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Abstract 13 

Background 14 

Sleep is a fundamental human behaviour with many functions, and disruptions to sleep can lead to a 15 

variety of adverse health outcomes. Previous research suggests that age can impair sleep quality, 16 

contributing to age-related declines in health. In the current study we examine lifespan changes in 17 

self-reported sleep quality and their associations with health outcomes across four domains: 18 

Physical Health, Cognitive Health, Mental Health and Neural Health.  19 

Methods 20 

This paper reports on analyses of a large (N=2406) sample of healthy adults (age 18-98) from the 21 

Cambridge Centre for Ageing and Neuroscience (Cam-CAN; www.cam-can.com) cohort. We 22 

measured sleep quality (Pittsburgh Sleep Quality Index) and measures of Physical, Cognitive, Mental, 23 

and Neural Health. We use Latent Class Analysis to identify sleep ‘types’ across the lifespan. Using 24 

Bayesian regressions we quantified the presence, and absence, of relationships between sleep 25 

quality and health measures and how these are affected by age. 26 

Results 27 

Using LCA we identified four sleep types: ‘Good sleepers’ (68.1% of the population, most frequent in 28 

middle age), ‘inefficient sleepers’ (14.01% of the population, most frequent in old age), ‘Delayed 29 

sleepers’ (9.28%, most frequent in young adults) and ‘poor sleepers’ (8.5% of the population, most 30 

frequent in old age). Second, we find that better sleep is generally associated with better health 31 

outcomes, strongly so for mental health, moderately for cognitive and physical health, but not for 32 

sleep quality and neural health. Finally, we find little evidence for interactions between sleep quality 33 

and age on health outcomes. 34 

Conclusions 35 

Lifespan changes in sleep quality are multifaceted and not captured well by summary measures. 36 

Instead, we find distinct sleep subtypes that vary in prevalence across the lifespan. Second, better 37 

self-reported sleep is associated with better health outcomes, and the strength of these associations 38 
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differs across health domains. Notably, the absence of associations between sleep quality and white 39 

matter suggests that previously observed associations may depend on clinical samples with 40 

pathological sleep deficiencies that do not necessarily generalise to healthy cohorts. While our 41 

measure of sleep quality is self-reported, these findings suggest that such measures can provide 42 

valuable insight when examining large, typically-ageing samples. 43 

 44 

Keywords 45 

Ageing, sleep quality, healthy ageing, cognition, mental health, cognition, white matter, physical 46 

health 47 

48 
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Background 49 

Sleep is a fundamental human behaviour, with humans spending almost a third of their lives 50 

asleep. Regular and sufficient sleep has been shown to benefit human physiology through a number 51 

of different routes, ranging from consolidation of memories [1]to removal of free radicals [2] and 52 

neurotoxic waste [3]. Sleep patterns are known to change across the lifespan in various ways, 53 

including decreases in quantity and quality of sleep [4], changes in the alignment of homeostatic and 54 

circadian rhythms [5], decreases in sleep efficiency [6] the amount of slow-wave sleep, and an 55 

increase in daytime napping[7]. Importantly, interruption and loss of sleep has been shown to have 56 

wide ranging adverse effects on health [8], leaving open the possibility that age-related changes in 57 

sleep patterns and quality may contribute to well-documented age-related declines in various health 58 

domains. Recent work suggests sleep disruption may present a novel mechanistic pathway and 59 

treatment target for Alzheimer’s disease [9]. 60 

In the current study, we examine self-reported sleep habits in a large, population-based 61 

cohort Cambridge Centre for Ageing and Neuroscience (Cam-CAN, [10]). We relate sleep measures 62 

to measures of health across four health domains: cognitive, brain health, physical and mental 63 

health. Our goal is to quantify and compare the associations between typical age-related changes in 64 

sleep quality and a range of measures of health measures that commonly decline in later life.   65 

We assess sleep using a self-reported measure of sleep quality, the Pittsburgh Sleep Quality 66 

Index (PSQI) [11]. The PSQI has good psychometric properties [12] and has been shown to correlate 67 

reliably with diseases of aging and mortality [13–15]. Although actigraphy (measuring sleep quality 68 

in the lab) is commonly considered the gold standard of sleep quality measurement, it is often 69 

prohibitively challenging to employ in large samples. A recent direct comparison of sleep measures 70 

[16] suggests that although subjective sleep measures (such as PSQI) may have certain drawbacks in 71 

older samples, they also capture complementary aspects of sleep quality not fully covered by 72 

actigraphy. Moreover, collecting self-report sleep quality data in a large, deeply phenotyped cohort 73 

allows for several additional benefits. 74 
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First, previous work on the effects of sleep has tended to focus on either the pathological 75 

extremes of sleep problems [17], leaving open the question whether these findings generalise to 76 

how non-pathological differences in sleep quality affect health outcomes in non-clinical samples.  77 

Second, smaller studies often focus on specific health measures such as metabolism [18] or 78 

cognition [19]. By instead studying a range of health outcomes in the same population, we can 79 

compare and contrast the effect of sleep quality on multiple health domains in the same individuals. 80 

Finally, previous studies, especially neuroimaging samples, have relied on relatively small sample 81 

sizes [19, 20 ], although see [22].  82 

Small samples both limit statistical power and the extent to which optimal statistical 83 

methodology can be employed. The large sample size in the current study allows us to use advanced 84 

analytic techniques such as latent class analysis to examine whether sleep quality can be described 85 

not just as a continuum, but in terms of a discrete set of sleep profiles across individuals. Moreover, 86 

the large sample size allows us to use Bayesian statistics to quantify both the presence and absence 87 

of associations between sleep quality and health. Together, this suggests considerable value in 88 

assessing the relationship between self-reported sleep quality and health outcomes in a large, 89 

population-based, age-heterogeneous sample.  90 

Methods 91 

Sample 92 

Participants were recruited as part of the population-based Cambridge Centre for Ageing and 93 

Neuroscience (Cam-CAN) cohort (www.cam-can.com).  For details of the project protocol see [10] 94 

and [23], and for further details of the Cam-CAN dataset visit  http://www.mrc-95 

cbu.cam.ac.uk/datasets/camcan/. The raw data are available upon signing a data sharing request 96 

form (see http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ for more detail). A further subset 97 

participated in a neuroimaging session [23] . Participants included were native English speakers, had 98 

normal or corrected to normal vision and hearing, and scored 25 or higher on the mini mental state 99 
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exam  (MMSE; Folstein, Folstein, & McHugh, 1975). Ethical approval for the study was obtained from 100 

the Cambridgeshire 2 (now East of England- Cambridge Central) Research Ethics Committee 101 

(reference: 10/H0308/50). Participants gave written informed consent. 102 

Sleep Measures 103 

Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI), a well-validated self-104 

report questionnaire [11, 16] designed to assist in the diagnosis of sleep disorders. The questions 105 

concern sleep patterns, habits, and lifestyle questions, grouped into seven components, each 106 

yielding a score ranging from 0 (good sleep/no problems) to 3 (poor sleep/severe problems). The 107 

seven sleep components in the PSQI are as follows: 108 

Component 1: Subjective Sleep Quality. The participant self-reports the quality of their sleep, 109 

on a scale between “Very good” (0) to “Very bad” (3), with this value representing their overall 110 

‘Quality’ score.  111 

 Component 2: Sleep Latency. Assessing how long it takes participants to fall asleep, and 112 

whether falling asleep often causes any sleeping problems.  113 

Component 3: Sleep Duration. Self-report of how many hours on average of ‘actual’ sleep 114 

per night (>7 hours=0, 6-7 hours=1, 5-6 hours = 2, <5 hours =3). 115 

Component 4: Sleep Efficiency. Computed by dividing ‘hours slept’ by ‘hours in bed’. This 116 

percentage is stratified to give four scores ranging from <65% (3, for highly inefficient sleep) to >85% 117 

(0, for efficient sleep). 118 

 Component 5: Sleep Disturbance. A number of sub questions regarding disruptions are 119 

summed to quantify the extent and regularity of disruptions to sleep (e.g. ‘Not during the past 120 

month’ (0) to ’Three or more times a week’ (3).  121 

 Component 6: Use of sleep medication. The participant rates how often they have taken 122 

medicine (prescribed or ‘over the counter’) to aid their sleep (‘not during the last month’=0, ‘three 123 

or more times a week’=3). 124 
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 Component 7: Daytime Dysfunction. Uses two questions to assess the extent and frequency 125 

to which lack of sleep impacts on daily activities, ranging from ‘No problem at all’ (0) to ‘A very big 126 

problem’/’Three or more times a week’ (3).  127 

These component scores are summed to a PSQI Total score ranging between 0 and 21, with 128 

higher scores reflecting poorer sleep quality. 129 

Health Measures 130 

Many conceptualisations of healthy ageing exist [25]. Here we aim to capture the 131 

relationship between sleep and health across a broad range of variables in four key domains - 132 

cognitive, brain, physical and mental health across the lifespan. We describe these four health 133 

domains and variables below, and Table 1 provides an overview of each variable, including 134 

distributional characteristics and relevant citations. 135 

Cognitive health. A number of studies have found associations between poor sleep and 136 

cognitive decline, including in elderly populations. Poor sleep affects cognitive abilities such as 137 

executive functions (e.g. Regestein et al., 2004) and learning and memory processes [27], whereas 138 

short term pharmaceutical interventions such as administration of melatonin improve both sleep 139 

quality and cognitive performance . Scullin & Bliwise (2015, p. 97) conclude that “maintaining good 140 

sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and 141 

serves to protect against age-related cognitive declines”.  Because sleep may affect various aspects 142 

of cognition differently [19], we include measures that cover a range of cognitive domains including 143 

memory, reasoning, response speed, and verbal fluency, as well as including a measure of general 144 

cognition. See Table 1 and [10] for more details. 145 

Neural health. Previous research suggests that individuals with a severe disruption of sleep 146 

are significantly more likely to exhibit signs of poor neural health [20, 29]. Specifically, previous 147 

studies have observed decreased white matter health in clinical populations suffering from 148 

conditions such as chronic insomnia [17], obstructive sleep apnoea [30, 31], excessively long sleep in 149 

patients with diabetes [32], and REM Sleep Behaviour Disorder [33]. Many of these studies focus on 150 
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white matter hyperintensities (WMH), a measure of the total volume or number of low-level neural 151 

pathological regions (although some study grey matter, e.g. [20, 34, 35]). White matter 152 

hyperintensities are often used as a clinical marker, as longitudinal increases in WMHs are 153 

associated with increased risk of stroke, dementia and death [36] and are more prevalent in patients 154 

with pathological sleep problems [31, 32]. However, use of this metric in clinical cohorts largely 155 

leaves open the question of the impact of sleep quality on neural (white matter) health in non-156 

clinical, healthy populations. To address this question, we use a more general indicator of white 157 

matter neural health, namely Fractional Anisotropy (FA). Fractional anisotropy quantifies the 158 

directional coherence of the diffusion of water molecules, and is associated with white matter 159 

integrity and myelination (see [37, 38] for further discussion regarding white matter measures). We 160 

use FA as recent evidence [39] suggests that WMHs represent the extremes (foci) of white matter 161 

damage, and that FA is able to capture the full continuum of white matter integrity. This suggests 162 

that using fractional anisotropy provides a sensitive marker of neural health suitable for large, non-163 

clinical healthy cohorts. 164 

Physical health. Sleep quality is also an important marker for physical health, with poorer 165 

sleep being associated with conditions such as obesity, diabetes mellitus [18], overall health [8, 22] 166 

and increased all-cause mortality [40]. These associations have been observed in both directions, 167 

such that longer sleep was associated with greater risk of stroke [41]. We focus on a set of variables 168 

that capture three types of health domains commonly associated with poor sleep: Cardiovascular 169 

health measured by pulse, systolic and diastolic blood pressure [42], self-reported health, both in 170 

general and for the past 12 months, (e.g. Strine & Chapman, 2005) and body-mass index (e.g. Taheri, 171 

Lin, Austin, Young, & Mignot, 2004). 172 

Mental health. Previous work has found that disruptions of sleep quality are a central 173 

symptom of forms of psychopathology such as Major Depressive Disorder, including both 174 

hypersomnia and insomnia [22, 45], and episodes of insomnia earlier greatly increased the risk of 175 

later episodes of major depression [46]. Kaneita et al., (2006) found a U-shaped association between 176 
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sleep and depression, such that individuals regularly sleeping less than 6, or more than 8, hours were 177 

more likely to be depressed. A prospective study by Roberts et al., (2000) in an ageing population 178 

showed a strong association between depression and sleep problems. At the other end of the 179 

lifespan, [48] found that in late adolescence and early adulthood people self-reporting a diagnosis of 180 

insomnia were more likely to report mental health symptoms and have lower working memory 181 

capacity. Both depression (e.g. Fried & Nesse, 2015) and anxiety [50, 51] are commonly associated 182 

with sleep problems. To capture these dimensions we used both scales of the Hospital Anxiety and 183 

Depression Scale (HADS) [52], a widely used and standardized questionnaire that captures self-184 

reported frequency and intensity of anxiety and depression symptoms.  185 

 186 
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Table 1. Description of health variables across each of four domains (cognitive, neural, physical, mental). For each variable details are given including a description of the task it is derived from, relevant citations, a 

definition of the variable, and descriptive statistics.   

 

Health domain Task and Description  Variable Descriptives Citation 

Cognitive 
Story Recall Immediate: 
Participants hear a short story and are asked to recall as accurately as 
possible.  

Recall manually scored for similarity and 
precision (min=0, max=24) 

M=13.14, SD=4.66, Range=(0-24) (Wechsler, 1999) 

Cognitive 
Story Recall Delayed: 
Same as above but recall after 30 minute delay 

Recall manually scored for similarity and 
precision (min=0, max=24) 

M=11.47, SD=4.92, Range=(0-24) (Wechsler, 1999) 

Cognitive 
Letter Fluency (phonemic fluency): 
Participants have one minute to generate as many words as possible 
beginning with the letter 'p'. 

 Total words generated (min=0,max=30 ) M=25.38, SD=3.96, Range=(0-30) (Wechsler, 1999) 

Cognitive 
Animal Fluency (semantic fluency): 
Participants have one minute to generate as many words as possible in the 
category 'animals'. 

Total words generated (min=0,max=30) M=25.85, SD=4.47, Range=(0-30) (Wechsler, 1999) 

Cognitive 
Cattell Culture Fair: 
Test of fluid reasoning using four  subtests (series completions, odd-one-out, 
matrices and topology) 

Total correct summed across four subtests. 
Min=0, max=46 

M=31.8, SD=6.79, Range=(11-44) (Cattell, 1971) 

Cognitive 
Simple reaction time:  
Speed in a simple reaction time task 

1/response time in seconds 
M=0.37, SD=0.08, Range=(0.24-
0.93) 

(Shafto et al., 2014) 

Cognitive 

Addenbrookes Cognitive Examination, Revised: 
Screening test for dementia using seven subtests (orientation, attention and 
concentration, memory, fluency, language, visuospatial abilities, perceptual 
abilities) 

Performance on multiple tests converted to 
min=0, max=100 range 

M=89.25, SD=13.4, Range=(0-100) 
(Mioshi, Dawson, Mitchell, Arnold, & Hodges, 
2006) 

Neural 
White matter health: 
Measure of tract integrity using fractional anisotropy 

Fractional Anisotropy (min=0, max=1,  averaged 
across 10 tracts) 

M=0.5, SD=0.03, Range=(0.3-0.56) (Hua et al., 2008) 

Physical 
Self-reported Health, in general: 
Participants use a 4-point scale to respond to the prompt "Would you say for 
someone of your age, your own health in general is..." 

Score from 1 = Excellent to 4= Poor M=2.02, SD=0.79, Range=(1-3) (McGee, Liao, Cao, & Cooper, 1999) 
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Physical 
Self-reported Health, last 12 months: 
Participants use a 3-point scale to respond to the prompt "Over the last 
twelve months would you say your health has on the whole been..." 

Score from 1 = Good to 3= Poor M=1.46, SD=0.71, Range=(1-3) (McGee et al., 1999) 

Physical Systolic blood pressure 
Mean systolic blood pressure in mmHg, 
averaged across three consecutive 
measurements 

M=120.11, SD=17, Range=(78.5-
186) 

Hishida, H. (1993). U.S. Patent No. 5,220,925. 
Washington, DC: U.S. Patent and Trademark 
Office. 

Physical Diastolic blood pressure 
Mean diastolic blood pressure in mmHg, 
averaged across three consecutive 
measurements 

M=73.14, SD=10.48, Range=(49-
115.5) 

Hishida, H. (1993). U.S. Patent No. 5,220,925. 
Washington, DC: U.S. Patent and Trademark 
Office. 

Physical Resting pulse 
Mean pulse in beats per minute, averaged 
across three consecutive measurements 

M=65.69, SD=10.5, Range=(40-
110.5) 

Hishida, H. (1993). U.S. Patent No. 5,220,925. 
Washington, DC: U.S. Patent and Trademark 
Office. 

Physical Body Mass Index  (BMI) (weight in kg) / (height in m)^2 
M=25.77, SD=4.59, Range=(16.75-
48.32) 

(Deurenberg, Weststrate, & Seidell, 2007) 

Mental health 
Anxiety Subscale (Hospital Anxiety and Depression Scale (HADS)): 
Participants response to seven questions about anxiety-related behaviours  

Seven questions rated on 0 to 3 scale ('Often' to 
'Very seldom'). Min=0, Max=21 

M=5.17, SD=3.4, Range=(0-19) (Zigmond & Snaith, 1983) 

Mental health 
Depression Subscale (Hospital Anxiety and Depression Scale (HADS)): 
Participants response to seven questions about depression-related 
behaviours  

Seven questions rated on 0 to 3 scale ('Often' to 
'Very seldom'). Min=0, Max=21 

M=3.32, SD=2.91, Range=(0-14) (Zigmond & Snaith, 1983) 
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Analyses  

Below, we examine whether self-reported sleep patterns change across the lifespan, both for the 

PSQI sum score and for each of the seven PSQI components. We then examine the relationships 

between the sleep quality and the four health domains in three ways: First, we examine the simple 

regression of the health outcome on sleep variables, to determine whether there is evidence for an 

association between poor sleep quality and poor health outcomes. Second, we examine whether the 

relationship between sleep and health is attenuated when we include age as a covariate. Finally, we 

include a continuous interaction term (by adding a sleep*age term to a regression model after 

scaling both variables to have a standard normal distribution) to examine whether there is evidence 

for a changing relationship between sleep and outcomes across the lifespan.  

For all regressions we will use a default Bayesian approach advocated by Liang, Paulo, 

Molina, Clyde, & Berger, (2008); Rouder & Morey, (2012); Wagenmakers, (2007); Wei et al., (2012); 

Wetzels et al., (2011) and others. This approach has avoids several well-documented problems  

known to plague p-values [55]. Moreover, Bayesian approach allows for the quantification of null 

effects, such that we can draw conclusions about the absence of certain associations in our data. 

Such null findings can be of considerable scientific value, as they may suggest the absence of risk 

factors in the non-clinical range of sleep quality. Third, Bayesian analyses are commonly considered 

to be less prone to multiple comparison problems (e.g. Gelman, Hill, & Yajima, 2012), which is useful 

given the breadth of our outcome measures. We can compare the evidence from a Bayesian 

regression to a null model (say, without a slope) to and compute aa Bayes Factor, a continuous 

measure of evidence of the model being tested compared to some other reference model (such as 

an ‘intercept only’ model compared to a linear regression). Although this is a continuous measure of 

evidence, it can be useful to use descriptive heuristics to quantify the strength of the evidence. 

Jeffreys [59] proposed a categorisation of Bayes Factors as seen in Figure 1: 
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Figure 1. Descriptive interpretation of Bayes Factors. 
 
 

 A Bayes Factor of, e.g., 7, in favour of a regression model suggests that the data are seven 

times more likely under that model than an intercept only model (for an empirical comparison of p-

values and Bayes factors, see Wetzels et al., 2011). Note that Bayes Factors are symmetrical: a Bayes 

Factor of .1 in favour of the model of interest (BF10=0.1) is equivalent to a Bayes Factor of 10 in 

favour of the null model (BF01=10). We report log Bayes Factors for large effects and regular Bayes 

Factors for smaller effects. To compute Bayes Factors we will use Default Bayes Factor approach for 

model selection [53, 54] in the package BayesFactor [60] using the open source software package R 

[61]. As previous papers report associations between sleep and outcomes ranging from absent to 

considerable in size we utilize the default, symmetric Cauchy prior with width 
√2

2
 which translates to 

a 50% confidence that the true effect will lie between -.707 and .707. Prior to further analysis, scores 

on all outcomes were transformed to a standard normal distribution, and any scores exceeding a z-

score of 4 or -4 were recoded as missing (aggregate percentage outliers across the four health 

domains: Cognitive, 0.41%, Mental, 0.16%, Neural, 0.37% Physical, 0.031%). 
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Results 

1. Age-related differences in sleep quality 

First, we examined sleep changes across the lifespan by examining age-related differences in the 

PSQI sum score (N= 2178, M=5.16, SD=3.35, Range=0-19). Regressing the PSQI global score on age, 

shown in Figure 2, showed evidence for a positive relationship across the lifespan (logBF10= 10.45).  

This suggests that on the whole, sleep quality decreases across the lifespan (note that higher PSQI 

scores correspond to worse sleep).  

 

Figure 2. The relation of age to general sleep quality (PSQI sum-score across the lifespan 

 

Although this amounts to strong statistical evidence for an age-related difference (‘Extreme' 

according to Jeffreys, (1961), the effect was modest in size, with age explaining 1.23 % of the 

variance in the PSQI Total score. Next, we examined which subcomponents were driving this effect, 

regressing each of the seven components on age in the same manner. We visualise these results 

using a tile plot [62], as shown in Figure 3. Each cell shows the numeric effect size (R-squared, 0-100) 

of the bivariate association between a sleep component and a health outcome, colour coded by the 

statistical evidence for a relationship using the Bayes Factor. If the parameter estimate of the 
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regression is positive, the r-squared value has the symbol ‘+’ added (note that this may mean sleep 

quality is associated with ‘better’ or ‘worse’ outcomes depending on the nature of the variable, cf. 

Table 1). In Figure 3 we see that that age has varying and specific effects on different aspects of 

sleep quality. In line with the overall age-related worsening of the PSQI Total score, four components 

showed a worsening of sleep quality across the lifespan (Total, Duration, Efficiency, Daytime 

Dysfunction and Sleep Medication). The strongest age-related decline is that of Efficiency, showing 

an R-squared of 6.6%.  

However, sleep did not worsen uniformly across the lifespan. For example, we observed 

moderate evidence that sleep latency did not change across the lifespan (Sleep Latency, BF01= 9.25, 

in favour of the null), Sleep Quality showed no evidence for either change or stasis (BF10= 1.63) and 

one sleep component, Daytime Dysfunction, improved slightly across the lifespan (BF10= 7.03).  

 

Figure 3. Bayesian Regressions between individual PSQI components and age. Values 
represent r-squared. Positive parameter estimates are denoted with a + symbol next to the r-
squared value. Here, a positive relationship between age and sleep components denotes a 
worsening of sleep quality across the lifespan. N varies slightly across components due to varying 
missingness (N mean = 2320.20, N SD = 68.5] 

 

Finally, we entered all seven components into a Bayesian multiple regression 

simultaneously, to examine to what extent they could, together, predict age. The best model 

included every component except Sleep Latency (logBF10= 142.71). Interestingly, this model 
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explained 13.41% of the variance in age, compared to 1.23% for the PSQI Total score, and 6.4% for 

the strongest single component. This shows that lifespan changes in self-reported sleep are 

heterogeneous and partially independent, and that specific patterns and components need to be 

taken into account simultaneously to fully understand age-related differences in sleep quality.   

These finding shows that neither the PSQI sum score nor the sleep components in isolation 

fully capture differences in sleep quality across the lifespan. To better elucidate individual 

differences in sleep quality we next use Latent Class Analysis [63]. This technique will allow us 

examine individual differences in sleep quality across the lifespan in more detail than afforded by 

simple linear regressions: Rather than examining continuous variation in sleep components, LCA 

classifies individuals into different sleep types, each associated with a distinct profile of ‘sleep 

symptoms’. If there are specific constellations of sleep problems across individuals, we can quantify 

and visualize such sleep types. Moreover, by using Latent Class Regression, we can examine whether 

the likelihood of belonging to any sleep ‘type’ changes as a function of age. To analyse the data in 

this manner, we binarized the responses on each component into ‘good’ (0 or 1) or ‘poor’ (2 or 3). 

We fit a series of Latent Class solutions varying from 2 to 6 sleep types, including age as a covariate 

(simultaneously including a covariate is known as latent class regression or concomitant-variable 

latent class models [64]. We repeated each class solution 50 times with a maximum of 5000 

iterations to ensure that the model fit was not affected by local minima of the log-likelihood. We 

found that the four class solution gives the best solution, according to the Bayesian Information 

Criterion [65] (BIC for 4 Classes = 11825.65, lowest BIC for other solutions= 11884.92 (5 classes). 

Next we inspected the nature of the sleep types, the prevalence of each ‘sleep type’ in the 

population, and whether the likelihood of belonging to a certain sleep type changes across the 

lifespan. Figure 4a shows the component profile for the four sleep types we identified.  

Class 1, which we refer to as ‘Good sleepers’, make up 68.1% of participants. Their sleep 

profile is shown in Figure 4A, top left, and is characterised by a low probability of responding ‘poor’ 

to any of the sleep components. Class 2, ‘inefficient sleepers’, make up 14.01% of the participants, 
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and are characterized by poor sleep Efficiency: Members of this group uniformly (100%) report poor 

sleep Efficiency, despite relatively low prevalence of other sleep problems, as seen in Figure 4A, top 

right. Class 3,  seen in the bottom left of Figure 4a, makes up 9.28% of the participants and can be 

described as ‘Delayed sleepers’: They are characterized by modestly poor sleep across the board, but 

a relatively high probability of poor scores on Sleep Latency (59%), Sleep Quality (51%) and sleep 

Disturbance (31%). Finally, Class 4,  ‘Poor sleepers’, make up 8.5% of the participants, shown bottom 

right in Figure 4A. Their responses to any of the seven sleep components are likely to be ‘poor’ or 

‘very poor’, almost universally so for ‘sleep quality’ (94%) and ‘Sleep Efficiency’ (97.7%).  

Next, we examined whether age predicts the likelihood of belonging to any particular class 

using latent class regression. This analysis, visualised in Figure 4b, shows that the probability of 

membership of each classes compared to the reference class (good sleepers) changes significantly 

across the lifespan for each of the classes (Class 2 versus class 1: beta/SE= 0.05/0.00681, t=7.611, , 

Class 3 versus class 1: beta/SE= -0.01948/0.0055, t=-3.54), Class 4 versus class 1: beta/SE 

0.01269/0.00478, t=2.655, for more details on generalized logit coefficients , see Linzer & Lewis, 

2011, p. 21). The frequency of Class 1 (Good sleepers) peaks in middle to late adulthood, dropping 

increasingly quickly after age 50. Class 2 (Inefficient sleepers) are relatively rare in younger 

individuals, but the prevalence increases rapidly in individuals over age 50. On the other hand, Class 

3 (Delayed sleepers) shows a steady decrease in the probability of an individual showing this profile 

across the lifespan, suggesting that this specific pattern of poor sleep is more commonly associated 

with younger adults. Finally, the proportion of Class 4 (poor sleepers) members increases only 

slightly across the lifespan. Together, the latent class analysis provides additional evidence that the 

PSQI sum score as an indicator of sleep quality does not fully capture the subtleties of age-related 

differences. Age-related changes in sleep patterns are characterized by specific, clustered patterns 

of sleep problems that cannot be adequately characterized by summation of the component scores. 

Next, we examine the relationships between sleep components and measures of health across 

different domains. 
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Figure 4. Latent Class Analysis. Panel A shows the sleep quality profiles for each of the four classes. 
Panel B shows the conditional probability of belonging to each class across the lifespan. 
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Sleep, health domains and age 

The above analyses show how both a summary measure and individual measures of sleep 

quality change across the lifespan. Next, we examined the relationships between sleep quality 

measures (seven components and the global PSQI score) and health variables (specific variables 

across four domains, as shown in Table 1).  We will focus on three questions within each health 

domain: First, is there a relationship between sleep quality and health? Second, does the strength 

and nature of this relationship change when age is included as a covariate? Third, does the strength 

and nature of the relationship change across the lifespan?  We will examine these questions across 

each of the four health domains.  

Cognitive health 

First, we examined the relationships between sleep quality and seven measures of cognitive health 

(see Table 1 for details).  As can be seen in Figure 5, several relationships exist between measures of 

cognitive health and measures of sleep quality. The strongest associations were found for poorer 

Total Sleep, poorer sleep Efficiency and use of Sleep Medication, all associated with poorer 

performance on cognitive tests. The cognitive abilities most strongly associated with poor sleep are 

immediate and delayed memory, fluid reasoning and a measure of general cognitive health, ACE-R. 

Two patterns emerged: First, the strongest predictor across the simple and multiple regressions was 

for the PSQI Total score. Tentatively this suggests that a cumulative index of sleep problems, rather 

than any specific pattern of poor sleep, is the biggest risk factor for poorer cognitive performance. 

Secondly, after controlling for age, the most strongly affected cognitive measure is phonemic 

fluency, the ability to generate name as many different words as possible starting with a given letter 

within a minute. Verbal fluency is commonly used as a neuropsychological test (e.g. Miller, 1984). 

Previous work suggests it depends on both the ability to cluster (generating words within a semantic 

cluster) and to switch (switching between categories), and is especially vulnerable to frontal lobe 

damage Although modest in size, our findings suggests this task, dependent on multiple executive 

processes, is particularly affected by poor sleep quality [68]. The second strongest association was 
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with the ACE-R, a general cognitive test battery similar in style and content to the MMSE. The 

associations with cognition were slightly attenuated when age was included as a covariate 

(Supplementary Figure A) but the basic effects remained.  

When an interaction term with age was included, no evidence for interactions with age were 

observed (mean logBF10=-2.08, see Supplementary Figure B), suggesting that the negative 

associations between sleep and cognitive performance are a constant feature across the lifespan, 

rather than specifically in elderly individuals. Together this suggests that poor sleep quality is 

modestly and consistently associated with poorer general cognitive performance across the lifespan, 

most strongly with semantic fluency. Next, we examine whether there is evidence for a relationship 

between poor sleep and poorer neural health. 

 

Figure 5. Simple regressions between sleep components and Cognitive Health. The strength of the 
effect is colour-coded by Bayes Factor, and the effect size is shown as r-squared (as a percentage out 
of 100). Sample varies across components and measures due to varying missingness. Cattell and 
Reaction Time were measured only in the imaging cohort: mean N = 648, N=11.11. Sample sizes for 5 
other domains are similar: mean N= 2300.25, SD= 65.57)] 
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Neural Health 

Next we examined the relationship between sleep quality and neural health. As described in the 

Methods, we focus on white matter health as indexed by fractional anisotropy. Using Diffusion 

Tensor Imaging, we estimated a general index of white matter integrity in 10 tracts [69] shown in 

Figure 6, by taking the average Fractional Anisotropy in each white matter ROI.  

 

Figure 6. Ten white matter ROIS based on Hua et al. (2008). Mean FA per ROI was averaged 
bilaterally and used in further analysis. 
 

We use the data from  a subsample of 641 individuals (age M=54.87, range 18.48-88.96) who were 

scanned in a 3T MRI scanner (for more details regarding the pipeline, sequence and processing 

steps, see [70]). Regressing neural WM ROI’s on sleep quality, we find several small effects, with the 

strongest associations between sleep efficiency and neural health (see Supplementary Figure C). All 

effects are such that poorer sleep is associated with poorer neural health, apart from a small effect 
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in the opposite direction for Uncinate and Daytime Dysfunction (BF10= 6.20). However, when age is 

included as a covariate, the negative associations between sleep quality and white matter health are 

attenuated virtually to zero (Figure 7, mean/median BF10= 0.18/.10), with Bayes Factors providing 

strong evidence for the lack of associations between sleep quality and white matter integrity. One 

exception was observed: The use of Sleep Medication is associated with better neural health in the 

corticospinal tract, a region previously found to be affected by pathological sleep problems such as 

sleep apnoea [31]. However, this effect is very small (BF10=3.24), so should be interpreted with 

caution. Finally, we tested for any interactions by including a mean-scaled interaction term 

(sleep*age, Supplementary Figure D). This analysis found evidence for a significant interaction, 

between the Superior Longitudinal Fasciculus (SLF) and Sleep Medication (BF10= 13.77), such better 

neural health in the SLF was associated with the use of Sleep Medication more strongly in older 

adults. Together, these findings suggest that in general, once age is taken into account, self-reported 

sleep problems in a non-clinical sample are not associated with poorer neural health, although there 

is some evidence for  a modest associations between better neural health in specific tracts and the 

use of sleep medication in the elderly.  
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Figure 7. Multiple regressions between sleep components and Neural Health. Each cell represents 
the relationship between a sleep component and the mean neural health in a given tract as index by 
Fractional Anisotropy. Numbers represent R-squared, the sample size is show in the last column. 
Strong associations are observed between measures of Sleep Efficiency and multiple tracts, along 
with sporadic associations between other components and tracts. White matter tracts 
abbreviations: Uncinate fasciculus (UNC), superior longitudinal fasciculus (SLF), inferior longitudinal 
fasciculus (ILF), inferior Fronto-occipital fasciculus (IFOF), forceps minor (FMin), forceps major 
(FMaj), cerebrospinal tract (CST), the ventral cingulate gyrus (CINGHipp), the dorsal cingulate gyrus 
(CING), and the anterior thalamic radiations (ATR). N varies slightly across components due to 
varying missingness (N mean = 631.325, SD = 10.32). 

 

 Physical health 

Next we examined whether sleep quality is associated with physical health. Figure 8 shows 

the simple regressions between sleep quality and physical health. Strong associations were found 

between poor overall sleep (PSQI sumscore) and poor self-reported health, both in general 

(logBF10=77.51) and even more strongly for health in the past 12 months (logBF10=91.25).  One 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 22, 2016. ; https://doi.org/10.1101/060145doi: bioRxiv preprint 

https://doi.org/10.1101/060145
http://creativecommons.org/licenses/by/4.0/


24 
 

explanation is that poorer sleep, across all components, directly affects general physical health ( 

Briones et al., 1996; Spiegel et al., 2009). A second, possibly complementary pattern is that people 

subjectively experience sleep quality as a fundamental part of overall general health.  A second 

association was between BMI and poor sleep quality, most strongly poor Duration (logBF10=4.69). 

This not only replicates previous findings but is in line with  an increasing body of evidence that 

suggests that shorted sleep duration causes metabolic changes, which in turn increases the risk of 

both diabetes mellitus and obesity [18, 72, 73]. Next, we examined whether these effects were 

attenuated once age was included. We show that although the relationships are slightly weaker, the 

overall pattern remains (Supplementary Figure E), suggesting these associations are not merely co-

occurences across the lifespan. Our findings suggest self-reported sleep quality, especially sleep 

Duration, is related to differences in physical health outcomes in a healthy sample. 

 Finally, there was evidence of a single interaction with age (Supplementary Figure F): 

Although poor sleep Duration was associated with higher diastolic blood pressure in younger adults, 

it was associated with lower diastolic blood pressure in older individuals (BF10= 8.53), as can be seen 

in Supplementary Figure F.  This may reflect the fact that diastolic blood pressure is related to 

cardiovascular health in a different way across the lifespan, although given the small effect size it 

should be interpreted with caution. 
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Figure 8. Physical health and sleep quality. Numbers represent R-squared, the sample size is show in 
the last column.  Strong associations between general indices of health and sleep quality are found, 
and several more modest relationships with BMI and sleep quality. Self-reported health (12 month 
and General) were measured in the full cohort (Mean = 2315.37, SD=66.29), the other indicators 
were measured in the imaging cohort only (Mean = 569.87, SD= 11.16). 

 

Mental health 

Finally, we examined the relationship between sleep quality and mental health, as measured by the 

Hospital Anxiety and Depression Scale [52]. One benefit of the HADS in this context is that, unlike 

some other definitions (e.g. the DSM-V), sleep quality is not an integral (scored) part of these 

dimensions.  As shown in Figure 9, there are very strong relationships between all aspects of sleep 

quality and measures of both anxiety and depression. The strongest predictors of Depression are 

Daytime Dysfunction (logBF10= 245.9, R^2=20.9%), followed by the overall sleep score (logBF10= 

170.5, R^2=14.6%) and sleep quality (logBF10= 106.8, R^2=9.7%). The effects size for Anxiety was 
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comparable but slightly smaller in magnitude. When age is included as a covariate the relationships 

remained virtually unchanged (Supplementary Figure G), suggesting these relationships are present 

throughout across the lifespan. These findings replicate and extend previous work, suggesting that 

sleep quality is strongly associated with both anxiety and depression across the lifespan. 

 

Figure 9. Mental health and sleep quality. N varies slightly across components due to varying 
missingness (N mean = 2303.62, N SD = 65.32). The + symbols signify positive parameter estimates, 
such that poorer (higher) sleep quality is associated with higher scores on anxiety and depression. 
 

Next we examined a model with an interaction term (Supplementary Figure H). Most prominently 

we found interactions with age in the relationship between HADS depression and the PSQI Total, and 

in the relationship between HADS depression and Sleep Duration, such that for the relationship 

between anxiety and overall sleep quality is  stronger in younger adults (BF10 =9.91, see Figure 10). 

Together our findings show that poor sleep quality is consistently, strongly and stably associated 

with poorer mental health across the adult lifespan.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 22, 2016. ; https://doi.org/10.1101/060145doi: bioRxiv preprint 

https://doi.org/10.1101/060145
http://creativecommons.org/licenses/by/4.0/


27 
 

 

Figure 10: interaction between sleep quality and anxiety. (N=724,age 18.48 to 46.2) compared to the 
oldest third of participants (N=725, age 71.79 to 98.88). 
 

Discussion 

In this study, we report on the associations between age-related differences in sleep quality and 

health outcomes in a large, age-heterogeneous sample of community dwelling adults of the 

Cambridge Neuroscience and Aging (Cam-CAN) cohort. We find that sleep quality generally 

decreases across the lifespan, most strongly for sleep Efficiency (the proportion of time spent in bed 

actually asleep). However, components such as ‘Daytime Dysfunction’ improve slightly across the 

lifespan, whereas ‘sleep latency’ does not change. As this pattern suggests that age-related changes 

in sleep patterns are complex and multifaceted, we used Latent Class Analysis to identify ‘sleep 

types’ associated with specific sleep quality profiles. We find evidence for four such sleep types, and 

show that the likelihood of belonging to certain sleep type varied across the lifespan. Younger adults 
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are more likely than older adults to display a pattern of sleep problems characterised by poor sleep 

quality and longer sleep latency, whereas older adults are more likely to display inefficient sleeping, 

characterised by long periods spent in bed whilst not asleep. Moreover, the probability of being a 

‘good’ sleeper, unaffected by any adverse sleep symptoms, decreases considerably after age fifty.   

A key strength of our sample is the broad phenotypic assessment of healthy ageing across 

multiple health domains in a large cohort. This allows, contrary to most previous studies, for direct 

comparison of the different measures of sleep quality and four key health domains: cognitive, 

neural, physical and mental health. We find strongest associations between sleep quality and mental 

health, moderate relations between sleep quality and physical health and cognitive health and sleep, 

virtually all such that poorer sleep is associated with poorer health outcomes. We did not find 

evidence for associations between self-reported sleep and neural health. Notably, the relationships 

we observe are mostly stable across the lifespan, affecting younger and older individuals alike. A 

notable exception to these effects is the absence of any strong relation (after controlling for age) 

between sleep quality and neural health as indexed by tract-based average fractional anisotropy. 

Using a Bayesian framework we are able to provide evidence in favour of the null hypothesis, 

suggesting that the adverse effects of poor sleep on brain structure found in more extreme clinical 

samples (e.g. insomnia, sleep apnoea) do not generalize to a non-clinical population for self-reported 

sleep. Notably, as we found strong relationships in the same sample between sleep and other 

outcomes (e.g. mental health, Figure 10) and there is previous evidence from this cohort linking 

white matter health and cognition, the absence of the relationship between poor sleep and  neural 

health cannot be (fully) explained away by the possible noisiness of self-report measures. For this 

reason, our study provides a potentially reassuring message that for typically-ageing, healthy 

individuals, poorer self-reported sleep quality is not associated with poorer brain health.  

While there are limitations of self-report measures including in older cohorts [16], including 

the fact that they likely reflect different aspects of sleep health than actigraphy (sleep in the lab), our 

results suggest there are considerable advantages in using self-reported sleep measures: first, 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 22, 2016. ; https://doi.org/10.1101/060145doi: bioRxiv preprint 

https://doi.org/10.1101/060145
http://creativecommons.org/licenses/by/4.0/


29 
 

obtaining sleep quality data in a large and broadly phenotyped sample is feasible; and second, our 

results demonstrated clear and consistent associations across multiple domains for both subjective 

(e.g. self-reported health) and objective measures (e.g. memory tests, BMI), which both replicate 

and extend previous lab-based sleep findings. Future work should ideally simultaneously measure 

actigraphy and self-report in large scale cohorts to fully capture the range of overlapping and 

complementary relations between different aspects of sleep quality and health outcomes [16].  

For both self-report and objective measures of sleep quality an open question is that of 

causality: Does poor sleep affect health outcomes, do health problems affect sleep, are they both 

markers of some third problem, or do causal influences go both ways? Most likely, all these patterns 

occur to varying degrees. Previous studies have shown that sleep quality causally affects health 

outcomes such as diabetes [18] and memory consolidation [1] while other evidence suggests that 

depression directly affect sleep quality (Lustberg & Reynolds, 2000; Sbarra & Allen, 2009)  and that 

damage to neural structures may affect sleep regulation [76]. Although our findings are in keeping 

with previous findings, our cross-sectional sample cannot tease apart the causal direction of the 

observed associations, so more work remains to be done to disentangle these complex causal 

pathways.  

In our paper we focus on a healthy, age-heterogeneous community dwelling sample. This 

allows us to study the associations between healthy aging and self-reported sleep quality, but comes 

with two key limitations of the interpretations of our findings. First and foremost, our findings are 

cross-sectional, not longitudinal. This means we can make inferences about age-related differences, 

but not necessarily age-related changes (Raz & Lindenberger, 2011; Schaie, 1994). One reason why 

cross-sectional and longitudinal estimates may diverge is that older adults can be thought of as 

cohorts that differ from the younger adults in more ways than age alone. For example, our age range 

includes individuals born in the twenties and thirties of the 20th century. Compared to someone 

born in the 21st century, these individuals will likely have experience various differences during early 

life development (e.g. less broadly accessible education, lower quality of healthcare, poorer 
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nutrition and similar patterns).  For some of our measures, these are inherent limitations – 

Neuroimaging technology means that of truly longitudinal study of aging is inherently impossible. 

This means our findings likely reflect a combination of effects attributable to age-related changes as 

well as baseline differences between subpopulations that may affect both mean differences as well 

as developmental trajectories. 

Second, our sample reflects an atypical population in the sense that they are willing and able 

to visit the laboratory on multiple occasions for testing sessions.  This subsample is likely a more 

healthy subset of the full population, which will mean the range of (poor) sleep quality as well as 

(poorer) health outcomes will likely be less extreme that in the full population. However, this 

challenge is not specific to our sample. In fact, as the Cam-CAN cohort was developed using stratified 

sampling based on primary healthcare providers, our sample is likely as population-representative as 

is feasible for a cohort of this magnitude and phenotypic breadth (see [10] for further details). 

Nonetheless, a healthier subsample may lead to restriction of range [79], i.e. an attenuation of  the 

strength of the associations observed between sleep quality and health outcomes. Practically, this 

means that our results likely generalise to comparable, healthy community dwelling adults, but not 

necessarily to populations that include those affected by either clinical sleep deprivation or other 

serious health conditions.  

 

Conclusions 

Taken together, our study allows several conclusions. First, although we replicate the age-

related deterioration in some aspects of sleep quality, other aspects remain stable or even improve. 

Second, we show that the profile of sleep quality changes across the lifespan. This is important 

methodologically, as it suggests (PSQI) sum scores do not capture the full picture, especially in age-

heterogeneous samples. Moreover, it is important from a psychological standpoint: We show that 

‘sleep quality’ is a multidimensional construct and should be treated as such if we wish to 

understand the complex effects and consequences of sleep quality across the lifespan. Third, 
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moderate to strong relations exist between sleep quality and cognitive, physical and mental health, 

and these relations largely remain stable across the lifespan. In contrast, we show evidence that in 

non-clinical populations, poorer self-reported sleep is not associated with poorer neural health. 

Together with previous experimental and longitudinal evidence, our findings suggest that at least 

some age-related decreases in health outcomes may be due to poorer sleep quality. We show that 

self-reported sleep quality can be an important indicator of other aspects of healthy functioning 

throughout the lifespan, especially for mental and general physical health.   Our findings suggest 

accurate understanding of sleep quality is essential in understanding and supporting healthy aging 

across the lifespan. 
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Supplementary Figure A. Multiple regression of sleep and age on cognitive health measures 
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Supplementary Figure B. Multiple regression of sleep and age and an interaction of sleep* age on cognitive health measures 
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Supplementary Figure C. Simple regression of white matter health on sleep quality 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 22, 2016. ; https://doi.org/10.1101/060145doi: bioRxiv preprint 

https://doi.org/10.1101/060145
http://creativecommons.org/licenses/by/4.0/


42 
 

 

Supplementary Figure D. Multiple regression of neural health on sleep, age and an interaction term. 
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 Supplementary Figure E. Multiple regression of physical health on sleep and age 
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 Supplementary Figure F. Multiple regression of physical health on sleep and age and an interaction term of sleep*age. 
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Supplementary Figure G. Multiple regression of mental  health on sleep and age 
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 Supplementary Figure H. Multiple regression of physical health on sleep and age, including an interaction term (sleep*age). 
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