec-
tation of the logarithm αt:

E [logαt] = ψ (Zt + 1)− ψ (Z + 1) .

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

Then the logarithm of probability P (s+r (q) > γ) is estimated as

log P
(
s+r (q) > γ

)
≈ (t−1)·

(
ψ

(
Z + 1

2

)
− ψ (Z + 1)

)
+ψ (Zt + 1)−ψ (Z + 1) .

Similarly, we can estimate the variance of the estimates var [logαi] =
ψ1

(
Z+1
2

)
− ψ1 (Z + 1), where ψ1 is trigamma function. From this we can

approximate a standard error of our estimator as:

sd =

√
t ·
(
ψ1

(
Z + 1

2

)
− ψ1 (Z + 1)

)
.

The same approach with digamma functions is used to calculate the log-
arithm of the probabilities P (sr (q) > 0 | s+r (q) > γ) and P (sr (q) > 0).

2.5.5 Comparison with the exact method

To compare FGSEA-multilevel and the exact method on the same dataset
we used rounded values of the gene-level statistics from the example data
(section 2.2) as input data for both algorithms. Both algorithms calculated
the probability P (s+r (q) > γ).

The results of the algorithms for the pathways from the example data
are shown on Fig 2c. The exact algorithm was run with ε = 10−40, all the
probabilities were obtained with accuracy of at least six significant digits.
For FGSEA-multilevel Z = 101 was used.

We also calculated empirical estimation errors and compared it to the
theoretical ones (Fig 2d). For this we generated 100 independent estimates
for a range of ES values (corresponding to P-values of 10−4 to 10−100, gene
set sizes (from 15 to 250) and sample size (from 101 to 1001). The raw values
are available in the Supplementary Table.

2.6 Filtering redundant pathways

In this section we describe an algorithm to filter redundant pathways from
the results of FGSEA.

Let consider two pathways p1 and p2 that both have a significant GSEA
P-value. There are two situations in which we will consider p2 to be non-
redundant given p1:

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

1. If pathway p2 is enriched even if we do not consider the genes from
p1 at all. Formally, we calculate GSEA P-value for gene set p2 \ p1
and gene-level statistics vector S[U \ p1] for all the genes except p1.
If the P-value is less than a pre-defined threshold, then pathway p2 is
considered as non-redundant given p1.

2. If pathway p2 is enriched even if we consider only genes from p1. For-
mally, we calculate GSEA P-value for gene set p2 ∩ p1 and gene-level
statistics vector S[p1] for the genes from p1. Again, if the P-value is
less than a pre-defined threshold, then pathway p2 is considered as
non-redundant given p1.

Otherwise pathway p2 is considered to be redundant.
The filtering procedure starts with a set of significantly enriched pathways

Psig selected by the user: for example the pathways with GSEA P-values
less than 0.01 after Benjamini-Hochberg correction, sorted by P-value. The
output of the procedure is a list Pmain ⊂ Psig of pathways that are pairwise
non-redundant. At the same time, all the other pathways Pred = Psig \Pmain
are redundant given some pathway from Psig.

The procedure itself is similar to Sieve of Eratothenes algorithm. The
pathways are considered one by one and some of them are marked as redun-
dant. For a pathway p we first check if it is already marked as redundant,
if yes, we go to the next pathway. Otherwise, we first run FGSEA-simple
algorithm on a vector of statistics S[U \ p] and all the pathway currently not
marked as redundant (including the ones that already have been considered,
but excluding pathway p). Then, similarly, we run FGSEA-simple algorithm
on a vector of statistics S[p]. Pathways that do not achieve non-redundant
P-value threshold in both tests are marked as redundant.

References

[1] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukher-
jee, Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L
Pomeroy, Todd R Golub, Eric S Lander, and Jill P Mesirov. Gene
set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy
of Sciences of the United States of America, 102(43):15545–50, 2005.

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

[2] G. Yu, L. G. Wang, G. R. Yan, and Q. Y. He. DOSE: an R/Bioconductor
package for disease ontology semantic and enrichment analysis. Bioin-
formatics, 31(4):608–609, Feb 2015.

[3] L. Varemo, J. Nielsen, and I. Nookaew. Enriching the gene set analysis
of genome-wide data by incorporating directionality of gene expression
and combining statistical hypotheses and methods. Nucleic Acids Res.,
41(8):4378–4391, Apr 2013.

[4] Gang Wei, Lai Wei, Jinfang Zhu, Chongzhi Zang, Jane Hu-Li, Zhengju
Yao, Kairong Cui, Yuka Kanno, Tae-Young Roh, Wendy T Watford,
Dustin E Schones, Weiqun Peng, Hong-Wei Sun, William E Paul, John J
O’Shea, and Keji Zhao. Global mapping of H3K4me3 and H3K27me3
reveals specificity and plasticity in lineage fate determination of differ-
entiating CD4+ T cells. Immunity, 30(1):155–67, 2009.

[5] G Joshi-Tope, M Gillespie, I Vastrik, P D’Eustachio, E Schmidt,
B de Bono, B Jassal, G R Gopinath, G R Wu, L Matthews, S Lewis,
E Birney, and L Stein. Reactome: a knowledgebase of biological path-
ways. Nucleic acids research, 33(Database issue):D428–32, 2005.

[6] Zdravko I Botev and Dirk P Kroese. An efficient algorithm for rare-
event probability estimation, combinatorial optimization, and counting.
Methodology and Computing in Applied Probability, 10(4):471–505, 2008.

[7] S. G. Jantzen, B. J. Sutherland, D. R. Minkley, and B. F. Koop. GO
Trimming: Systematically reducing redundancy in large Gene Ontology
datasets. BMC Res Notes, 4:267, Jul 2011.

[8] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, and
G. K. Smyth. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Research, pages
gkv007–, 2015.

[9] Belinda Phipson and Gordon K Smyth. Permutation p-values should
never be zero: calculating exact p-values when permutations are ran-
domly drawn. Statistical applications in genetics and molecular biology,
9(1), 2010.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition, volume 7. 2001.

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/060012doi: bioRxiv preprint

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

	Main
	Methods
	Formal definitions
	The example data
	FGSEA-simple: an algorithm for fast calculation of GSEA P-values simultaneously for many pathways
	Cumulative statistic calculation for the mean statistic
	Cumulative statistic calculation for enrichment score
	Implementation details

	An algorithm for exact calculation of GSEA P-values for integer gene-level statistics
	The basic algorithm
	Optimizations and implementation details

	FGSEA-multilevel: an algorithm for calculation of arbitrarily low P-values using adaptive multilevel split Monte Carlo scheme
	Choosing the enrichment score levels
	The conditional sampling implementation
	Estimating the P-value
	Estimating log-probability
	Comparison with the exact method

	Filtering redundant pathways

