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Abstract

Gene set enrichment analysis (GSEA) is an ubiquitously used tool for evaluating
pathway enrichment in transcriptional data. Typical experimental design consists in
comparing two conditions with several replicates using a differential gene expression test
followed by preranked GSEA performed against a collection of hundreds and thousands
of pathways. However, the reference implementation of this method cannot accurately
estimate small P-values, which significantly limits its sensitivity due to multiple hy-
potheses correction procedure.

Here we present FGSEA (Fast Gene Set Enrichment Analysis) method that is able

to estimate arbitrarily low GSEA P-values with a high accuracy in a matter of minutes
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20 or even seconds. To confirm the accuracy of the method, we also developed an exact
21 algorithm for GSEA P-values calculation for integer gene-level statistics. Using the
22 exact algorithm as a reference we show that FGSEA is able to routinely estimate P-
23 values up to 1071 with a small and predictable estimation error. We systematically
24 evaluate FGSEA on a collection of 605 datasets and show that FGSEA recovers much
25 more statistically significant pathways compared to other implementations.

26 FGSEA is open source and available as an R package in Bioconductor (http://
27 bioconductor.org/packages/fgsea/) and on GitHub (https://github.com/ctlab/fgsea/).

» 1 Main

2o Preranked gene set enrichment analysis (GSEA) [1] is a widely used method for analyzing
30 gene expression data, particularly for datasets with small number of replicates. It allows to
;1 select from an a priori defined collection of pathways those which have non-random behavior
2 in a considered experiment (Fig la). The method uses an enrichment score (ES) statistic
;3 which is calculated based on a vector of gene-level signed statistics, such as t-statistic from
s a differential expression test. As the analytical form of the null distribution for the ES
35 statistic is not known, empirical null distribution has to be calculated. That can be done
36 in a straightforward manner by sampling random gene sets as was done in the reference
sz implementation [1| and reimplementations |2, 3|. In this case for each of the input pathways
s a number of random gene sets of the same size are generated, and for each of them an ES
30 value is calculated. Then a P-value is estimated as the number of random gene sets with
w0 the same or more extreme ES value divided by the total number of generated gene sets (a
s formal definition is available in the section 2.1). Finally, a multiple hypothesis correction
a2 procedure is applied to get adjusted P-values.

a3 However, a large number of generated random gene sets can be required to reach a

s given false discovery rate (FDR) level on some datasets. As an example, we calculated
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s GSEA P-values for Gene Ontology Biological Pathways collection (C5 BP subset of MSigDB
s collection [1]) on four datasets from Gene Expression Omnibus (GEO) varying the sampling
sz depth, and calculated the number of pathways reaching FDR level of 0.01 after Benjamini-
ss Hochberg (BH) correction. Due to the properties of BH procedure, the dependence of the
s number of significant pathways in these experiments has a phase transition behavior (Fig 1b):
so for each of the datasets there exist a certain critical sampling depth after which the number
s1 of significant pathways becomes non-zero and stays on the same level. This critical sampling
s depth is different for different datasets, but ultimately can reach the order of M/a, where «
s3 is the selected FDR threshold and M is the number of considered pathways.

54 To systematically asses the distribution of GSEA critical sampling depth on real datasets
ss we prepared a collection of 605 microarray datasets from Gene Expression Omnibus (GEO)
ss containing only two biological condistions. For each of these datasets we ran the differential
sz expression analysis and used the results as gene-level statistics. We discovered that more than
ss half of the datasets has the critical sampling depth of at least 10* and a noticeable portion
5o (10—20% depending on the collection) has the critical sampling depth of at least 10° (Fig 1c).
so When a large pathway collection is considered (entire MSigDB collection) individual datasets
1 has values of critical sampling depths reaching 5 - 106. However, even running the reference
2 implementation with the sampling depth of n = 10* routinely is inconvenient and running
63 it with n = 10° can be impossible due to the time and memory consumption (Fig 1d): time
ea and memory requirements grow linearly with the number of samples and the collection size.
65 To improve applicability of preranked GSEA analysis we present a fast gene set enrich-
s ment analysis (FGSEA) method for accurate and efficient estimation of GSEA P-values for
67 a collection of pathways. The method consist of two main procedures: FGSEA-simple and
es FGSEA-multilevel. FGSEA-simple procedure allows to efficiently estimate P-values with a
o limited accuracy but simultaneously for the whole collection of gene sets, while FGSEA-

70 multilevel procedure allows to accurately estimate arbitrarily low P-values but for individual
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71 gene sets.

72 FGSEA-simple procedure is based on an idea that generated random gene set samples
73 can be shared between different input pathways. Indeed, consider M gene sets of the sizes
7w K; < Ky <...< Ky = K and a collection of n independent samples g; of size K (Fig 2a).
75 As in the naive approach, due to g; being independent samples of the size K the P-value
76 for the pathway M can be estimated as a proportion of samples g; having the same or more
77 extreme ES value as the pathway M. However, for any other pathway j we can construct
7s a set of n independent samples of size K; by considering the prefixes g;1.r;. Again, given
70 a set of independent samples, the P-value can be estimated as a proportion of the samples
so having the same or more extreme ES value.

81 The next important idea is that given a gene set sample g; of the size K the ES values for
s2 all the prefixes g; 1 ; can be calculated in an efficient manner using a square root heuristic
ss (Fig 2b). Briefly, a variant of an enrichment curve is considered: the genes are enumerated
sa starting from the most up-regulated to the most down-regulated, with the curve going to
gs the right if the gene is not present in the pathway, and the curve goes upward if the gene is
ss present in the pathway. It can be shown that the enrichment score can be easily calculated if
g7 curve point most distant from the diagonal is known. Let us split K genes from the gene set
ss into b ~ /K consecutive blocks of size v/K and consider what happens with the curve when
s we change the prefix from g¢;; j_; to g;1.; by adding gene g; ;. The curve in the blocks to the
o left of g; ; are not changed at all, while the blocks to the right of g; ; are uniformly shifted.
o1 This observation allows us to consider the prefixes in an increasing order and update the
o2 position of the most distant point in O(v/K) time. Briefly, for the each block which is either
s not changed or shifted the update procedure takes O(1) time, while for the changed block the
o« update procedure is proportional to its size and takes O(\/E) time. Finally, aggregating the
o5 blocks takes additional O(v/K) time. Overall this results in time complexity of O(KvK)

o6 to calculate ES values for all the prefixes. In total, the time complexity of the calculating
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oz P-values for the set of M pathways is n(K+v/K + M), which gives around O(KI%) speed

os up compared to a naive approach. The full description of the algorithm is given in the

99 section 2.3.

100 As an example we ran FGSEA-simple and the reference implementations on the same
w1 example dataset of genes differentially regulated on Th1 activation [4] against a set of 700 Re-
w02 actome [5] pathways (see section 2.2) and compared the resulting nominal P-values (Fig 2c).
103 Both methods were ran with n = 10000 and the results are indistinguishable from each
w04 Other up to the random noise inherent to both methods. However, on this example the
105 reference implementation took about 420 seconds, while FGSEA-simple finished in about 4
s seconds. The two order of magnitude speed-up is consistent with the theoretical one due to
107 the algorithm time complexity. Given a highly parallel implementation of FGSEA-simple,
s its performance allows to routinely achieve sampling depth of 10° and accurately estimate
100 P-values as low as 107°.

110 However, accurately estimating P-values lower than 107° with FGSEA-simple can be
1 impractical or even infeasible. To estimate such low P-values we developed FGSEA-multilevel
12 method, which is based on an adaptive multi-level split Monte Carlo scheme [6]. The method
us takes as an input an ES value 7 > 0 and a gene set size K, and calculates the probability
us Pg(ES > 7) of a random gene set of size K to have an enrichment score no less than ~. The
us  method sequentially finds ES levels [; for which the probability Pk (ES > [;) is approximately
e equal to 27 (see Fig 3a for a toy example). The method stops when [; becomes greater than
17 v and the P-value can be crudely approximated as 27

118 The intermediate [; thresholds are calculated as follows. First, a set of Z (an odd number,
1o parameter of the method) random gene sets of size K are generated uniformly and ES values
120 for them are calculated. The median value of the ES values is calculated and assigned to ;.

121 By construction, the probability Pk (v > [;) of a random gene set to have an ES value no less

Z—1

5 generated gene sets with the ES values less than

122 than [; can be approximated as % Next
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123 [; are discarded, while % gene sets with the ES values greater than [; are duplicated. This
12 results in a sample of Z gene sets with the ES values no less than [y, but the distribution is
125 non-uniform. However, it can be made into a uniform sample with a Metropolis algorithm.
126  On each Metropolis algorithm step each gene set sample is tried to be modified by swapping
17 a random gene from the set with a gene outside of the set. The change is accepted if an
128 enrichment score of the new set is no less then current threshold [, otherwise the change is
120 rejected. Metropolis algorithm guarantees, that after enough steps the sample becomes close
130 to uniformly distributed. Thus, a median of the enrichment scores (l3) would correspond to
131 probability of % for a gene set to have an enrichment score no less than [, given it has an

132 enrichment score no less than [:

133 Which means

134 The same procedure is applied to calculate the next [; values.
135 The iterations stop when [; becomes greater than +. On this iteration the probability of

136 a random gene set to have a ES value no less than v can be approximated as:

1 #{samples with ES > ~}
9i—1 7 .

137 When estimating small P-values it becomes practical to carry out the estimation in log-
138 scale. In particular, the values become practically unbiased both in median and mean sense
139 and it becomes simple to estimate the approximation error and condifence intervals (see
uo section 2.5.4).

141 The full formal description of the algorithm is available in the section 2.5.
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142 For the example dataset we show that P-values are as low as 1072¢ for some of the path-
13 ways and the results are consistent with FGSEA-simple P-values ran on 10® permutations
us  (Fig 3b). Note, that FGSEA-multilevel calculation with sample size of Z=101 took only
s 10 seconds working on a single thread while 10® permutations on FGSEA-simple took 40
us Mminutes working in 32 threads.

147 To further prove the approximation quality of FGSEA-multilevel algorithm we developed
us an exact method for calculating GSEA P-values, but limited to integer weights. The method
ue 18 based on dynamic programming, the full description is given in section 2.4. The complexity
10 of the algorithm is O(NKT?), where N is the number of genes, K is the size of gene sets
151 and T is the sum of the top K absolute values of gene-level statistics. With a number of
152 optimizations this method allows to calculate P-values for rounded weights in the example
153 dataset in a couple of hours.

154 When run on the same integer weights FGSEA-multilevel and the exact method give
15 highly concordant results (Fig 3¢). Additionally, using the exact P-values, real approximation
156 errors can be compared with the estimated ones. We show, that the FGSEA-multilevel error
157 estimation are highly concordant with the real errors (Fig 3d) for a wide range of P-values
158 (from 107* to 1071%%), gene set sizes (from 15 to 250) and sample sizes (from 101 to 1001).

150 In practice FGSEA-multilevel method is combined with FGSEA-simple. First, for all the
10 input pathways FGSEA-simple method can be run with a limited sample size. Next, for the
11 pathways that have high relative error after FGSEA-simple (i.e. pathways with low p-values)
162 FGSEA-multilevel method is executed. As many of the pathways in an input collection
163 usually are not enriched, they have a relatively high P-value and will be batch-processed
e with a highly efficient FGSEA-simple algorithm with deterministic time boundaries. The
165 more interesting pathways with lower P-values will then be processed with FGSEA-multilevel
166 algorithm individually and the amount of processing time will depend on their P-values.

167 As FGSEA allows to practically estimate the P-values for a large collections of gene sets, it
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e can lead to a large number of statistically significant hits with high overlaps. To deal with this
160 issue and make the representation of FGSEA results more concise we developed a procedure
wo to filter the redundant gene sets. The procedure is similar to GO Trimming method [7]
i1 but is based on the Bayesian network construction approaches. It considers the significant
172 pathways one by one and tries to remove gene sets that do not provide new information given
173 some other pathway already present in the output. In this case, we consider a pathway P;
e to give a new information given a pathway P, if the P-value of pathway P; in the universe
s of genes just from P, or just from genes outside of P, is less than some threshold. This
176 procedure allows to filter redundant pathways without requirement of having any explicit
177 hierarchy of pathways. The full description of the procedure is given in section 2.6. The
17s  table resulting from running FGSEA on the example dataset with filtering of redundant hits
o 1s shown on Fig 3e.

180 Finally, we have explored FGSEA performance on the collection of 605 curated GEO
1s1  datasets described earlier and the C5 BP pathway collection. Notably, it took less then a
1.2 minute per dataset of running time to finish FGSEA analysis with the multilevel algorithm
183 (Fig 4a) on a laptop with 4-core Intel Core i5 processor, with a median time of 8 seconds.
1sa  Besides the multilevel algorithm, the same analysis was carried out with FGSEA-simple
185 algorithm with the sampling depth values of n = 103, 10* and 10°, and the reference imple-
s mentation (Broad GSEA) with the sampling depth of 10%. For all these methods we compared
1e7 the number of pathways reaching FDR level of 0.01: BH-adjusted P-values were used for
s FGSEA and reported Q-values (Broad Q-values) were used for the reference implementation
180 (Fig 4b). The results reiterate that even sampling depth of 10° is not enough to detect statis-
w0 tically significant enriched pathways for some of the datasets when BH-adjustment procedure
11 18 used.

192 The ad hoc procedure implemented in Broad GSEA aggregates ES values generated

103 across different pathways increasing the sensitivity on some of the datasets compared to BH-
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104 adjusted P-values for the same sampling depth of 10*, however this increase in sensitivity
105 comes with overall more conservative behavior. The total number of pathways reaching
196 FDR level of 0.01 for Broad Q-values is 39467, which is only 60% of 65690 pathways for
107 BH-adjustment P-values with the sampling depth of 10* and 48% of 81628 pathways for the
10s  multilevel algorithm. We further characterized this behavior by directly comparing Broad
100 Q-values with BH-adjusted P-values and have shown that Broad Q-values are individually
200 more conservative (Fig 4c¢) in a pathway size dependent manner (Fig 4d).

201 To conclude, here we have presented FGSEA method for fast preranked gene set enrich-
200 ment analysis. The method allows to routinely estimate even very low P-values and can be
203 used with conjunction with standard multiple hypothesis testing correction methods, such as
204 Benjamini-Hochberg procedure. This, in turn, leads to better sensitivity and the ability to
205 detect significant pathways in hard cases, where other implementations fail. FGSEA method
206 s freely available as an R package at Bioconductor (http://bioconductor.org/packages/fgsea)
20 and on GitHub (https://github.com/ctlab/fgsea).
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w 2 Methods

200 2.1 Formal definitions

210 The preranked gene set enrichment analysis takes as input two objects: an array of gene-level
211 statistic values S for the genes U = {1,2,..., N} and a list of query gene sets (pathways)
212 P. The goal of the analysis is to determine which of the gene sets from P has a non-random
213 behavior.

214 The statistic array S of the size |S| = N for each gene i € U contains a value S; € R
215 that characterizes the gene behavior in a considered biological process. Commonly, if S; > 0
216 the expression of gene ¢ goes up on treatment compared to control and S; < 0 means that
217 the expression goes down. Absolute values |S;| represent magnitude of the change. Array
ais S is sorted in a decreasing order: S; > S; for ¢ < j. The value of N in practice is about
210 10000-20000.

220 The list of gene sets P = {Py, P», ..., Py} of length M usually contains groups of genes
21 that are commonly regulated in some biological process. We assume that the gene sets P; are
222 ordered by their size (denoted as K;): K; < Ky < ... < Ky = K. Usually only relatively
223 small gene sets are considered with K ~ 500 genes.

224 To quantify a co-regulation of genes in a gene set p Subramanian et al|[1] introduced a
25  gene set enrichment score function s,(p) that uses gene rankings (values of S). The more
226 positive is the value of s.(p) the more enriched the gene set is in the positively-regulated
227 genes (with S; > 0). Accordingly, negative s,(p) corresponds to enrichment in the negatively
228 regulated genes.

220 Value of s,(p) can be calculated as follows. Let k = [p|, NS = ¥,c,[S5;|. Let also ES be

10
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230 an array specified by the following formula:

;

0 iti—0,
ES; = ES; 1 + 505 if1<i< Nandienp,
ES; 1 — 55  if1<i<Nandigp.

221 The value of s,.(p) corresponds to the largest by the absolute value entry of ES:
sr(p) = ES;+, where i* = arg max |ES,|.
i
For convenience, we also introduce the following notation:

st(p) = ES;+, it =arg max ES;,

r
(2

s, (p) = ES;-, i~ =argmin ES;.

7

222 From these two values it easy to find value of s,(p), which is equal to s (p) if |sF (p)| > |s, (p)|
233 or s, (p) otherwise.
234 Often we will consider only the positive values of the gene set enrichment score function

235 since:

VpeP, s.(p)=—s.00),

26 where p’ = (p},ph, .., 0}) = (N—=p1 + 1L, N —ps+1,..., N —p, + 1) and s/ corresponds to

237 the gene set enrichment score function for array S’ such that S, = Sy_;11.

238 Next, following Subramanian et al for a pathway p we define GSEA P-value as:
Bilsr(@)zsr(@)  4p o ( 0
Py (sr(q)>0 -(p) >0,
Pvalue(p) = k(er(9)20)
Py (sr(g)<sr(p)) .
“rioso sp) <0,

11
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239 where ¢ is a random gene set of size k.

a0 2.2 The datasets

2a1 A collection of 605 curated datasets was generated from a set of all curated datasets (GDS)
222 in Gene Expression Omnibus. Only the datasets with two biological conditions were kept.
2.3 Differential expression was done using limma. The moderated t-statistic was used for gene
2aa ranking. Only top 10000 genes by average expression were used in ranking. The final
25 rankings are available at https://ctlab.itmo.ru/files /software /fgsea/geo ranks/.

246 Pathway collections C2 REACTOME, C5 BP, C2, C5, MSigDB were obtained via
2a7 - msigdbr package. LINCS perturbation collection was downloaded from Enrichr web-site. The
218 corresponding gmt files are available at https://ctlab.itmo.ru/files/software /fgsea/gmts/.
249 As the example ranking ThO vs Thl comparison was used from dataset GSE14308 [4].
250 The differential expression was calculated using limma [8]. Only top 12000 genes by mean
251 expression were used. Limma t-statistic was used as gene-level statistic. The script to gen-
252 erate rankings is available on GitHub: https://github.com/ctlab/fgsea/blob/master/inst/
253 gen gene ranks.R.

254 Reactome [5| database was used as an example collection via reactome.db R package.
255 For the analysis only the pathways of the size from 15 to 500 were used. The script to
26 generate pathway collection is available on GitHub: https://github.com/ctlab/fgsea/blob/

257 master/inst/gene reactome pathways.R

= 2.3 FGSEA-simple: an algorithm for fast calculation of GSEA P-

250 values simultaneously for many pathways

260 In this section we describe an algorithm for fast estimation of GSEA P-values simultaneously

261 for a collection of pathways P. There, for each pathway p a set of n uniformly random gene

12
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262 sets ¢; are considered. Then P-value is estimated as:

#{a | s(@) = s.(p)} +1
#{¢ | sr(@:) >0} + 1

263 for positively enriched pathway p and as:

#{a | sr(q) <s.(p)}+1
#{¢ | s:(@;) <0} +1

264 for negatively enriched pathway. These two formulas follow Subramanian et al. implementa-
265 tion, except of +1 terms, which are recommended by Phipson and Smyth [9]. Otherwise, the
266 nominal P-values from FGSEA-simple and reference implementation are indistinguishable,

267 however FGSEA-simple works orders of magnitude faster.

268 2.3.1 Cumulative statistic calculation for the mean statistic

260 Let first describe the idea of the proposed algorithm on a simple mean statistic s,,:

1
Sm (p) = H2i6p5i~

270 The main idea of the algorithm is to reuse sampling for different query gene sets. This
onn can be done due to the fact that for an estimation of null distributions samples have to be
22 independent only for a specific gene set size, while they can be dependent between different
273 Sizes.

274 Instead of generating nM independent random gene sets: n for each of M input gene
2ars - sets, we will generate only n random gene sets of size K. Let m; be an i-th random gene set
27e  of size K. From that gene set we can generate gene sets for a all the query pathways P; by
277 using its prefix: m;; = m[1.. K]

278 The next step is to calculate the enrichment scores for all gene sets 7; ;. Instead of

13
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270 calculating enrichment scores separately for each gene set we will calculate simultaneously
280 scores for all 7; ; for a fixed i. Using a simple procedure it can be done in O(K) time.
281 Let us find enrichment scores for all prefixes of m;. This can be done by element-wise

282 dividing of cumulative sums array by the length of the corresponding prefix:

1
Sm(mi[1..k]) = E&emu..k}&'
283 Selecting only the required prefixes takes an additional ©(m) time.

284 The described procedure allows to find P-values for all query gene sets in O(n(K + m))

25 time. This is about min(K, m) times faster than the straightforward procedure.

26 2.3.2 Cumulative statistic calculation for enrichment score

g7 For the enrichment score S, we use the similar idea as above: we will also be sampling only
288 gene sets of size K and from that sample will calculate statistic values for all the other sizes.
280 However, calculation of the cumulative statistic values for the subsamples is more complex

200 in this case. In this section we only be considering the positive mode of enrichment statistic

+
ro

201 S
It is helpful to look at enrichment score from a geometric point of view. Let us consider
for a pathway p of size |p| = k a graph of N + 1 points (Fig. S1) with the coordinates (x;, ;)

for 0 < 7 < N such that:

(130, yO) = (07 O>7 (1)

T, =i+ [Z €p], Vi € 1N, (2)

yi:yi_l-i-[iGp] |S,| Vi e 1..N. (3)

202 The calculation of st corresponds to finding the point farthest up from a diagonal
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203 ((zo,Y0), (xn,yn)). Indeed, it is easy to see that xy = N —|p| = N —k and yn = Xje,|S;| =
204 NS, while the individual enrichment scores ES; can be calculated as ES; = %yi - ﬁ:{:z
205 Value of ES; is proportional to the directed distance from the line going through (xg, yy) and
206 (Zn,yn) to the point (z;, ;).
207 Let us fix a sample 7 of size K. To efficiently calculate cumulative values s (7[1..k]) for
208 all k£ < K we need a fast method of updating the farthest point when a new gene is added.
200 In that case we can add genes from 7 one by one and calculate values s (7[1..k]) from the
300 corresponding maximal distances.
Because we are calculating values for 7[1..k] for £ < K we know in advance which K
genes will be added. This allows us to consider K + 1 points instead of N + 1 for each
iteration k. Let array o of size K contain the sorted order of genes in 7: that is, 7,, is the

minimal among 7, 7,, is the second minimal and so on. The coordinates can be calculated

as follows:

s1  where we set 7,, to be zero.
It can be shown that finding the farthest up point among (4)—(6) is equivalent to finding

the farthest up point among (1)—(3) with (z,) being equal to (zr,,, yr, ) calculated for

15
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p = 7[l..k]. Consider z,, — ¥, . By the definition of x it is equal to:

%

Try =, =) LI E LK) = Y lignl b= ) [ ¢nllk]=
j=1 j=1 J=To;_1+1
Moy = Toy — Y [j €L
j:ﬂ'oi_l"rl
302 By the definition of o, in the interval [m,, , + 1,7, — 1] there are no genes from 7 and,

03 thus, from 7[1..k]. Thus we can replace the sum with its last member:

Ty, = Ty, | = Moy — Moy — Mo, € T[LK]] = 7o, — 7o, — [0; < K.

304 We got the same difference as in (5).

305 Now consider yr, — Y, ,. By the definition of y it is equal to:

To; To;_1 To;
Uno, = Ynop, = D Em[LEN 1S5 = D [ en[lk]- IS = > [jen[l.k]-[Sl.
j=1 Jj=1 J=To;_1+1
306 Again, in the interval [m,,_, + 1,7, — 1] there are no genes from =[l..k]. Thus we can

307 replace the sum with only the last member:

yﬂ’oi - yﬂ'oifl = [7T0i E ﬂ-[]‘kj]] ) |SOL| = [Oi g k] ’ |SOZ

308 We got the same difference as in (6).

300 We do not need to consider other points, because points from o;_; to 0; — 1 have the same
310y coordinate and o;_; is the leftmost of them. Thus, when at least one gene is added the diag-
s onal ((zo, o), (xn,yn)) is not horizontal and o;_; is the farthest point among o;_1,...,0; —1.

312 Now let consider what happens with the enrichment score graph when gene 7 is added

16
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a3 to the query set 7w[l..k — 1] (Fig. S2). Let 7, be a rank of gene m, among genes 7, then
s coordinate of points (x;, ;) for i < rp do not change, while all (x;,y;) for i > r; are changed
as on (A, Ay) = (—1,|S])-

316 To make fast incremental updates we will decompose the problem into multiple smaller
a1z ones. For simplicity we assume that K + 1 is an exact square of an integer b. Let split K + 1
a8 points into b consecutive blocks of the size b: {(xf, y&), ..., (xF_ |, O}, {(@F,uf), .., (2 v5 )}
310 and so on.

320 For each of b blocks we will store and update the farthest up point from the diagonal.
321 When we know for each block its farthest point we can find the globally farthest point by a
sz simple pass in O(b) time.

323 Next, we show how to update the farthest points in blocks in amortized time O(b). This
2s  taken together with one O(b) pass will get us an algorithm to update the globally farthest
25 point in amortized O(b) time.

226 Below we use ¢ = |r;/b| as an index of a block where gene 7, belongs, where ry is the
;27 ranking of the genes from 7, i.e. r,, = 1.

328 First, we describe the procedure to update point coordinates. We will store x; coordinates
20 using two vectors: B of size b and D of size K + 1, such that x; = B;;, + D;. When gene
a0 7 is added all x; for ¢ > r;, are decremented by one. To reflect this we will decrement all
s Bj for j > ¢ and decrement all D; for r;, < ¢ < c¢b. The update takes O(b) time. After this
;2 update procedure we can get value z; in O(1) time. The same procedure is applied for y
;33 coordinates.

334 Second, for each block we will maintain an upper part of its convex hull. Having convex
a5 hull is useful because the farthest point in block always lays on its convex hull. All blocks
a6 except ¢ have the points either not changed or shifted simultaneously on the same value. That
;37 means that the lists of points on the convex hulls for these blocks remain unchanged. For

138 the block ¢ we can reconstruct convex hull from scratch using Graham scan algorithm [10].
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139 Because the points are already sorted by x coordinate, this reconstruction takes O(b) time.
a0 In total, it takes O(b) time to update the convex hulls.

301 Third, the farthest points in blocks can be updated using the stored convex hulls. Con-
a2 sider a block where the convex hull was not changed (every block except, possibly, block c).
a3 Because diagonal always rotates in the same counterclockwise direction, the farthest point
as 10 block on iteration k either stays the same or moves on the convex hull to the left of the
s farthest point on the (k — 1)-th iteration. Thus, for each such block we can compare current
ae  farthest point with its left neighbor on the convex hull and update the point if necessary. It
a7 18 repeated until the next neighbor is closer to the diagonal than the current farthest point.
ag  In the block ¢ we just find the farthest point in a single pass by the points on the convex
30 hull.

350 To show that the updating the farthest points takes O(b) amortized time we will use
51 potential method. Let a potential after adding k-th gene &, be a sum of relative indexes
32 of the farthest points for all the blocks. As there are b blocks of size b the sum of relative
353 indexes lies between 0 and b?. Thus, ®; = O(b?). For an update of all b — 1 blocks except c
354 we need to make ¢y = b — 1 + 2z operations of comparing two points, where z is the number
ss5  of times the farthest points were updated. This can take up to ©(b?) time in the worst case.
16 However, it can be noticed, that potential change & — ®5_; is equal to —z + O(b): the sum
37 of indexes is decreased by a number of times the farthest points were updated plus O(b) for
sss  the block ¢ where the index can go from 0 to b — 1. This gives an amortized cost of k-th
10 iteration to be ap =ty + Pp — Py =b—1+2— 2+ O(b) = O(b). The total real cost of K
w0 iterations is Z,I::l ay + P9 — P = O(Kb) + O(b?) = O(Kb), which means amortized cost of
31 one iteration to be O(b).

362 Taken together the algorithm allows to find all cumulative enrichment scores s, (m[1..k])
s in O(Kb) = O(K+K) time. The straightforward implementation of calculating cumulative

s values from scratch would take O(K?log K') time. Thus, we have improved the performance
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365 O(KIOgK) times.

6 2.3.3 Implementation details

37 We also implemented an optimization so that the algorithm does not build convex hull from
ses  scratch for a changed block ¢, but only updates the changed points. This does not influence
60 the asymptotic performance, but decreases the constant factor.

370 First, we start updating the convex hull from position r; and not from the start. To be
snn - able to do this, we have an array prev that for each gene g € 7 stores the previous point on
a2 the convex hull if g were the last gene in the block. This actually is the same as the top of
a3 the stack in Graham algorithm and represent the algorithms state for any given point. As
sz« all points h to the left of g are not changed prev, also remains unchanged and need not to
ars  be recalculated.

376 Second, we stop updating the hull, when we reach the point on the previous iteration
sz convex hull. We can do this because every point to the left of g is rotated counterclockwise
sze  of any point to the right of g, which means that the first point on the convex hull right of ¢

se on (k — 1)-th iteration remains being a convex hull point at k-th iteration.

0 2.4 An algorithm for exact calculation of GSEA P-values for integer

381 gene-level statistics

;2 I[n this section we describe a polynomial algorithm to calculate GSEA P-value exactly, but
ss3 only for the case when gene-level statistics are integer numbers: S; € Z. For simplicity we

;s will consider a problem of calculating the following probability:

;s where ¢ is a random gene set of size k. We also assume ~ > 0.
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386 Let denote the sum of k£ largest absolute values of gene ranks by 7. The algorithm will

37 be polynomial in terms of N, k and T

s 2.4.1 The basic algorithm

0 Let us consider a gene set ¢ = {q1, ¢z, - .., qr}. Recall the formula for s*(q):
sT(q) = ES;+, where i* = arg max ES;,

(

0, if i =0,
ES; = (ES; 1 + &[S, if1<i<Nandié€g,

ESi,l—ﬁ, ifl1<i< Nandi¢q.
390 First, let rewrite the formula for ES; in an equivalent fashion, grouping positive and
301 negative summands:
302 ESiZN%(Zl[j€Q]ISjI)—ﬁ(i— Zl[jEQ])-

J= J=

303 Then for calculating ES; the following values are sufficient:

394 1: the index of the current gene;

395 e ¢ = > [j € ¢]: the number of genes included into the set ¢ among genes 1..7;

Jj=1

396 s = Y.[j € q||Sj]: the sum of the absolute values of gene-level statistics for genes
j

=1
307 included in the set among genes 1..;

398

N
NS = > [j € ¢]|S;|: the sum of the absolute values of gene-level statistics for all genes
j=1

399 in the set.

400 Knowing the values above, ES; can be calculated as ES; = 5 — ]f[_fk.

20


https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/060012; this version posted February 1, 2021. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a01 Notice that NS can take only integer values from 0 to T (for a set of genes with the

4

o

> largest absolute values of gene-level statistics). Let us split the desired probability to a sum

w3 of independent probabilities based on the value of NS:

Plst(@) >7) = > P((Z\Sj\ =Ns) A(s*(g) >v>>.

NS=0 Jj€q

405 Our algorithm will be based on dynamic programming. For each possible value of NS
ws we will process the genes one by one in increasing order of index and calculate an array
w7 fns(i,¢,8). The value fys(7,c,s) will contain the probability for a uniformly random gene

w8 set ¢’ of ¢ genes selected from genes 1..7 to simultaneously have the following two properties:

409 1. the sum of the absolute values of gene-level statistics of genes from ¢’ is equal to s;

410 2. ES; < v holds for all j < i, where the values of ES are calculated for the gene set ¢

a11 but using the selected values of NS and k, not the ones calculated for the set ¢'.

a Suppose that we have calculated all values of fxs(i, ¢, s), then

-
N

413 P ((Z ’Sj| = NS) VAN (s*(q) < ’}/)) = st(N, k,NS)

Jeq
aa and
T

415 P(s™(q) <v) = > fxs(N,k,NS).

NS=0
416 Finally, the sought probability is equal to:

T
a1z P(sT™(q) 27) =1-P(s™(q) <7)=1—= > fxs(N,k,NS).
NS=0

418 Let us find a formula for fxs(7, ¢, s). The base case of dynamic programming is ¢ = 0 for
a0 all NS:

1, ifc=s5=0,

fNS(Oa ¢, 8) =
0, otherwise.
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420 Suppose we want to calculate fys(i,c, s) for some i > 0. First, calculate
421 Esl = NLS - ]z/_—ck

22 and compare it to . If ES; > ~, then fxs(i, ¢, s) = 0 by definition.
423 Otherwise, condition “ES; < 7 holds for all j < ¢” can be simplified to “ES; < v holds
a2 for all 5 < ¢ —17. This observation allows us to use values of f that have already been

25 calculated. Consider two cases:

426 1. Gene i does not belong to the set ¢. As ¢’ is a set of ¢ genes chosen uniformly at random
a27 from ¢ genes, this case happens with the probability Z;—C The conditional probability
428 that such set satisfies the two necessary properties is fns(i — 1, ¢, s). Indeed, any set of
429 size ¢ with the sum of absolute values of gene-level statistics values equal to s, chosen
430 among genes 1..; — 1 and satisfying the conditions on ES, is a valid set chosen among
431 genes 1..7. Similarly, if a set does not satisfy the condition on ES; for some j < ¢ —1,
432 this set should not be counted towards fys(i, ¢, s) since obviously j < i.

433 2. Gene i belongs to the set. This case happens with the probability ¢. The probability

434 that this set satisfies the necessary conditions is fys(i — 1,¢ — 1,5 — 5;). Indeed, any
435 set of size ¢ — 1 with the sum of absolute values of gene-level statistics equal to s — 5,
436 chosen among genes 1..2 — 1 and satisfying the conditions on ES, can be extended with
437 gene 7, thus forming a set of size c satisfying both necessary properties. Similarly, if a
438 set does not satisfy the condition on ES; for some j < ¢ — 1, adding gene 4 will not fix
439 the situation.

410 Then we can calculate fys(i,c,s) using the law of total probability:

) 1—c _ c ,
fns(iye,s) = - frns(i—1,¢,8) + ;st(z —1l,e—1,5—5)),

w1 in the case when i > 0 and ES; < ~.
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442 Putting all the cases together, we arrive to the final formula for fys(i, ¢, s):
1, ifi=c=s5=0,
0, if i = 0 and either ¢ # 0 or s # 0,
fxs(iy e, s) =90, if i >0and g5 — ]@’_Ck > st (p),

Z‘_chNs(i —1,¢,8)+

Sfns(i—1,e—1,5 —8;), otherwise.
\

443 The overall complexity of the algorithm is O(NET?). The values of f can be evaluated
as  sequentially in increasing order of 7. It is enough to evaluate fys(i,c,s) for 0 < @ < N,

as 0<ce<k,and 0 < s < NS T. Each value of f can be evaluated in constant time.

we 2.4.2 Optimizations and implementation details

sz While the algorithm described above is polynomial, a number of further optimizations are
mg  required to make execution on real size inputs feasible.

420 First, let note that the following property holds: fxs,(7,¢,8) = fns,(4,¢,s) as long as
sso NSy > NS;. Indeed, ES values calculated using different values of NS are decreasing when
i1 NS is increased. That means all gene sets counted towards fys, (, ¢, s) should also be counted
2 towards fys,(7,c,s) if NSy > NS;.

453 Following the observation above, instead of calculating values of fxs(i, ¢, s) we will con-
ssa sider the values ¢(i, ¢, s,0) = fpi1(3, ¢, s)— fu(i, ¢, s). These values will contain the probability
w55 of a random gene set g of size k selected uniformly from genes 1..N to satisfy simultaneously

6 the following three properties:

a57 1. set q contains exactly ¢ genes from the genes 1..i.
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2. the sum of the absolute values of gene-level statistics of the first ¢ genes from ¢ is equal

to s;

3. ES; < 7 holds for all j < ¢, where the values of ES are calculated for the gene set ¢
using NS = b+ 1 (and for all higher values of NS);

4. ES; > v holds for at least one j < 7, where the values of ES are calculated for the gene

set ¢ using NS = b (and for all lower values of NS).

The sought probability can be calculated from values of g as follows:
T NS
P(s™(q) 27) =1-=P(s*(q) <7) =1= > > g(N,k NS,b).

NS=0 b=0

To calculate the values of g we will use the forward dynamic programming algorithm.

In this algorithm we expand a tree of reachable dynamic programming states, starting from

9(0,0,0,0) which is equal to 1.

The states will be considered by “levels” in an increasing order of i. The values g(i +

1,¢,s,b) from (i + 1)-th level are calculated based on level 7. Note, that the sum of values

on i-th level is always equal to 1.

To calculate all values from the (7 + 1)-th level all non-zero values from the i-th level are

considered sequentially. Let consider state (i, c, s,b) and let define p = (k —¢)/(N —i) — the
probability that gene ¢ + 1 will be added to the set. The corresponding set G(i, ¢, s,b) can

be divided into two groups.

1. The gene sets from G(i,c,s,b) that do not include gene i + 1. These gene sets are
included into gene sets G(i 4+ 1,¢,s,b) on the level ¢ + 1. Thus the corresponding

probability ¢(i, ¢, s,b) - (1 — p) is added to the value of g(i + 1, ¢, s,b).

2. The gene sets from G(i, ¢, s,b) that do include gene i + 1. These gene sets are included

into G(i + 1,c+ 1,8 = s+ [Si41],b") where V' is an updated bound. To calculate
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a81 b' let note that ES; will be greater or equal to ~ iff N*—’S — % > v which is

42 equivalent to NS < —%—. Thus I/ = max (b, {f—lJ> The probability that is
NoRTY NoETY

483 added to g(i + 1,c¢+ 1,5 ,V) is equal to g(i,c, s,b) - p.

484 While the asymptotic number of states remains to be O(NkT?) the forward dynamic
s programming allows to consider only “reachable” gene stats with g(, ¢, s,b) > 0. In practice
s86  the number of reachable stats can be several orders of magnitude smaller then the total
sg7  states.

ass Furthermore, for the algorithm we can consider only states with ¢(i,c,s,b) > € to be
g0 reachable for some small value of €. If we do not consider the unreachable states we would
w0 not be able to calculated the desired probability exactly. However, if we calculate the value
w1 of § as a sum of all the skipped states values, the desired probability will be calculated with
w02 the absolute error no more than .

493 The algorithm implementation with few other optimizations is available at: https://

sa  github.com/ctlab/fgsea/blob/master/inst /exact/exact.cpp.

ws 2.5 FGSEA-multilevel: an algorithm for calculation of arbitrar-
496 ily low P-values using adaptive multilevel split Monte Carlo

407 scheme

a8 In this section we describe FGSEA-multilevel algorithm that can accurately estimate GSEA
w90 P-value for a pathway p of size k even when the true P-value is very small.
500 Let 7 = s,(p) > 0 be the enrichment score of the query pathway p for which we want to

so0 calculate the following value:

P (s.(q) =2 )
P (sy (q) =2 0)’

s0o where ¢ is a random gene set of size k. This probability can be rewritten as follows:

VWV
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P (s, (q)
P (s, (q)

503 First, we focus on determining the probability P (s (¢) > 7). This probability can be

) P (s, (q) 2 0)

VWV

7)) Psf (@) =7)-P (s (q) 20| sF(q) >7)
0 ) '

sos extremely small, so using a naive sampling gives a bad estimation. We use the adaptive
sos multilevel split Monte Carlo method [6] to solve this problem.
To estimate the probability P (s} (¢) > ) we split the enrichment scores into levels

0=Ilp<ly <...<ly=r. Then we can define the following probabilities:

P(sf(q) =l | sf(q) =) =an,

P(sf(q) =] sf(q) 2h)=as,

p (S;F (q) > L | s (q) > lt71> = Q.

t

sos Now the probability P (st (¢) = «) can be rewritten as [] a.
i=1

507 To estimate a; we can draw a sample {¢!, b, ..., q5} of size Z from a conditional distri-

ss  bution P (- | s (¢) = l;-1). Then

.~
O[,LN 5

N[N

s00 where Z; is the number of elements in the set {¢ | s} (¢}) > ;}.
510 Below we show how levels [; can be chosen and how to sample from the corresponding

s11 conditional distributions.

si2 2.5.1 Choosing the enrichment score levels

s13 We propose to chose value for a level [; as a median of the enrichment scores for the qj-
s14 - sample. For simplicity Z is required to be an odd number.

515 Then the procedure for estimating probability P (s;" (¢) = 7) consists of repetition of the
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si6  following steps:

-
(=)

517 1. Oniteration i > 1sample Z gene sets ¢’ of size k from the distribution P ( ‘ sF(q) = lis1).
518 2. Set the level [; to be equal to the median of values s7(q7).

510 3. Ifﬁ- > ~ then stop the iterations and set [; = v and ¢ = 7, otherwise set [; = TZ

520 As a result, by construction, o; ~ 1/2 for 1 < ¢ < t — 1. The value of a; can be
21 approximated as Z;/Z (which is always > 1/2). Together we get the following expression for

s22  estimating the desired probability:
Z
P(sf (@) >7) =270 =

523 2.5.2 The conditional sampling implementation

s2 1o generate a uniform sample q} from the conditional distribution P ( ‘ st (q) = li,l) we
s25 use the Metropolis algorithm.

526 First, we generate a sample ¢, g1, . . ., q5 of size Z from the distribution P(- | s} (q) = lo).
s27 Since lp = 0 and values of s are always non-negative it can be done by generating a uniformly
28 random subset of size k from the genes {1,2,..., N}.

520 Now let consider a sample ¢; ', g5 ' ..., ¢, " ~ P(- | sF(q) > 1;_2) at a step i > 1. The
s30 sample can be sorted in an increasing order of enrichment score values: sj(qél_)l) < sj(qg)l) <
s ... < S (g ( )) Let d = [Z/2]. The level [;_; is the median of the values s, (¢}') and, thus,
522 is equal to [; 1 = s*(q(d) ).

533 Let first populate ¢} in the following way:

i—1 e
i Q(ZJrlfj)v 1f] < da
q; =
qZ;)l , otherwise.

+

s This gives us a sample from the conditional distribution P (- ‘ s (q) = l;i_1), however it is
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s35. not uniform.

536 To make the sample uniform we apply a number of the Metropolis algorithm iterations.
s37 - On each iteration for each gene set q§ we apply the following steps:

538 1. Choose a random gene g € ¢’

530 2. Choose a random gene ¢' ¢ q;

540 3. Consider ¢ = ¢} \ {g} U{¢'}. If s} (q}) > l;-1 then we replace ¢} with ¢’.

541 The iterations are repeated until the total number of successful replacements becomes
sa2  greater or equal to k- Z. In practice, this number of steps is enough to get a sufficiently
sa3  uniform sample to obtain a good estimation of probability, without a significant increase in

saa the running time of the algorithm.

sas 2.5.3  Estimating the P-value

sas  In order to estimate the desired P-value we also need to calculate the probabilities P (s, (¢) = 0)
sz and P (s, (q) = 0]s} (q) = 7).

548 To calculate the probability P (s, (q) > 0) we generate gene sets qi,q,...,qz, Where
sa0  each sample ¢; is selected uniformly at random from all the subsets of size k£ from the
sso set {1,2,..., N}. The samples are generated until the number of samples ¢; with s,.(¢g;) > 0

ss1 becomes equal to Z. Then the probability P (s, (¢) > 0) is estimated as follows

552 To determine the remaining probability P (s, (¢) = 0] s, (¢) > ~) we calculate the number
ss3 of gene sets in {¢¢ | s (¢}) > v} with value of the enrichment score function s, is greater
ssa  than zero. After that, the probability can be estimated as follows:

Elst(gt) =y As(q¢h) =0
P (s (q) 2 0|5} (q) 27) = s |;{;3]’)5+(Z,t) S>(7qi) }'
jlor\dj) =
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sss. 2.5.4  Estimating log-probability

sse 10 properly estimate a logarithm of the desired probability let note that the j-th order statis-
ss7 tic of a standard uniform sample of size Z is a random variable from the beta distribution
sss Beta (j, Z + 1 — j). Therefore, we can use the properties of the beta distribution and make
ss0 correct transition to the logarithm of probability. So for the median value of sample of odd

se0  Size Z we have:

Z+1

ses  where 1) is digamma function. In the same way, we can calculate the expectation of the

se2  logarithm ay:

Efllogoy] = ¢ (Zi+1) = (Z+1).

563 Then the logarithm of probability P (s (¢) = 7) is estimated as

Z+1
o8P (57 @) 2 ) ~ (=1 (v (Z52 ) ~w(z+0) + vz -0z +1),
564 Similarly, we can estimate the variance of the estimates var [log ;] = v (£2) =y (Z + 1),

ses where 1; is trigamma function. From this we can approximate a standard error of our esti-

sd:\/t~ <¢1 (%) —¢1(2+1)).

567 The same approach with digamma functions is used to calculate the logarithm of the

s66  Imator as:

ses probabilities P (s, (¢) = 0] s} (¢) = ) and P (s, (¢) = 0).
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se0 2.5.5  Optimizations and implementation details

s70 ' The most demanding step of FGSEA-multilevel algorithm is to check whether the newly
s1 - obtained gene set has the enrichments score value of at least [;. Importantly, this does not
sz require full computation of enrichment score value. It is enough to show that there is at least
s73 one gene that has the running enrichment score value of at least [; or, in other words, that
sz at least one point on the enrichment score graph is farther away from the diagonal (Fig. S1)
szs  than some value calculated from ;.

576 Similarly to FGSEA-simple algorithm, a square root decomposition is used to split all the
sz genes into approximately v/K blocks. The block boundaries are determined automatically on
sze each level based on the existing sample in such a way, that each block contains approximately
s VK genes. In particular this decomposition enables adding and removing genes in O(v/K )
sso time while keeping the gene set sorted.

581 Unlike FGSEA-simple algorithm we will not maintain the convex hull but will apply a
se2  few heuristics to do the required check faster.

583 First we check a "candidate" point which has a high chance to be at the required distance
ss« from the diagonal. If it is so, we do not have to continue the check. The "candidate" gene
sss 1s carried our from the previous iterations, as the point where the successful check has been
sse interrupted.

587 Next we go block by block. At the beginning we construct a "rectangle" upper bound
sss on the enrichment score value at the block, which can be obtained by moving all the genes
ss0 Of the block to its start. If this upper bound does not satisfy our criterion we can skip the
soo  block. Otherwise, we go gene by gene and calculate the enrichment score values until it
so1  reaches the required value or the end of the block is reached. In the former case the check is

so2  interrupted with a successful result.
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s 2.5.6 Comparison with the exact method

soa 'To compare FGSEA-multilevel and the exact method on the same dataset we used rounded
sos  values of the gene-level statistics from the example data (section 2.2) as input data for both
sos algorithms. Both algorithms calculated the probability P (sf (q) > ).

597 The results of the algorithms for the pathways from the example data are shown on
ses  I'ig 3¢c. The exact algorithm was run with ¢ = 1074, all the probabilities were obtained with
s00 accuracy of at least six significant digits. For FGSEA-multilevel Z = 101 was used.

600 We also calculated empirical estimation errors and compared it to the theoretical ones
o1 (Fig 3d). For this we generated 100 independent estimates for a range of ES values (corre-
s02 sponding to P-values of 107 to 1071% gene set sizes (from 15 to 250) and sample size (from

03 101 to 1001). The raw values are available in the Supplementary Table.

s 2.6 Filtering redundant pathways

sos In this section we describe an algorithm to filter redundant pathways from the results of
s0s FGSEA.
607 Let consider two pathways p; and p, that both have a significant GSEA P-value. There

s0s are two situations in which we will consider ps to be non-redundant given p;:

609 1. If pathway p, is enriched even if we do not consider the genes from p; at all. Formally,
610 we calculate GSEA P-value for gene set p, \ p1 and gene-level statistics vector S[U \ p1]
611 for all the genes except p;. If the P-value is less than a pre-defined threshold, then
612 pathway ps is considered as non-redundant given p;.

613 2. If pathway p, is enriched even if we consider only genes from p;. Formally, we calculate
614 GSEA P-value for gene set po N p; and gene-level statistics vector S[p;] for the genes
615 from p;. Again, if the P-value is less than a pre-defined threshold, then pathway ps is
616 considered as non-redundant given p;.
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s17  Otherwise pathway ps is considered to be redundant.

618 The filtering procedure starts with a set of significantly enriched pathways Py, selected
s19 by the user: for example the pathways with GSEA P-values less than 0.01 after Benjamini-
s20 Hochberg correction, sorted by P-value. The output of the procedure is a list P4in C Phig
e21 of pathways that are pairwise non-redundant. At the same time, all the other pathways
622 Preg = Psig \ Prain are redundant given some pathway from Pj;,.

623 The procedure itself is similar to Sieve of Eratothenes algorithm. The pathways are
s2« considered one by one and some of them are marked as redundant. For a pathway p we first
25 check if it is already marked as redundant, if yes, we go to the next pathway. Otherwise,
s2s  we first run FGSEA-simple algorithm on a vector of statistics S[U \ p] and all the pathway
e27 currently not marked as redundant (including the ones that already have been considered,
s2s  but excluding pathway p). Then, similarly, we run FGSEA-simple algorithm on a vector of
s20 statistics S[p]. Pathways that do not achieve non-redundant P-value threshold in both tests

e30 are marked as redundant.
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Figure 1: Gene Set Enrichment Analsyis (GSEA) sensitivity depends on the ability to reach
high sampling depth. a, Overview of preranked GSEA method. b, The number of pathways
reaching Benjamini-Hochberg adjusted P-value threshold depends on the sampling depth
in a phase transition manner. The critical sampling depth, where the transition happens,
varies with the dataset. ¢, Distribution of critical sampling depth values across 605 curated
datasets from Gene Expression Omnibus, as estimated for three pathway collections. d,
Time required for the reference GSEA implementation to estimate P-values for different
gene set collections and sampling depth values for dataset GSE22293. N/A values indicate
out of memory errors.
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Figure 2: Preranked gene set enrichment analysis can be sped up by sharing sampling
information between different gene set sizes. a, It is sufficient to generate n independent
samples of size K to calculate empirical distribution for any sizes K; < K, by considering
only the prefix of the samples of the size K;. b, For a given gene sample enrichment scores
for all the prefixes can be efficiently calculated by employing a square root heuristic. c,
The P-values calculated with the FGSEA-simple method are consistent with the reference
implementation, but the results are obtained hundreds times faster.
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Figure 3: Adaptive multilevel Monte Carlo sampling scheme can be used to calculate ar-
bitrarily low P-values. a, A toy illustration of the multilevel split Monte Carlo scheme for
sample size of Z = 5. b, Comparison of GSEA P-values as calculated by FGSEA-simple
method run with the sampleing depth n = 10® and FGSEA-multilevel with the sample size
of Z=101. ¢, Comparison of P-values as calculated with an exact method and FGSEA-
multilevel method. Both methods were run on gene-level statistic values rounded to inte-
gers. d, Comparison between estimated and an observed error of logy P-values for different
P-values (from 107 to 1071%%), gene set sizes (from 15 to 250) and sample sizes (from 101 to
1001). d, An example of FGSEA results as run with FGSEA-multilevel method for ThO vs
Thl comparison and Reactome pathways. The analysis was run with sample size of Z = 101.
Redundant pathways were filtered.
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Figure 4: FGSEA method with the multilevel approach detects more statistically significant
pathways compared to other GSEA implementations in a fraction of time. All plots represent
data from analysis of the collection of 605 cureated GEO datasets with C5_BP used as a gene
set collection. a, Wall clock time of running FGSEA. b, The number of detected statistically
significant pathways for different adjusted P-value calculation procedures. Pathways with
small BH-adjusted P-value after FGSEA-multilevel are shown in grey. Pathways with small
BH-adjusted P-value after FGSEA-simple are shown in blue, orange and green, depending on
the sampling depth. Pathways with small Q-values as reported by Broad GSEA are shown
in red. ¢, Comparison of BH-adjusted P-values for FGSEA-multilevel and Q-values reported
by Broad GSEA. For illustration purposes all values are capped at 107°. d, Same as ¢ but
average pathway sizes are shown.
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Figure S1: A graph that corresponds to a calculation of enrichment score. Each breakpoint
on a graph corresponds to a gene present in the pathway. Dotted lines cross at a point which
is the farthest up from a diagonal (dashed line). This point correspond to gene i, where
the maximal value of ES; is reached.
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Figure S2: Update of an enrichment score graph when gene 7, ~ 800 is added. Only a
fragment is shown. Black graph corresponds to a graph for gene set 7[l..k — 1], gray graph
corresponds to w[l..k]. A part of the graph to the left of + = z,, does not change and
the other part is shifted to the top-left corner. The diagonal ((xo, o), (xn,yn)) is rotated
counterclockwise.
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