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Abstract10

Gene set enrichment analysis (GSEA) is an ubiquitously used tool for evaluating11

pathway enrichment in transcriptional data. Typical experimental design consists in12

comparing two conditions with several replicates using a di�erential gene expression test13

followed by preranked GSEA performed against a collection of hundreds and thousands14

of pathways. However, the reference implementation of this method cannot accurately15

estimate small P-values, which signi�cantly limits its sensitivity due to multiple hy-16

potheses correction procedure.17

Here we present FGSEA (Fast Gene Set Enrichment Analysis) method that is able18

to estimate arbitrarily low GSEA P-values with a high accuracy in a matter of minutes19
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or even seconds. To con�rm the accuracy of the method, we also developed an exact20

algorithm for GSEA P-values calculation for integer gene-level statistics. Using the21

exact algorithm as a reference we show that FGSEA is able to routinely estimate P-22

values up to 10−100 with a small and predictable estimation error. We systematically23

evaluate FGSEA on a collection of 605 datasets and show that FGSEA recovers much24

more statistically signi�cant pathways compared to other implementations.25

FGSEA is open source and available as an R package in Bioconductor (http://26

bioconductor.org/packages/fgsea/) and on GitHub (https://github.com/ctlab/fgsea/).27

1 Main28

Preranked gene set enrichment analysis (GSEA) [1] is a widely used method for analyzing29

gene expression data, particularly for datasets with small number of replicates. It allows to30

select from an a priori de�ned collection of pathways those which have non-random behavior31

in a considered experiment (Fig 1a). The method uses an enrichment score (ES) statistic32

which is calculated based on a vector of gene-level signed statistics, such as t-statistic from33

a di�erential expression test. As the analytical form of the null distribution for the ES34

statistic is not known, empirical null distribution has to be calculated. That can be done35

in a straightforward manner by sampling random gene sets as was done in the reference36

implementation [1] and reimplementations [2, 3]. In this case for each of the input pathways37

a number of random gene sets of the same size are generated, and for each of them an ES38

value is calculated. Then a P-value is estimated as the number of random gene sets with39

the same or more extreme ES value divided by the total number of generated gene sets (a40

formal de�nition is available in the section 2.1). Finally, a multiple hypothesis correction41

procedure is applied to get adjusted P-values.42

However, a large number of generated random gene sets can be required to reach a43

given false discovery rate (FDR) level on some datasets. As an example, we calculated44
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GSEA P-values for Gene Ontology Biological Pathways collection (C5_BP subset of MSigDB45

collection [1]) on four datasets from Gene Expression Omnibus (GEO) varying the sampling46

depth, and calculated the number of pathways reaching FDR level of 0.01 after Benjamini-47

Hochberg (BH) correction. Due to the properties of BH procedure, the dependence of the48

number of signi�cant pathways in these experiments has a phase transition behavior (Fig 1b):49

for each of the datasets there exist a certain critical sampling depth after which the number50

of signi�cant pathways becomes non-zero and stays on the same level. This critical sampling51

depth is di�erent for di�erent datasets, but ultimately can reach the order of M/α, where α52

is the selected FDR threshold and M is the number of considered pathways.53

To systematically asses the distribution of GSEA critical sampling depth on real datasets54

we prepared a collection of 605 microarray datasets from Gene Expression Omnibus (GEO)55

containing only two biological condistions. For each of these datasets we ran the di�erential56

expression analysis and used the results as gene-level statistics. We discovered that more than57

half of the datasets has the critical sampling depth of at least 104 and a noticeable portion58

(10�20% depending on the collection) has the critical sampling depth of at least 105 (Fig 1c).59

When a large pathway collection is considered (entire MSigDB collection) individual datasets60

has values of critical sampling depths reaching 5 · 106. However, even running the reference61

implementation with the sampling depth of n = 104 routinely is inconvenient and running62

it with n = 105 can be impossible due to the time and memory consumption (Fig 1d): time63

and memory requirements grow linearly with the number of samples and the collection size.64

To improve applicability of preranked GSEA analysis we present a fast gene set enrich-65

ment analysis (FGSEA) method for accurate and e�cient estimation of GSEA P-values for66

a collection of pathways. The method consist of two main procedures: FGSEA-simple and67

FGSEA-multilevel. FGSEA-simple procedure allows to e�ciently estimate P-values with a68

limited accuracy but simultaneously for the whole collection of gene sets, while FGSEA-69

multilevel procedure allows to accurately estimate arbitrarily low P-values but for individual70
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gene sets.71

FGSEA-simple procedure is based on an idea that generated random gene set samples72

can be shared between di�erent input pathways. Indeed, consider M gene sets of the sizes73

K1 6 K2 6 . . . 6 KM = K and a collection of n independent samples gi of size K (Fig 2a).74

As in the naive approach, due to gi being independent samples of the size K the P-value75

for the pathway M can be estimated as a proportion of samples gi having the same or more76

extreme ES value as the pathway M . However, for any other pathway j we can construct77

a set of n independent samples of size Kj by considering the pre�xes gi,1..Kj
. Again, given78

a set of independent samples, the P-value can be estimated as a proportion of the samples79

having the same or more extreme ES value.80

The next important idea is that given a gene set sample gi of the size K the ES values for81

all the pre�xes gi,1..j can be calculated in an e�cient manner using a square root heuristic82

(Fig 2b). Brie�y, a variant of an enrichment curve is considered: the genes are enumerated83

starting from the most up-regulated to the most down-regulated, with the curve going to84

the right if the gene is not present in the pathway, and the curve goes upward if the gene is85

present in the pathway. It can be shown that the enrichment score can be easily calculated if86

curve point most distant from the diagonal is known. Let us split K genes from the gene set87

into b ≈
√
K consecutive blocks of size

√
K and consider what happens with the curve when88

we change the pre�x from gi,1..j−1 to gi,1..j by adding gene gi,j. The curve in the blocks to the89

left of gi,j are not changed at all, while the blocks to the right of gi,j are uniformly shifted.90

This observation allows us to consider the pre�xes in an increasing order and update the91

position of the most distant point in O(
√
K) time. Brie�y, for the each block which is either92

not changed or shifted the update procedure takes O(1) time, while for the changed block the93

update procedure is proportional to its size and takes O(
√
K) time. Finally, aggregating the94

blocks takes additional O(
√
K) time. Overall this results in time complexity of O(K

√
K)95

to calculate ES values for all the pre�xes. In total, the time complexity of the calculating96
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P-values for the set of M pathways is n(K
√
K + M), which gives around O(K logK√

K
) speed97

up compared to a naive approach. The full description of the algorithm is given in the98

section 2.3.99

As an example we ran FGSEA-simple and the reference implementations on the same100

example dataset of genes di�erentially regulated on Th1 activation [4] against a set of 700 Re-101

actome [5] pathways (see section 2.2) and compared the resulting nominal P-values (Fig 2c).102

Both methods were ran with n = 10000 and the results are indistinguishable from each103

other up to the random noise inherent to both methods. However, on this example the104

reference implementation took about 420 seconds, while FGSEA-simple �nished in about 4105

seconds. The two order of magnitude speed-up is consistent with the theoretical one due to106

the algorithm time complexity. Given a highly parallel implementation of FGSEA-simple,107

its performance allows to routinely achieve sampling depth of 105 and accurately estimate108

P-values as low as 10−5.109

However, accurately estimating P-values lower than 10−5 with FGSEA-simple can be110

impractical or even infeasible. To estimate such low P-values we developed FGSEA-multilevel111

method, which is based on an adaptive multi-level split Monte Carlo scheme [6]. The method112

takes as an input an ES value γ > 0 and a gene set size K, and calculates the probability113

PK(ES > γ) of a random gene set of size K to have an enrichment score no less than γ. The114

method sequentially �nds ES levels li for which the probability PK(ES > li) is approximately115

equal to 2−i (see Fig 3a for a toy example). The method stops when li becomes greater than116

γ and the P-value can be crudely approximated as 2−i.117

The intermediate li thresholds are calculated as follows. First, a set of Z (an odd number,118

parameter of the method) random gene sets of size K are generated uniformly and ES values119

for them are calculated. The median value of the ES values is calculated and assigned to l1.120

By construction, the probability PK(γ > l1) of a random gene set to have an ES value no less121

than l1 can be approximated as
1
2
. Next Z−1

2
generated gene sets with the ES values less than122
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l1 are discarded, while
Z−1
2

gene sets with the ES values greater than l1 are duplicated. This123

results in a sample of Z gene sets with the ES values no less than l1, but the distribution is124

non-uniform. However, it can be made into a uniform sample with a Metropolis algorithm.125

On each Metropolis algorithm step each gene set sample is tried to be modi�ed by swapping126

a random gene from the set with a gene outside of the set. The change is accepted if an127

enrichment score of the new set is no less then current threshold l1, otherwise the change is128

rejected. Metropolis algorithm guarantees, that after enough steps the sample becomes close129

to uniformly distributed. Thus, a median of the enrichment scores (l2) would correspond to130

probability of 1
2
for a gene set to have an enrichment score no less than l2 given it has an131

enrichment score no less than l1:132

PK(ES > l2 | ES > l1) ≈
1

2
.

Which means133

PK(ES > l2) ≈ 2−2.

The same procedure is applied to calculate the next li values.134

The iterations stop when li becomes greater than γ. On this iteration the probability of135

a random gene set to have a ES value no less than γ can be approximated as:136

1

2i−1
· #{samples with ES > γ}

Z
.

When estimating small P-values it becomes practical to carry out the estimation in log-137

scale. In particular, the values become practically unbiased both in median and mean sense138

and it becomes simple to estimate the approximation error and condifence intervals (see139

section 2.5.4).140

The full formal description of the algorithm is available in the section 2.5.141
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For the example dataset we show that P-values are as low as 10−26 for some of the path-142

ways and the results are consistent with FGSEA-simple P-values ran on 108 permutations143

(Fig 3b). Note, that FGSEA-multilevel calculation with sample size of Z=101 took only144

10 seconds working on a single thread while 108 permutations on FGSEA-simple took 40145

minutes working in 32 threads.146

To further prove the approximation quality of FGSEA-multilevel algorithm we developed147

an exact method for calculating GSEA P-values, but limited to integer weights. The method148

is based on dynamic programming, the full description is given in section 2.4. The complexity149

of the algorithm is O(NKT 2), where N is the number of genes, K is the size of gene sets150

and T is the sum of the top K absolute values of gene-level statistics. With a number of151

optimizations this method allows to calculate P-values for rounded weights in the example152

dataset in a couple of hours.153

When run on the same integer weights FGSEA-multilevel and the exact method give154

highly concordant results (Fig 3c). Additionally, using the exact P-values, real approximation155

errors can be compared with the estimated ones. We show, that the FGSEA-multilevel error156

estimation are highly concordant with the real errors (Fig 3d) for a wide range of P-values157

(from 10−4 to 10−100), gene set sizes (from 15 to 250) and sample sizes (from 101 to 1001).158

In practice FGSEA-multilevel method is combined with FGSEA-simple. First, for all the159

input pathways FGSEA-simple method can be run with a limited sample size. Next, for the160

pathways that have high relative error after FGSEA-simple (i.e. pathways with low p-values)161

FGSEA-multilevel method is executed. As many of the pathways in an input collection162

usually are not enriched, they have a relatively high P-value and will be batch-processed163

with a highly e�cient FGSEA-simple algorithm with deterministic time boundaries. The164

more interesting pathways with lower P-values will then be processed with FGSEA-multilevel165

algorithm individually and the amount of processing time will depend on their P-values.166

As FGSEA allows to practically estimate the P-values for a large collections of gene sets, it167
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can lead to a large number of statistically signi�cant hits with high overlaps. To deal with this168

issue and make the representation of FGSEA results more concise we developed a procedure169

to �lter the redundant gene sets. The procedure is similar to GO Trimming method [7]170

but is based on the Bayesian network construction approaches. It considers the signi�cant171

pathways one by one and tries to remove gene sets that do not provide new information given172

some other pathway already present in the output. In this case, we consider a pathway P1173

to give a new information given a pathway P2 if the P-value of pathway P1 in the universe174

of genes just from P2, or just from genes outside of P2, is less than some threshold. This175

procedure allows to �lter redundant pathways without requirement of having any explicit176

hierarchy of pathways. The full description of the procedure is given in section 2.6. The177

table resulting from running FGSEA on the example dataset with �ltering of redundant hits178

is shown on Fig 3e.179

Finally, we have explored FGSEA performance on the collection of 605 curated GEO180

datasets described earlier and the C5_BP pathway collection. Notably, it took less then a181

minute per dataset of running time to �nish FGSEA analysis with the multilevel algorithm182

(Fig 4a) on a laptop with 4-core Intel Core i5 processor, with a median time of 8 seconds.183

Besides the multilevel algorithm, the same analysis was carried out with FGSEA-simple184

algorithm with the sampling depth values of n = 103, 104 and 105, and the reference imple-185

mentation (Broad GSEA) with the sampling depth of 104. For all these methods we compared186

the number of pathways reaching FDR level of 0.01: BH-adjusted P-values were used for187

FGSEA and reported Q-values (Broad Q-values) were used for the reference implementation188

(Fig 4b). The results reiterate that even sampling depth of 105 is not enough to detect statis-189

tically signi�cant enriched pathways for some of the datasets when BH-adjustment procedure190

is used.191

The ad hoc procedure implemented in Broad GSEA aggregates ES values generated192

across di�erent pathways increasing the sensitivity on some of the datasets compared to BH-193
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adjusted P-values for the same sampling depth of 104, however this increase in sensitivity194

comes with overall more conservative behavior. The total number of pathways reaching195

FDR level of 0.01 for Broad Q-values is 39467, which is only 60% of 65690 pathways for196

BH-adjustment P-values with the sampling depth of 104 and 48% of 81628 pathways for the197

multilevel algorithm. We further characterized this behavior by directly comparing Broad198

Q-values with BH-adjusted P-values and have shown that Broad Q-values are individually199

more conservative (Fig 4c) in a pathway size dependent manner (Fig 4d).200

To conclude, here we have presented FGSEA method for fast preranked gene set enrich-201

ment analysis. The method allows to routinely estimate even very low P-values and can be202

used with conjunction with standard multiple hypothesis testing correction methods, such as203

Benjamini-Hochberg procedure. This, in turn, leads to better sensitivity and the ability to204

detect signi�cant pathways in hard cases, where other implementations fail. FGSEA method205

is freely available as an R package at Bioconductor (http://bioconductor.org/packages/fgsea)206

and on GitHub (https://github.com/ctlab/fgsea).207
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2 Methods208

2.1 Formal de�nitions209

The preranked gene set enrichment analysis takes as input two objects: an array of gene-level210

statistic values S for the genes U = {1, 2, . . . , N} and a list of query gene sets (pathways)211

P . The goal of the analysis is to determine which of the gene sets from P has a non-random212

behavior.213

The statistic array S of the size |S| = N for each gene i ∈ U contains a value Si ∈ R214

that characterizes the gene behavior in a considered biological process. Commonly, if Si > 0215

the expression of gene i goes up on treatment compared to control and Si < 0 means that216

the expression goes down. Absolute values |Si| represent magnitude of the change. Array217

S is sorted in a decreasing order: Si > Sj for i < j. The value of N in practice is about218

10000�20000.219

The list of gene sets P = {P1, P2, . . . , PM} of length M usually contains groups of genes220

that are commonly regulated in some biological process. We assume that the gene sets Pi are221

ordered by their size (denoted as Ki): K1 6 K2 6 . . . 6 KM = K. Usually only relatively222

small gene sets are considered with K ≈ 500 genes.223

To quantify a co-regulation of genes in a gene set p Subramanian et al.[1] introduced a224

gene set enrichment score function sr(p) that uses gene rankings (values of S). The more225

positive is the value of sr(p) the more enriched the gene set is in the positively-regulated226

genes (with Si > 0). Accordingly, negative sr(p) corresponds to enrichment in the negatively227

regulated genes.228

Value of sr(p) can be calculated as follows. Let k = |p|, NS = Σi∈p|Si|. Let also ES be229
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an array speci�ed by the following formula:230

ESi =


0 if i = 0,

ESi−1 + 1
NS
|Si| if 1 6 i 6 N and i ∈ p,

ESi−1 − 1
N−k if 1 6 i 6 N and i 6∈ p.

The value of sr(p) corresponds to the largest by the absolute value entry of ES:231

sr(p) = ESi∗ , where i
∗ = arg max

i
|ESi|.

For convenience, we also introduce the following notation:

s+r (p) = ESi+ , i+ = arg max
i

ESi,

s−r (p) = ESi− , i− = arg min
i

ESi.

From these two values it easy to �nd value of sr(p), which is equal to s
+
r (p) if |s+r (p)| > |s−r (p)|232

or s−r (p) otherwise.233

Often we will consider only the positive values of the gene set enrichment score function234

since:235

∀p ∈ P, sr(p) = −s′r(p′),

where p′ = (p′1, p
′
2, ..., p

′
k) = (N − p1 + 1, N − p2 + 1, ..., N − pk + 1) and s′r corresponds to236

the gene set enrichment score function for array S ′ such that S ′i = SN−i+1.237

Next, following Subramanian et al for a pathway p we de�ne GSEA P-value as:238

Pvalue(p) =


Pk(sr(q)>sr(p))
Pk(sr(q)>0)

if sr(p) > 0,

Pk(sr(q)6sr(p))
Pk(sr(q)60)

if sr(p) < 0,
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where q is a random gene set of size k.239

2.2 The datasets240

A collection of 605 curated datasets was generated from a set of all curated datasets (GDS)241

in Gene Expression Omnibus. Only the datasets with two biological conditions were kept.242

Di�erential expression was done using limma. The moderated t-statistic was used for gene243

ranking. Only top 10000 genes by average expression were used in ranking. The �nal244

rankings are available at https://ctlab.itmo.ru/�les/software/fgsea/geo_ranks/.245

Pathway collections C2_REACTOME, C5_BP, C2, C5, MSigDB were obtained via246

msigdbr package. LINCS perturbation collection was downloaded from Enrichr web-site. The247

corresponding gmt �les are available at https://ctlab.itmo.ru/�les/software/fgsea/gmts/.248

As the example ranking Th0 vs Th1 comparison was used from dataset GSE14308 [4].249

The di�erential expression was calculated using limma [8]. Only top 12000 genes by mean250

expression were used. Limma t-statistic was used as gene-level statistic. The script to gen-251

erate rankings is available on GitHub: https://github.com/ctlab/fgsea/blob/master/inst/252

gen_gene_ranks.R.253

Reactome [5] database was used as an example collection via reactome.db R package.254

For the analysis only the pathways of the size from 15 to 500 were used. The script to255

generate pathway collection is available on GitHub: https://github.com/ctlab/fgsea/blob/256

master/inst/gene_reactome_pathways.R257

2.3 FGSEA-simple: an algorithm for fast calculation of GSEA P-258

values simultaneously for many pathways259

In this section we describe an algorithm for fast estimation of GSEA P-values simultaneously260

for a collection of pathways P . There, for each pathway p a set of n uniformly random gene261
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sets qi are considered. Then P-value is estimated as:262

#{qi | sr(qi) > sr(p)}+ 1

#{qi | sr(qi) > 0}+ 1

for positively enriched pathway p and as:263

#{qi | sr(qi) 6 sr(p)}+ 1

#{qi | sr(qi) 6 0}+ 1

for negatively enriched pathway. These two formulas follow Subramanian et al. implementa-264

tion, except of +1 terms, which are recommended by Phipson and Smyth [9]. Otherwise, the265

nominal P-values from FGSEA-simple and reference implementation are indistinguishable,266

however FGSEA-simple works orders of magnitude faster.267

2.3.1 Cumulative statistic calculation for the mean statistic268

Let �rst describe the idea of the proposed algorithm on a simple mean statistic sm:269

sm(p) =
1

|p|
Σi∈pSi.

The main idea of the algorithm is to reuse sampling for di�erent query gene sets. This270

can be done due to the fact that for an estimation of null distributions samples have to be271

independent only for a speci�c gene set size, while they can be dependent between di�erent272

sizes.273

Instead of generating nM independent random gene sets: n for each of M input gene274

sets, we will generate only n random gene sets of size K. Let πi be an i-th random gene set275

of size K. From that gene set we can generate gene sets for a all the query pathways Pj by276

using its pre�x: πi,j = πi[1..Kj].277

The next step is to calculate the enrichment scores for all gene sets πi,j. Instead of278

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2021. ; https://doi.org/10.1101/060012doi: bioRxiv preprint 

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/


calculating enrichment scores separately for each gene set we will calculate simultaneously279

scores for all πi,j for a �xed i. Using a simple procedure it can be done in Θ(K) time.280

Let us �nd enrichment scores for all pre�xes of πi. This can be done by element-wise281

dividing of cumulative sums array by the length of the corresponding pre�x:282

sm(πi[1..k]) =
1

k
Σi∈πi[1..k]Si.

Selecting only the required pre�xes takes an additional Θ(m) time.283

The described procedure allows to �nd P-values for all query gene sets in Θ(n(K + m))284

time. This is about min(K,m) times faster than the straightforward procedure.285

2.3.2 Cumulative statistic calculation for enrichment score286

For the enrichment score Sr we use the similar idea as above: we will also be sampling only287

gene sets of size K and from that sample will calculate statistic values for all the other sizes.288

However, calculation of the cumulative statistic values for the subsamples is more complex289

in this case. In this section we only be considering the positive mode of enrichment statistic290

s+r .291

It is helpful to look at enrichment score from a geometric point of view. Let us consider

for a pathway p of size |p| = k a graph of N + 1 points (Fig. S1) with the coordinates (xi, yi)

for 0 6 i 6 N such that:

(x0, y0) = (0, 0), (1)

xi = xi−1 + [i 6∈ p], ∀i ∈ 1..N, (2)

yi = yi−1 + [i ∈ p] · |Si| ∀i ∈ 1..N. (3)

The calculation of s+r corresponds to �nding the point farthest up from a diagonal292
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((x0, y0), (xN , yN)). Indeed, it is easy to see that xN = N −|p| = N −k and yN = Σj∈p|Sj| =293

NS, while the individual enrichment scores ESi can be calculated as ESi = 1
NS
yi − 1

N−kxi.294

Value of ESi is proportional to the directed distance from the line going through (x0, y0) and295

(xN , yN) to the point (xi, yi).296

Let us �x a sample π of size K. To e�ciently calculate cumulative values s+r (π[1..k]) for297

all k 6 K we need a fast method of updating the farthest point when a new gene is added.298

In that case we can add genes from π one by one and calculate values s+r (π[1..k]) from the299

corresponding maximal distances.300

Because we are calculating values for π[1..k] for k 6 K we know in advance which K

genes will be added. This allows us to consider K + 1 points instead of N + 1 for each

iteration k. Let array o of size K contain the sorted order of genes in π: that is, πo1 is the

minimal among π, πo2 is the second minimal and so on. The coordinates can be calculated

as follows:

(xk0, y
k
0) = (0, 0), (4)

xki = xki−1 + πoi − πoi−1
− [oi 6 k] , ∀i ∈ 1..K, (5)

yki = yki−1 + [oi 6 k] · |Soi|, ∀i ∈ 1..K, (6)

where we set πo0 to be zero.301

It can be shown that �nding the farthest up point among (4)�(6) is equivalent to �nding

the farthest up point among (1)�(3) with (xki , y
k
i ) being equal to (xπoi , yπoi ) calculated for
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p = π[1..k]. Consider xπoi − xπoi−1
. By the de�nition of x it is equal to:

xπoi − xπoi−1
=

πoi∑
j=1

[j 6∈ π[1..k]]−
πoi−1∑
j=1

[j 6∈ π[1..k]] =

πoi∑
j=πoi−1+1

[j 6∈ π[1..k]] =

πoi − πoi−1
−

πoi∑
j=πoi−1+1

[j ∈ π[1..k]].

By the de�nition of o, in the interval [πoi−1
+ 1, πoi − 1] there are no genes from π and,302

thus, from π[1..k]. Thus we can replace the sum with its last member:303

xπoi − xπoi−1
= πoi − πoi−1

− [πoi ∈ π[1..k]] = πoi − πoi−1
− [oi 6 k].

We got the same di�erence as in (5).304

Now consider yπoi − yπoi−1
. By the de�nition of y it is equal to:305

yπoi − yπoi−1
=

πoi∑
j=1

[j ∈ π[1..k]] · |Sj| −
πoi−1∑
j=1

[j ∈ π[1..k]] · |Sj| =
πoi∑

j=πoi−1+1

[j ∈ π[1..k]] · |Sj|.

Again, in the interval [πoi−1
+ 1, πoi − 1] there are no genes from π[1..k]. Thus we can306

replace the sum with only the last member:307

yπoi − yπoi−1
= [πoi ∈ π[1..k]] · |Soi| = [oi 6 k] · |Soi|.

We got the same di�erence as in (6).308

We do not need to consider other points, because points from oi−1 to oi−1 have the same309

y coordinate and oi−1 is the leftmost of them. Thus, when at least one gene is added the diag-310

onal ((x0, y0), (xN , yN)) is not horizontal and oi−1 is the farthest point among oi−1, . . . , oi−1.311

Now let consider what happens with the enrichment score graph when gene πk is added312
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to the query set π[1..k − 1] (Fig. S2). Let rk be a rank of gene πk among genes π, then313

coordinate of points (xi, yi) for i < rk do not change, while all (xi, yi) for i > rk are changed314

on (∆x,∆y) = (−1, |Sπk |).315

To make fast incremental updates we will decompose the problem into multiple smaller316

ones. For simplicity we assume that K+ 1 is an exact square of an integer b. Let split K+ 1317

points into b consecutive blocks of the size b: {(xk0, yk0), ..., (xkb−1, y
k
b−1)}, {(xkb , ykb ), ..., (xk2b−1, y

k
2b−1)}318

and so on.319

For each of b blocks we will store and update the farthest up point from the diagonal.320

When we know for each block its farthest point we can �nd the globally farthest point by a321

simple pass in O(b) time.322

Next, we show how to update the farthest points in blocks in amortized time O(b). This323

taken together with one O(b) pass will get us an algorithm to update the globally farthest324

point in amortized O(b) time.325

Below we use c = brk/bc as an index of a block where gene πk belongs, where rk is the326

ranking of the genes from π, i.e. roi = i.327

First, we describe the procedure to update point coordinates. We will store xi coordinates328

using two vectors: B of size b and D of size K + 1, such that xi = Bi/b + Di. When gene329

πk is added all xi for i > rk are decremented by one. To re�ect this we will decrement all330

Bj for j > c and decrement all Di for rk 6 i < cb. The update takes O(b) time. After this331

update procedure we can get value xi in O(1) time. The same procedure is applied for y332

coordinates.333

Second, for each block we will maintain an upper part of its convex hull. Having convex334

hull is useful because the farthest point in block always lays on its convex hull. All blocks335

except c have the points either not changed or shifted simultaneously on the same value. That336

means that the lists of points on the convex hulls for these blocks remain unchanged. For337

the block c we can reconstruct convex hull from scratch using Graham scan algorithm [10].338
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Because the points are already sorted by x coordinate, this reconstruction takes O(b) time.339

In total, it takes O(b) time to update the convex hulls.340

Third, the farthest points in blocks can be updated using the stored convex hulls. Con-341

sider a block where the convex hull was not changed (every block except, possibly, block c).342

Because diagonal always rotates in the same counterclockwise direction, the farthest point343

in block on iteration k either stays the same or moves on the convex hull to the left of the344

farthest point on the (k− 1)-th iteration. Thus, for each such block we can compare current345

farthest point with its left neighbor on the convex hull and update the point if necessary. It346

is repeated until the next neighbor is closer to the diagonal than the current farthest point.347

In the block c we just �nd the farthest point in a single pass by the points on the convex348

hull.349

To show that the updating the farthest points takes O(b) amortized time we will use350

potential method. Let a potential after adding k-th gene Φk be a sum of relative indexes351

of the farthest points for all the blocks. As there are b blocks of size b the sum of relative352

indexes lies between 0 and b2. Thus, Φk = O(b2). For an update of all b− 1 blocks except c353

we need to make tk = b− 1 + z operations of comparing two points, where z is the number354

of times the farthest points were updated. This can take up to Θ(b2) time in the worst case.355

However, it can be noticed, that potential change Φk −Φk−1 is equal to −z+O(b): the sum356

of indexes is decreased by a number of times the farthest points were updated plus O(b) for357

the block c where the index can go from 0 to b − 1. This gives an amortized cost of k-th358

iteration to be ak = tk + Φk −Φk−1 = b− 1 + z − z +O(b) = O(b). The total real cost of K359

iterations is
∑K

k=1 ak + Φ0−ΦK = O(Kb) +O(b2) = O(Kb), which means amortized cost of360

one iteration to be O(b).361

Taken together the algorithm allows to �nd all cumulative enrichment scores sr(π[1..k])362

in O(Kb) = O(K
√
K) time. The straightforward implementation of calculating cumulative363

values from scratch would take O(K2 logK) time. Thus, we have improved the performance364
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O(K logK√
K

) times.365

2.3.3 Implementation details366

We also implemented an optimization so that the algorithm does not build convex hull from367

scratch for a changed block c, but only updates the changed points. This does not in�uence368

the asymptotic performance, but decreases the constant factor.369

First, we start updating the convex hull from position rk and not from the start. To be370

able to do this, we have an array prev that for each gene g ∈ π stores the previous point on371

the convex hull if g were the last gene in the block. This actually is the same as the top of372

the stack in Graham algorithm and represent the algorithms state for any given point. As373

all points h to the left of g are not changed prevh also remains unchanged and need not to374

be recalculated.375

Second, we stop updating the hull, when we reach the point on the previous iteration376

convex hull. We can do this because every point to the left of g is rotated counterclockwise377

of any point to the right of g, which means that the �rst point on the convex hull right of g378

on (k − 1)-th iteration remains being a convex hull point at k-th iteration.379

2.4 An algorithm for exact calculation of GSEA P-values for integer380

gene-level statistics381

In this section we describe a polynomial algorithm to calculate GSEA P-value exactly, but382

only for the case when gene-level statistics are integer numbers: Si ∈ Z. For simplicity we383

will consider a problem of calculating the following probability:384

P
(
s+r (q) > γ

)
,

where q is a random gene set of size k. We also assume γ > 0.385
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Let denote the sum of k largest absolute values of gene ranks by T . The algorithm will386

be polynomial in terms of N , k and T .387

2.4.1 The basic algorithm388

Let us consider a gene set q = {q1, q2, . . . , qk}. Recall the formula for s+(q):389

s+(q) = ESi+ , where i
+ = arg max

i
ESi,

ESi =


0, if i = 0,

ESi−1 + 1
NS
|Si|, if 1 6 i 6 N and i ∈ q,

ESi−1 − 1
N−k , if 1 6 i 6 N and i /∈ q.

First, let rewrite the formula for ESi in an equivalent fashion, grouping positive and390

negative summands:391

ESi = 1
NS

(
i∑

j=1

[j ∈ q]|Sj|)− 1
N−k (i−

i∑
j=1

[j ∈ q]).392

Then for calculating ESi the following values are su�cient:393

• i: the index of the current gene;394

• c =
i∑

j=1

[j ∈ q]: the number of genes included into the set q among genes 1..i;395

• s =
i∑

j=1

[j ∈ q]|Sj|: the sum of the absolute values of gene-level statistics for genes396

included in the set among genes 1..i;397

• NS =
N∑
j=1

[j ∈ q]|Sj|: the sum of the absolute values of gene-level statistics for all genes398

in the set.399

Knowing the values above, ESi can be calculated as ESi = s
NS
− i−c

N−k .400
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Notice that NS can take only integer values from 0 to T (for a set of genes with the401

largest absolute values of gene-level statistics). Let us split the desired probability to a sum402

of independent probabilities based on the value of NS:403

P (s+(q) > γ) =
T∑

NS=0

P

((∑
j∈q
|Sj| = NS

)
∧ (s+(q) > γ)

)
.404

Our algorithm will be based on dynamic programming. For each possible value of NS405

we will process the genes one by one in increasing order of index and calculate an array406

fNS(i, c, s). The value fNS(i, c, s) will contain the probability for a uniformly random gene407

set q′ of c genes selected from genes 1..i to simultaneously have the following two properties:408

1. the sum of the absolute values of gene-level statistics of genes from q′ is equal to s;409

2. ESj < γ holds for all j 6 i, where the values of ES are calculated for the gene set q′410

but using the selected values of NS and k, not the ones calculated for the set q′.411

Suppose that we have calculated all values of fNS(i, c, s), then412

P

((∑
j∈q
|Sj| = NS

)
∧ (s+(q) < γ)

)
= fNS(N, k,NS)413

and414

P (s+(q) < γ) =
T∑

NS=0

fNS(N, k,NS).415

Finally, the sought probability is equal to:416

P (s+(q) > γ) = 1− P (s+(q) < γ) = 1−
T∑

NS=0

fNS(N, k,NS).417

Let us �nd a formula for fNS(i, c, s). The base case of dynamic programming is i = 0 for418

all NS:419

fNS(0, c, s) =


1, if c = s = 0,

0, otherwise.
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Suppose we want to calculate fNS(i, c, s) for some i > 0. First, calculate420

ESi = s
NS
− i−c

N−k421

and compare it to γ. If ESi > γ, then fNS(i, c, s) = 0 by de�nition.422

Otherwise, condition �ESj < γ holds for all j 6 i� can be simpli�ed to �ESj < γ holds423

for all j 6 i − 1�. This observation allows us to use values of f that have already been424

calculated. Consider two cases:425

1. Gene i does not belong to the set q′. As q′ is a set of c genes chosen uniformly at random426

from i genes, this case happens with the probability i−c
i
. The conditional probability427

that such set satis�es the two necessary properties is fNS(i− 1, c, s). Indeed, any set of428

size c with the sum of absolute values of gene-level statistics values equal to s, chosen429

among genes 1..i− 1 and satisfying the conditions on ES, is a valid set chosen among430

genes 1..i. Similarly, if a set does not satisfy the condition on ESj for some j 6 i− 1,431

this set should not be counted towards fNS(i, c, s) since obviously j 6 i.432

2. Gene i belongs to the set. This case happens with the probability c
i
. The probability433

that this set satis�es the necessary conditions is fNS(i − 1, c − 1, s − Si). Indeed, any434

set of size c− 1 with the sum of absolute values of gene-level statistics equal to s− Si,435

chosen among genes 1..i− 1 and satisfying the conditions on ES, can be extended with436

gene i, thus forming a set of size c satisfying both necessary properties. Similarly, if a437

set does not satisfy the condition on ESj for some j 6 i− 1, adding gene i will not �x438

the situation.439

Then we can calculate fNS(i, c, s) using the law of total probability:440

fNS(i, c, s) =
i− c
i
fNS(i− 1, c, s) +

c

i
fNS(i− 1, c− 1, s− Si),

in the case when i > 0 and ESi < γ.441
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Putting all the cases together, we arrive to the �nal formula for fNS(i, c, s):442

fNS(i, c, s) =



1, if i = c = s = 0,

0, if i = 0 and either c 6= 0 or s 6= 0,

0, if i > 0 and s
NS
− i−c

N−k > s+(p),

i−c
i
fNS(i− 1, c, s)+

c
i
fNS(i− 1, c− 1, s− Si), otherwise.

The overall complexity of the algorithm is O(NkT 2). The values of f can be evaluated443

sequentially in increasing order of i. It is enough to evaluate fNS(i, c, s) for 0 6 i 6 N ,444

0 6 c 6 k, and 0 6 s 6 NS 6 T . Each value of f can be evaluated in constant time.445

2.4.2 Optimizations and implementation details446

While the algorithm described above is polynomial, a number of further optimizations are447

required to make execution on real size inputs feasible.448

First, let note that the following property holds: fNS2(i, c, s) > fNS1(i, c, s) as long as449

NS2 > NS1. Indeed, ES values calculated using di�erent values of NS are decreasing when450

NS is increased. That means all gene sets counted towards fNS1(i, c, s) should also be counted451

towards fNS2(i, c, s) if NS2 > NS1.452

Following the observation above, instead of calculating values of fNS(i, c, s) we will con-453

sider the values g(i, c, s, b) = fb+1(i, c, s)−fb(i, c, s). These values will contain the probability454

of a random gene set q of size k selected uniformly from genes 1..N to satisfy simultaneously455

the following three properties:456

1. set q contains exactly c genes from the genes 1..i.457
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2. the sum of the absolute values of gene-level statistics of the �rst c genes from q is equal458

to s;459

3. ESj < γ holds for all j 6 i, where the values of ES are calculated for the gene set q460

using NS = b+ 1 (and for all higher values of NS);461

4. ESj > γ holds for at least one j 6 i, where the values of ES are calculated for the gene462

set q using NS = b (and for all lower values of NS).463

The sought probability can be calculated from values of g as follows:464

P (s+(q) > γ) = 1− P (s+(q) < γ) = 1−
T∑

NS=0

NS∑
b=0

g(N, k,NS, b).465

To calculate the values of g we will use the forward dynamic programming algorithm.466

In this algorithm we expand a tree of reachable dynamic programming states, starting from467

g(0, 0, 0, 0) which is equal to 1.468

The states will be considered by �levels� in an increasing order of i. The values g(i +469

1, c, s, b) from (i + 1)-th level are calculated based on level i. Note, that the sum of values470

on i-th level is always equal to 1.471

To calculate all values from the (i+ 1)-th level all non-zero values from the i-th level are472

considered sequentially. Let consider state (i, c, s, b) and let de�ne p = (k− c)/(N − i) � the473

probability that gene i + 1 will be added to the set. The corresponding set G(i, c, s, b) can474

be divided into two groups.475

1. The gene sets from G(i, c, s, b) that do not include gene i + 1. These gene sets are476

included into gene sets G(i + 1, c, s, b) on the level i + 1. Thus the corresponding477

probability g(i, c, s, b) · (1− p) is added to the value of g(i+ 1, c, s, b).478

2. The gene sets from G(i, c, s, b) that do include gene i+ 1. These gene sets are included479

into G(i + 1, c + 1, s′ = s + |Si+1|, b′) where b′ is an updated bound. To calculate480
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b′ let note that ESj will be greater or equal to γ i� s′

NS
− (i+1)−(c+1)

N−k > γ which is481

equivalent to NS 6 s′
i−j
N−k

+γ
. Thus b′ = max

(
b,

⌊
s′

i−j
N−k

+γ

⌋)
The probability that is482

added to g(i+ 1, c+ 1, s′, b′) is equal to g(i, c, s, b) · p.483

While the asymptotic number of states remains to be O(NkT 2) the forward dynamic484

programming allows to consider only �reachable� gene stats with g(i, c, s, b) > 0. In practice485

the number of reachable stats can be several orders of magnitude smaller then the total486

states.487

Furthermore, for the algorithm we can consider only states with g(i, c, s, b) > ε to be488

reachable for some small value of ε. If we do not consider the unreachable states we would489

not be able to calculated the desired probability exactly. However, if we calculate the value490

of δ as a sum of all the skipped states values, the desired probability will be calculated with491

the absolute error no more than δ.492

The algorithm implementation with few other optimizations is available at: https://493

github.com/ctlab/fgsea/blob/master/inst/exact/exact.cpp.494

2.5 FGSEA-multilevel: an algorithm for calculation of arbitrar-495

ily low P-values using adaptive multilevel split Monte Carlo496

scheme497

In this section we describe FGSEA-multilevel algorithm that can accurately estimate GSEA498

P-value for a pathway p of size k even when the true P-value is very small.499

Let γ = sr(p) > 0 be the enrichment score of the query pathway p for which we want to500

calculate the following value:501

P (sr (q) > γ)

P (sr (q) > 0)
,

where q is a random gene set of size k. This probability can be rewritten as follows:502
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P (sr (q) > γ)

P (sr (q) > 0)
=

P (s+r (q) > γ) · P
(
sr (q) > 0

∣∣ s+r (q) > γ
)

P (sr (q) > 0)
.

First, we focus on determining the probability P (s+r (q) > γ). This probability can be503

extremely small, so using a naive sampling gives a bad estimation. We use the adaptive504

multilevel split Monte Carlo method [6] to solve this problem.505

To estimate the probability P (s+r (q) > γ) we split the enrichment scores into levels

0 = l0 < l1 < . . . < lt = γ . Then we can de�ne the following probabilities:

P
(
s+r (q) > l1

∣∣ s+r (q) > l0
)

= α1,

P
(
s+r (q) > l2

∣∣ s+r (q) > l1
)

= α2,

. . .

P
(
s+r (q) > lt

∣∣ s+r (q) > lt−1
)

= αt.

Now the probability P (s+r (q) > γ) can be rewritten as
t∏
i=1

αi.506

To estimate αi we can draw a sample {qi1, qi2, . . . , qiZ} of size Z from a conditional distri-507

bution P
(
·
∣∣ s+r (q) > li−1

)
. Then508

αi ≈
Zi
Z
,

where Zi is the number of elements in the set {qij | s+r (qij) > li}.509

Below we show how levels li can be chosen and how to sample from the corresponding510

conditional distributions.511

2.5.1 Choosing the enrichment score levels512

We propose to chose value for a level li as a median of the enrichment scores for the qij513

sample. For simplicity Z is required to be an odd number.514

Then the procedure for estimating probability P (s+r (q) > γ) consists of repetition of the515
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following steps:516

1. On iteration i > 1 sample Z gene sets qij of size k from the distribution P
(
·
∣∣ s+r (q) > li−1

)
.517

2. Set the level l̃i to be equal to the median of values s+r (qji ).518

3. If l̃i > γ then stop the iterations and set li = γ and t = i, otherwise set li = l̃i.519

As a result, by construction, αi ≈ 1/2 for 1 6 i 6 t − 1. The value of αt can be520

approximated as Zt/Z (which is always > 1/2). Together we get the following expression for521

estimating the desired probability:522

P
(
s+r (q) > γ

)
≈ 2−(t−1) · Zt

Z
.

2.5.2 The conditional sampling implementation523

To generate a uniform sample qij from the conditional distribution P
(
·
∣∣ s+r (q) > li−1

)
we524

use the Metropolis algorithm.525

First, we generate a sample q11, q
1
2, . . . , q

1
Z of size Z from the distribution P(· | s+r (q) > l0).526

Since l0 = 0 and values of s+r are always non-negative it can be done by generating a uniformly527

random subset of size k from the genes {1, 2, . . . , N}.528

Now let consider a sample qi−11 , qi−12 , . . . , qi−1Z ∼ P(· | s+r (q) > li−2) at a step i > 1. The529

sample can be sorted in an increasing order of enrichment score values: s+r (qi−1(1) ) 6 s+r (qi−1(2) ) 6530

. . . 6 s+r (qi−1(Z) ). Let d = dZ/2e. The level li−1 is the median of the values s+r (qi−1j ) and, thus,531

is equal to li−1 = s+r (qi−1(d) ).532

Let �rst populate qij in the following way:533

qij =


qi−1(Z+1−j), if j < d,

qi−1(j) , otherwise.

This gives us a sample from the conditional distribution P
(
·
∣∣ s+r (q) > li−1

)
, however it is534
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not uniform.535

To make the sample uniform we apply a number of the Metropolis algorithm iterations.536

On each iteration for each gene set qij we apply the following steps:537

1. Choose a random gene g ∈ qij.538

2. Choose a random gene g′ /∈ qij.539

3. Consider q̃ij = qij \ {g} ∪ {g′}. If s+r (q̃ij) > li−1 then we replace qij with q̃
i
j.540

The iterations are repeated until the total number of successful replacements becomes541

greater or equal to k · Z. In practice, this number of steps is enough to get a su�ciently542

uniform sample to obtain a good estimation of probability, without a signi�cant increase in543

the running time of the algorithm.544

2.5.3 Estimating the P-value545

In order to estimate the desired P-value we also need to calculate the probabilities P (sr (q) > 0)546

and P (sr (q) > 0 | s+r (q) > γ).547

To calculate the probability P (sr (q) > 0) we generate gene sets q1, q2, ..., qZ′ , where548

each sample qi is selected uniformly at random from all the subsets of size k from the549

set {1, 2, . . . , N}. The samples are generated until the number of samples qi with sr(qi) > 0550

becomes equal to Z. Then the probability P (sr (q) > 0) is estimated as follows551

P (sr (q) > 0) ≈ Z

Z ′
.

To determine the remaining probability P (sr (q) > 0 | s+r (q) > γ) we calculate the number552

of gene sets in {qtj | s+r (qtj) > γ} with value of the enrichment score function sr is greater553

than zero. After that, the probability can be estimated as follows:554

P
(
sr (q) > 0 | s+r (q) > γ

)
≈

#{qtj | s+r (qtj) > γ ∧ sr(qtj) > 0}
#{qtj | s+r (qtj) > γ}

.
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2.5.4 Estimating log-probability555

To properly estimate a logarithm of the desired probability let note that the j-th order statis-556

tic of a standard uniform sample of size Z is a random variable from the beta distribution557

Beta (j, Z + 1− j). Therefore, we can use the properties of the beta distribution and make558

correct transition to the logarithm of probability. So for the median value of sample of odd559

size Z we have:560

E [logαi] = ψ

(
Z + 1

2

)
− ψ (Z + 1) for i ∈ {1, 2, . . . t− 1},

where ψ is digamma function. In the same way, we can calculate the expectation of the561

logarithm αt:562

E [logαt] = ψ (Zt + 1)− ψ (Z + 1) .

Then the logarithm of probability P (s+r (q) > γ) is estimated as563

log P
(
s+r (q) > γ

)
≈ (t− 1) ·

(
ψ

(
Z + 1

2

)
− ψ (Z + 1)

)
+ ψ (Zt + 1)− ψ (Z + 1) .

Similarly, we can estimate the variance of the estimates var [logαi] = ψ1

(
Z+1
2

)
−ψ1 (Z + 1),564

where ψ1 is trigamma function. From this we can approximate a standard error of our esti-565

mator as:566

sd =

√
t ·
(
ψ1

(
Z + 1

2

)
− ψ1 (Z + 1)

)
.

The same approach with digamma functions is used to calculate the logarithm of the567

probabilities P (sr (q) > 0 | s+r (q) > γ) and P (sr (q) > 0).568
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2.5.5 Optimizations and implementation details569

The most demanding step of FGSEA-multilevel algorithm is to check whether the newly570

obtained gene set has the enrichments score value of at least li. Importantly, this does not571

require full computation of enrichment score value. It is enough to show that there is at least572

one gene that has the running enrichment score value of at least li or, in other words, that573

at least one point on the enrichment score graph is farther away from the diagonal (Fig. S1)574

than some value calculated from li.575

Similarly to FGSEA-simple algorithm, a square root decomposition is used to split all the576

genes into approximately
√
K blocks. The block boundaries are determined automatically on577

each level based on the existing sample in such a way, that each block contains approximately578

√
K genes. In particular this decomposition enables adding and removing genes in O(

√
K)579

time while keeping the gene set sorted.580

Unlike FGSEA-simple algorithm we will not maintain the convex hull but will apply a581

few heuristics to do the required check faster.582

First we check a "candidate" point which has a high chance to be at the required distance583

from the diagonal. If it is so, we do not have to continue the check. The "candidate" gene584

is carried our from the previous iterations, as the point where the successful check has been585

interrupted.586

Next we go block by block. At the beginning we construct a "rectangle" upper bound587

on the enrichment score value at the block, which can be obtained by moving all the genes588

of the block to its start. If this upper bound does not satisfy our criterion we can skip the589

block. Otherwise, we go gene by gene and calculate the enrichment score values until it590

reaches the required value or the end of the block is reached. In the former case the check is591

interrupted with a successful result.592
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2.5.6 Comparison with the exact method593

To compare FGSEA-multilevel and the exact method on the same dataset we used rounded594

values of the gene-level statistics from the example data (section 2.2) as input data for both595

algorithms. Both algorithms calculated the probability P (s+r (q) > γ).596

The results of the algorithms for the pathways from the example data are shown on597

Fig 3c. The exact algorithm was run with ε = 10−40, all the probabilities were obtained with598

accuracy of at least six signi�cant digits. For FGSEA-multilevel Z = 101 was used.599

We also calculated empirical estimation errors and compared it to the theoretical ones600

(Fig 3d). For this we generated 100 independent estimates for a range of ES values (corre-601

sponding to P-values of 10−4 to 10−100, gene set sizes (from 15 to 250) and sample size (from602

101 to 1001). The raw values are available in the Supplementary Table.603

2.6 Filtering redundant pathways604

In this section we describe an algorithm to �lter redundant pathways from the results of605

FGSEA.606

Let consider two pathways p1 and p2 that both have a signi�cant GSEA P-value. There607

are two situations in which we will consider p2 to be non-redundant given p1:608

1. If pathway p2 is enriched even if we do not consider the genes from p1 at all. Formally,609

we calculate GSEA P-value for gene set p2 \p1 and gene-level statistics vector S[U \p1]610

for all the genes except p1. If the P-value is less than a pre-de�ned threshold, then611

pathway p2 is considered as non-redundant given p1.612

2. If pathway p2 is enriched even if we consider only genes from p1. Formally, we calculate613

GSEA P-value for gene set p2 ∩ p1 and gene-level statistics vector S[p1] for the genes614

from p1. Again, if the P-value is less than a pre-de�ned threshold, then pathway p2 is615

considered as non-redundant given p1.616
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Otherwise pathway p2 is considered to be redundant.617

The �ltering procedure starts with a set of signi�cantly enriched pathways Psig selected618

by the user: for example the pathways with GSEA P-values less than 0.01 after Benjamini-619

Hochberg correction, sorted by P-value. The output of the procedure is a list Pmain ⊂ Psig620

of pathways that are pairwise non-redundant. At the same time, all the other pathways621

Pred = Psig \ Pmain are redundant given some pathway from Psig.622

The procedure itself is similar to Sieve of Eratothenes algorithm. The pathways are623

considered one by one and some of them are marked as redundant. For a pathway p we �rst624

check if it is already marked as redundant, if yes, we go to the next pathway. Otherwise,625

we �rst run FGSEA-simple algorithm on a vector of statistics S[U \ p] and all the pathway626

currently not marked as redundant (including the ones that already have been considered,627

but excluding pathway p). Then, similarly, we run FGSEA-simple algorithm on a vector of628

statistics S[p]. Pathways that do not achieve non-redundant P-value threshold in both tests629

are marked as redundant.630
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Figure 1: Gene Set Enrichment Analsyis (GSEA) sensitivity depends on the ability to reach
high sampling depth. a, Overview of preranked GSEA method. b, The number of pathways
reaching Benjamini-Hochberg adjusted P-value threshold depends on the sampling depth
in a phase transition manner. The critical sampling depth, where the transition happens,
varies with the dataset. c, Distribution of critical sampling depth values across 605 curated
datasets from Gene Expression Omnibus, as estimated for three pathway collections. d,
Time required for the reference GSEA implementation to estimate P-values for di�erent
gene set collections and sampling depth values for dataset GSE22293. N/A values indicate
out of memory errors.
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Figure 2: Preranked gene set enrichment analysis can be sped up by sharing sampling
information between di�erent gene set sizes. a, It is su�cient to generate n independent
samples of size KM to calculate empirical distribution for any sizes Kj 6 KM by considering
only the pre�x of the samples of the size Kj. b, For a given gene sample enrichment scores
for all the pre�xes can be e�ciently calculated by employing a square root heuristic. c,
The P-values calculated with the FGSEA-simple method are consistent with the reference
implementation, but the results are obtained hundreds times faster.
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Figure 3: Adaptive multilevel Monte Carlo sampling scheme can be used to calculate ar-
bitrarily low P-values. a, A toy illustration of the multilevel split Monte Carlo scheme for
sample size of Z = 5. b, Comparison of GSEA P-values as calculated by FGSEA-simple
method run with the sampleing depth n = 108 and FGSEA-multilevel with the sample size
of Z=101. c, Comparison of P-values as calculated with an exact method and FGSEA-
multilevel method. Both methods were run on gene-level statistic values rounded to inte-
gers. d, Comparison between estimated and an observed error of log2 P-values for di�erent
P-values (from 10−4 to 10−100), gene set sizes (from 15 to 250) and sample sizes (from 101 to
1001). d, An example of FGSEA results as run with FGSEA-multilevel method for Th0 vs
Th1 comparison and Reactome pathways. The analysis was run with sample size of Z = 101.
Redundant pathways were �ltered.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2021. ; https://doi.org/10.1101/060012doi: bioRxiv preprint 

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/


Figure 4: FGSEA method with the multilevel approach detects more statistically signi�cant
pathways compared to other GSEA implementations in a fraction of time. All plots represent
data from analysis of the collection of 605 cureated GEO datasets with C5_BP used as a gene
set collection. a, Wall clock time of running FGSEA. b, The number of detected statistically
signi�cant pathways for di�erent adjusted P-value calculation procedures. Pathways with
small BH-adjusted P-value after FGSEA-multilevel are shown in grey. Pathways with small
BH-adjusted P-value after FGSEA-simple are shown in blue, orange and green, depending on
the sampling depth. Pathways with small Q-values as reported by Broad GSEA are shown
in red. c, Comparison of BH-adjusted P-values for FGSEA-multilevel and Q-values reported
by Broad GSEA. For illustration purposes all values are capped at 10−5. d, Same as c but
average pathway sizes are shown.
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Figure S1: A graph that corresponds to a calculation of enrichment score. Each breakpoint
on a graph corresponds to a gene present in the pathway. Dotted lines cross at a point which
is the farthest up from a diagonal (dashed line). This point correspond to gene i+, where
the maximal value of ESi is reached.
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Figure S2: Update of an enrichment score graph when gene πk ≈ 800 is added. Only a
fragment is shown. Black graph corresponds to a graph for gene set π[1..k − 1], gray graph
corresponds to π[1..k]. A part of the graph to the left of x = xrk does not change and
the other part is shifted to the top-left corner. The diagonal ((x0, y0), (xN , yN)) is rotated
counterclockwise.
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