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SHORT ABSTRACT

Human perceptual decisions are often described as optimal, but this view remains controversial.
To elucidate the issue, we review the vast literature on suboptimalities in perceptual tasks and
compile the proposed hypotheses about the origins of suboptimal behavior. Further, we argue
that general claims about optimality are virtually meaningless and result in a false sense of
progress. Instead, real progress can be achieved by building observer models that account for
both optimal and suboptimal behavior. To achieve such progress, the field should focus on
assessing the hypotheses about suboptimal behavior compiled here and stop chasing

optimality.
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LONG ABSTRACT

Human perceptual decisions are often described as optimal. Critics of this view have argued
that claims of optimality are overly flexible and lack explanatory power. Meanwhile, advocates
for optimality have countered that such criticisms single out a few selected papers. To elucidate
the issue of optimality in perceptual decision making, we review the extensive literature on
suboptimal performance in perceptual tasks. We discuss eight different classes of suboptimal
perceptual decisions, including improper placement, maintenance, and adjustment of perceptual
criteria, inadequate tradeoff between speed and accuracy, inappropriate confidence ratings,
misweightings in cue combination, and findings related to various perceptual illusions and
biases. In addition, we discuss conceptual shortcomings of a focus on optimality, such as
definitional difficulties and the limited value of optimality claims in and of themselves. We
therefore advocate that the field drop its emphasis on whether observed behavior is optimal and
instead concentrate on building and testing detailed observer models that explain behavior
across a wide range of tasks. To facilitate this transition, we compile the proposed hypotheses
regarding the origins of suboptimal perceptual decisions reviewed here. We argue that verifying,
rejecting, and expanding these explanations for suboptimal behavior — rather than assessing
optimality per se — should be among the major goals of the science of perceptual decision

making.
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1. INTRODUCTION

How do people make perceptual judgments based on the available sensory information? This
fundamental question has been a focus of psychological research from the 19th century on
(Fechner 1860; Helmholtz 1856). Many perceptual tasks naturally lend themselves to what has
traditionally been called “ideal observer” analysis, whereby the optimal behavior is
mathematically determined given a set of assumptions such as the presence of sensory noise,
and human behavior is compared to this standard (Geisler 2011; Green and Swets 1966; Ulehla
1966). The extensive literature on this topic includes many examples of humans performing
similarly to an ideal observer but also many examples of suboptimal behavior. Perceptual
science has a strong tradition of developing models and theories that attempt to account for the

full range of empirical data on how humans perceive (Macmillan and Creelman 2005).

Recent years have seen an impressive surge of Bayesian theories of human cognition and
perception (Gershman, Horvitz, and Tenenbaum 2015; Giriffiths, Lieder, and Goodman 2015;
Tenenbaum et al. 2011). These theories often depict humans as optimal decision-makers,
especially in the area of perception. A number of high-profile papers have shown examples of
human perceptual behavior that is close to optimal (Ernst and Banks 2002; Kérding and Wolpert
2004; Landy et al. 1995; Shen and Ma 2016), while other papers have attempted to explain
apparently suboptimal behaviors as being in fact optimal (Weiss, Simoncelli, and Adelson
2002). Consequently, many statements by researchers in the field leave the impression that

humans are essentially optimal in perceptual tasks:

“... psychophysics is providing a growing body of evidence that human perceptual

computations are ‘Bayes’ optimal’.” (Knill & Pouget, 2004, p. 712)
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“Across a wide range of tasks, people seem to act in a manner consistent with optimal
Bayesian models” (Vul, Goodman, Griffiths, & Tenenbaum, 2014, p.1)
“These studies with different approaches have shown that human perception is close to

the Bayesian optimal” (Kérding & Wolpert, 2006, p. 321)

Despite a number of recent criticisms of such assertions regarding human optimality (Bowers
and Davis 2012a, 2012b; Eberhardt and Danks 2011; Jones and Love 2011; Marcus and Davis
2013, 2015), as well as statements from some of the most prominent Bayesian theorists that
their goal is not to demonstrate optimality (Goodman et al. 2015; Griffiths et al. 2012), the
quotes above indicate that the view that humans are (close to) optimal when making perceptual

decisions has taken strong foothold.

The main purpose of this paper is to counteract assertions about human optimality by bringing
together the extensive literature on suboptimal perceptual decision making. While the
description of the many findings of suboptimality will occupy a large part of the paper, we do not
advocate for a shift of labeling observers from “optimal” to “suboptimal.” Instead, we will
ultimately argue that we should abandon any emphasis on optimality or suboptimality and return

to building a science of perception that attempts to account for all types of behavior.

The paper is organized into six sections. After introducing the topic (Section 1), we explain the
Bayesian approach to perceptual decision making and explicitly define a set of Standard
Assumptions that typically determine what behavior is considered optimal (Section 2). In the
central section of the paper, we review the vast literature of suboptimal perceptual decision
making and show that suboptimalities have been reported in virtually every class of perceptual

tasks (Section 3). We then discuss theoretical problems with the current narrow focus on
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optimality such as difficulties in defining what is truly optimal and the limited value of optimality
claims in and of themselves (Section 4). Finally, we argue that the way forward is to build
observer models that give equal emphasis to all components of perceptual decision making, not
only the decision rule (Section 5). We conclude that the field should abandon its emphasis on
optimality and instead focus on thoroughly testing the hypotheses that have already been

generated (Section 6).

2. DEFINING OPTIMALITY
Optimality can be defined within a large number of frameworks. Here we adopt a Bayesian
approach, because it is both widely used in the field and general: other approaches to optimality

can often be expressed in Bayesian terms.

2.1 The Bayesian approach to perceptual decision making

The Bayesian approach to perceptual decision making starts with specifying the generative
model of the task. The model defines the sets of world states, or stimuli, §, internal responses
X, actions A, and relevant parameters © (such as the sensitivity of the observer). We will
mostly focus on cases in which two possible stimuli s; and s, are presented, and the possible
“actions” a, and a, consist of reporting that the corresponding stimulus was shown. The
Bayesian approach then specifies the following quantities (see Figure 1 for a graphical

depiction):

Likelihood function. An external stimulus can produce a range of internal responses. The
measurement density p(x|s,8) is the probability density of obtaining an internal response x
given a particular stimulus s. The likelihood function, I(s|x,8) is equal to the measurement

density but is defined for a fixed internal response as opposed to a fixed stimulus.
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Prior. The prior 7 (s) describes one’s assumptions about the probability of each stimulus s.

Cost function. The cost function L(s,a) (also called loss function) specifies the cost of taking a

specific action for a specific stimulus.

Decision rule. The decision rule §(x) indicates under what combination of the other quantities

you should perform one action or another.
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Figure 1. Graphical depiction of Bayesian inference. An observer is deciding between two
possible stimuli — s; (e.g., leftward motion) and s: (e.g., rightward motion) — which produce
Gaussian measurement distributions of internal responses. The observer’s intemal response
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varies from trial to trial, depicted by the three yellow circles for three example trials. On a given
trial, the likelihood function is the height of each of the two measurement densities at the value
of the observed internal response (lines drawn from each yellow circle) — i.e., the likelihood of
that internal response given each stimulus. For illustration, a different experimenter-provided
prior and cost function is assumed on each trial. The action a; corresponds to choosing stimulus
si. We obtain the expected cost of each action by multiplying the likelihood, prior, and cost
corresponding to each stimulus, and then summing the costs associated with the two possible
stimuli. The optimal decision rule is to choose the action with the lower cost (equivalent to
choosing the bar with less negative values). In trial 1, the prior and cost function are unbiased,
so the optimal decision depends only on the likelihood function. In trial 2, the prior is biased
toward s,;, making az the optimal choice even though s: is slightly more likely. In trial 3, the cost

function favors a+, but the much higher likelihood of s; makes a2 the optimal choice.

We refer to the likelihood function, prior, cost function, and decision rule as the LPCD
components of perceptual decision making. According to Bayesian Decision Theory (Kording
and Wolpert 2006; Maloney and Mamassian 2009), the optimal decision rule is the one that
minimizes the expected loss, over all possible stimuli, for the chosen action a. After applying
Bayes’ theorem, we obtain the optimal decision rule as a function of the likelihood, prior, and

cost function:

8(x) = argmingey Yses L(s]x, 0) m(s) L(s, a).

2.2 Standard Assumptions

Determining whether observers’ decisions are optimal requires the specification of the four
LPCD components. How do researchers determine the quantitative form of each component?
Below we present a typical set of Standard Assumptions related to each LPCD component.

8
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Likelihood function assumptions. The Standard Assumptions here include Gaussian
measurement distributions and stimulus encoding that is independent from other factors such as
stimulus presentation history. Note that the experimenter derives the likelihood function from the

assumed measurement distribution.

Prior and cost function assumptions. The Standard Assumption about observers’ internal
representations of the prior and cost function is that they are identical to the experimentally-

defined quantities. Unless specifically mentioned, experiments reviewed below present s; and
s, equally often, which is equivalent to a uniform prior (e.g., n(s;) = % for two stimuli), and

expect observers to maximize percent correct, which is equivalent to a cost function that

punishes all incorrect responses, and rewards all correct responses, equally.

Decision rule assumptions. The Standard Assumption about the decision rule is that it is

identical to the optimal decision rule.

Finally, additional general Standard Assumptions include expectations that observers can
perform the proper computations on the LPCD components. Note that as specified, the
Standard Assumptions consider the Gaussian variability at encoding as the sole corrupting

element for perceptual decisions. Section 3 assembles the evidence against this claim.

The attentive reader may object that the Standard Assumptions cannot be universally correct.
For example, assumptions related to the likelihood function are likely false for specific
paradigms (e.g., measurement noise may not be Gaussian), while assumptions about observers

adopting the experimentally-defined prior and cost function are likely false for complex
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experimental designs (Beck et al. 2012). Nevertheless, we take the Standard Assumptions as a
useful starting point for our review since, explicitly or implicitly, they are assumed in most
(although not all) studies. In Section 3 we label all deviations from behavior prescribed by the
Standard Assumptions as examples of suboptimality. We discuss alternative ways of defining
optimality in Section 4 and ultimately argue that general statements about the optimality or

suboptimality of perceptual decisions are meaningless.

3. REVIEW OF SUBOPTIMALITY IN PERCEPTUAL DECISION MAKING

We review eight categories of tasks for which the optimal decision rule can be determined. For
each task category, we first note any relevant information about the measurement distribution,
prior, or cost function. We then plot the measurement distributions together with the optimal
decision rule (which we depict as a criterion drawn on the internal responses X). We then
review specific suboptimalities within each task category. For each explanation of apparently
suboptimal behavior below, we indicate the LPCD component proposed to have been violated
using the notation [LPCD component], such as [decision rule]. Note that violations of the
assumed measurement distributions result in violations of the assumed likelihood functions. In
some cases, the suboptimalities have been attributed to issues that apply to multiple

components (indicated as [general]) or issues of methodology (indicated as [methodologicall).

3.1 Criterion in 2-choice tasks

In the most common case, observers must distinguish between two possible stimuli, s; and s,
presented with equal probability and associated with equal reward. In Figure 2 we plot the
measurement distributions and optimal criteria for the cases of equal and unequal internal

variability. The criterion used to make the decision corresponds to the decision rule.

10
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criterion

Probability density

Internal response x

Figure 2. Depiction of the measurement distributions (colored curves) and optimal criteria
(equivalent to the decision rules) in 2-choice tasks. The upper panel depicts the case when the
two stimuli produce the same internal variability (o, = o,). The gray vertical line represents the
location of the optimal criterion. The lower panel shows the location of the optimal criterion when
the variability of the two measurement distributions differs (o; < o,, in which case the optimal

criterion results in a higher proportion of s, responses).

3.1.1 Detection criteria

Many tasks involve the simple distinction between noise (s;) and signal+noise (s;). These are
usually referred to as detection tasks. In most cases s; is found to produce smaller internal
variability than s, (Green and Swets 1966; Macmillan and Creelman 2005; Swets, Tanner, and
Birdsall 1961), from where it follows that an optimal observer would choose s; more often than
s, even when the two stimuli are presented at equal rates (Figure 2). Indeed, many detection
studies find that observers choose the noise distribution s; more than half of the time (Gorea &
Sagi, 2000; Green & Swets, 1966; Rahnev et al., 2011; Reckless et al., 2014; Solovey, Graney,
& Lau, 2015; Swets et al., 1961). However, most studies do not allow for the estimation of the

exact measurement distributions for individual observers and thus it is an open question how

11
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optimal observers in those studies actually are. A few studies have reported conditions in which
observers choose the noise stimulus s; less than half of the time (Morales et al., 2015; Rahnev
et al., 2011; Solovey et al., 2015). Assuming that the noise distributions in those studies also

had lower variability, such behavior is likely suboptimal.

3.1.2 Discrimination criteria

Detection tasks require observers to distinguish between the noise vs. signal+noise stimuli but
other tasks require observers to discriminate between two roughly equivalent stimuli. For
example, observers might discriminate left vs. rightward motion or clockwise vs.
counterclockwise grating orientation. For these types of stimuli, the measurement distributions
for each stimulus category can be safely assumed to have approximately equal variability
(Macmillan and Creelman 2005; See et al. 1997). Such studies find that the average criterion
location across the whole group of observers is usually close to the optimal but individual
observers can still exhibit substantial biases (e.g., Whiteley & Sahani, 2008). In other words,
what appears as an optimal criterion on average (across observers) may be an average of
suboptimal criteria (Mozer, Pashler, and Homaei 2008; Vul et al. 2014). This issue can appear
within an individual observer, too, with suboptimal criteria on different trials averaging out to
resemble an optimal criterion (see Section 3.2). To check for criterion optimality within individual
observers, we re-analyzed the data from a recent study in which observers discriminated
between a grating tilted 45 degrees clockwise or counterclockwise from vertical (Rahnev et al.
2016). Seventeen observers came for four sessions on different days completing 480 trials each
time. Using a binomial test, we found that 57 of the 68 total sessions exhibited significant
deviation from unbiased responding. Further, observers tended to have relatively stable biases
as demonstrated by a positive criterion correlation across all pairs of sessions (all p’'s < .003).
Thus, even if the performance of the group appears to be close to optimal, individual observers

often deviate substantially from optimality.
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3.1.3 Two-stimulus tasks

The biases observed in detection and discrimination experiments led to the development of the
two-alternative forced-choice (2AFC) task, in which both stimulus categories are presented on
each trial, in order to reduce individual bias (Macmillan and Creelman 2005). 2AFC tasks
separate the two stimuli either temporally (also referred to as 2-interval-forced-choice or 2IFC
tasks) or spatially. Note that in recent years researchers have begun to use the term “2AFC” for
tasks in which only one stimulus is presented. To avoid confusion, we adopt the term “2-
stimulus tasks” to refer to tasks where two stimuli are presented (the original meaning of 2AFC)
and the term “1-stimulus tasks” to refer to tasks like single-stimulus detection and discrimination

(e.g., the tasks discussed in 3.1.1 and 3.1.2).

Even though 2-stimulus tasks were designed to remove observer bias, significant biases have
been observed for them, too. While biases in spatial 2AFC tasks have received less attention,
several suboptimalities have been documented for 2IFC tasks. For example, early research
suggested that the second stimulus is more often selected as the one of higher intensity, a
phenomenon called time-order errors (Fechner 1860; Osgood 1953). More recently Yeshurun et
al. (2008) re-analyzed 2IFC data from seventeen previous experiments and found significant
interval biases. The direction of the bias varied between the different experiments, suggesting

that the specific experimental design has an influence on observers’ bias.

3.1.4 Explaining suboptimality in 2-choice tasks

Why do people appear to have trouble setting appropriate criteria in 2-choice tasks? One
possibility is that they have a tendency to give the same fixed response when uncertain

[decision rule]. For example, a given observer may respond that they saw left (rather than

13
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right) motion every time they get distracted or had very low evidence for either choice. This
could be due to a preference for one of the two stimuli or one of the two motor responses. Re-
analysis of another previous study (Rahnev, Lau, and De Lange 2011), where we withheld the
stimulus-response mapping until after the stimulus presentation, found that 12 of the 21
observers still showed a significant response bias for motion direction. Thus, a preference in

motor behavior cannot fully account for this type of suboptimality.

Another possibility is that for many observers even ostensibly “equivalent” stimuli such as left
and right motion give rise to measurement distributions with unequal variance [likelihood
function)]. In that case, an optimal decision rule would produce behavior that appears biased.
Similarly, in 2-stimulus tasks, it is possible that the two stimuli are not given the same resources
or that the internal representations for each stimulus are not independent of each other
[likelihood function]. Finally, in the case of detection tasks, it is possible that some observers
employ an idiosyncratic cost function by treating misses as less problematic than false alarms

since the latter can be interpreted as lying [cost function].

3.2 Maintaining stable criteria
So far, we considered the optimality of the decision rule when all trials are considered together.
We now turn our attention to whether observers’ behavior varies across trials or conditions

(Figure 3).
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Figure 3. Depiction of a failure to maintain a stable criterion. The optimal criterion is shown in
Figure 2 but observers often fail to maintain that criterion over the course of the experiment,
resulting in a criterion that effectively varies over trials. Colored curves show measurement

distributions.

3.2.1 Sequential effects

Optimality in laboratory tasks requires that judgments are made based on the evidence from the
current stimulus independently of previous stimuli. However, sequential effects are ubiquitous in
perceptual tasks (Fischer and Whitney 2014; Frind, Wichmann, and Macke 2014; Kaneko and
Sakai 2015; Liberman, Fischer, and Whitney 2014; Norton et al. 2017; Tanner, Haller, and
Atkinson 1967; Treisman and Faulkner 1984; Ward and Lockhead 1970; Yu and Cohen 2009).
The general finding is that observers’ responses are positively autocorrelated such that the
response on the current trial is likely to be the same as on the previous trial, though in some
cases negative autocorrelations have also been reported (Tanner et al. 1967; Ward and
Lockhead 1970). Further, observers are able to adjust to new trial-to-trial statistics but this
adjustment is only strong in the direction of default biases and weak in the opposite direction
(Abrahamyan et al. 2016). Similar effects have been observed in other species such as mice

(Busse et al. 2011).
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3.2.2 Criterion attraction

Interleaving trials that require different criteria also hinders optimal criterion placement. Gorea &
Sagi (2000) demonstrated that when high-contrast stimuli (optimally requiring a relatively liberal
detection criterion) and low-contrast stimuli (optimally requiring a relatively conservative
detection criterion) were presented simultaneously, observers tended to use the same
compromised detection criterion that was suboptimal for both the high- and low-contrast stimuli.
Observers used a suboptimal criterion despite the fact that on each trial they knew with 100%
certainty which contrasts might have been present in each location. Similar criterion attraction
has been shown in a variety of paradigms that involved using stimuli of different contrasts
(Gorea, Caetta, and Sagi 2005; Gorea and Sagi 2001, 2002; Zak et al. 2012), attended vs.
unattended stimuli (Morales et al. 2015; Rahnev, Maniscalco, et al. 2011), and central vs.

peripheral stimuli (Solovey et al. 2015).

3.2.3 Irrelevant reward influencing the criterion

The optimal decision rule is insensitive to multiplicative changes to the cost function. For
example, rewarding all correct responses with $0.01 vs. $0.03, while wrong answers receive $0,
should not alter the decision criterion; in both cases the optimal decision rule is the one that
maximizes percent correct. However, both greater monetary rewards and punishments lead
observers to adopt a more liberal detection criterion such that more stimuli are identified as
targets (Reckless et al. 2013, 2014). Similar changes to the response criterion due to monetary
motivation are obtained in a variety of paradigms (Henriques, Glowacki, and Davidson 1994;
Taylor et al. 2004). To complicate matters, observers’ personality traits interact with the type of

monetary reward in altering response criteria (Markman, Baldwin, and Maddox 2005).
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3.2.4 Explaining suboptimality in maintaining stable criteria

Why do people appear to shift their response criteria based on factors that should be irrelevant
for the criterion placement? Sequential effects are typically explained in terms of an automatic
tendency to exploit the continuity in our normal environment, even though such continuity is not
present in most experimental setups (Fischer and Whitney 2014; Fritsche, Mostert, and de
Lange 2017; Liberman et al. 2014). The visual system could have built-in mechanisms that bias
new representations towards recent ones [likelihood function] or it may assume that a new
stimulus is likely to be similar to a recent one [prior]. (Note that the alternative likelihoods or
priors would need to be defined over pairs or sequences of trials.) Adopting a prior that the
environment is autocorrelated may be a good strategy for maximizing reward: environments
typically are autocorrelated and if they are not, such a prior may not hurt performance (Yu and

Cohen 2009).

Criterion attraction likely stems from an inability to maintain two separate criteria simultaneously.
This is equivalent to asserting that in certain situations observers cannot maintain a more
complicated decision rule (e.g., different criteria for different conditions) and instead use a
simpler one (e.g., single criterion for all conditions) [decision rule]. It is harder to explain why
personality traits or task features such as increased monetary rewards (that should be irrelevant

to the response criterion) change observers’ criteria.

3.3 Adjusting choice criteria

One of the most common ways to assess optimality in perceptual decision making is to
manipulate the prior probability of the stimulus classes and/or provide unequal payoffs that bias
responses towards one of the stimulus categories (Macmillan and Creelman 2005).

Manipulating prior probabilities affects the prior 7(s), while manipulating payoffs affects the cost
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function L(s,a). However, the two manipulations have an equivalent effect on the optimal
decision rule: both require observers to shift their decision criterion by a factor dictated by the

specific prior probability or reward structure (Figure 4).
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Figure 4. Depiction of optimal adjustment of choice criteria. In addition to the s, and s,
measurement distributions (in thin red and blue lines), the figure shows the corresponding
posterior probabilities as a function of x assuming uniform prior (in thick red and blue lines). The
vertical criteria depict optimal criterion locations on x (thin gray lines) and correspond to the
horizontal thresholds (thick yellow lines). Optimal criterion and threshold for equal prior
probabilities and payoffs are shown in dashed lines. If unequal prior probability or unequal
payoff is provided such that s; ought to be chosen three times as often as s,, then the threshold
would optimally be shifted to 0.75, corresponding to a shift in the criterion such that the
horizontal threshold and vertical criterion intersect on the s, posterior probability function. The y-
axis is probability density for the measurement distributions, and probability for the posterior

probability functions (the y-axis ticks refer to the posterior probability).
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3.3.1 Priors

Two main approaches have been used to determine whether observers can optimally adjust
their criterion when one of two stimuli has a higher probability of occurrence. In base-rate
manipulations, long blocks of the same occurrence frequency are used, and observers are
typically not informed of the probabilities of occurrence in advance (e.g., Maddox, 1995). Most
studies find that observers adjust their criterion to account for the unequal base rate, but this
adjustment is smaller than what is required for optimal performance, resulting in a conservative
criterion placement (Bohil and Maddox 2003a; Green and Swets 1966; Maddox and Bohil 2001,
2003, 2005; Maddox, Bohil, and Dodd 2003; Maddox and Dodd 2001; Tanner 1956; Tanner et
al. 1967; Vincent 2011). Some studies have suggested that observers become progressively
more suboptimal as the base-rate becomes progressively more extreme (Bohil and Maddox
2003a; Green and Swets 1966). However, a few studies have reported that certain conditions
result in extreme criterion placement such that observers rely more on base-rate information

than is optimal (Maddox and Bohil 1998b).

A second way to manipulate the probability of occurrence is to do it on a trial-by-trial basis and
explicitly inform the observers about the stimulus probabilities before each trial. This approach
also leads to conservative criterion placement such that observers do not shift their criterion
enough (Ackermann and Landy 2015; de Lange et al. 2013; Rahnev, Lau, et al. 2011;

Summerfield and Koechlin 2010; Ulehla 1966).

3.3.2 Payoffs

The decision criterion can also be manipulated by giving different payoffs for different
responses. The general finding with this manipulation is that observers, again, do not adjust

their criterion enough (Ackermann and Landy 2015; Bohil and Maddox 2001, 2003a, 2003b;
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Busemeyer and Myung 1992; Maddox and Bohil 1998a, 2000, 2001, 2003, 2005; Maddox et al.
2003; Maddox and Dodd 2001; Markman et al. 2005; Taylor et al. 2004; Ulehla 1966) and, as
with base rates, become more suboptimal for more extreme payoffs (Bohil and Maddox 2003a).
Nevertheless, one study that involved a very large number of sessions with two monkeys

reported extreme criterion changes (Feng et al. 2009).

Criterion adjustments in response to unequal payoffs are usually found to be more suboptimal
compared to adjustments in response to unequal base-rates (Ackermann and Landy 2015; Bohil
and Maddox 2001, 2003a; Busemeyer and Myung 1992; Healy and Kubovy 1981; Maddox
2002; Maddox and Bohil 1998a; Maddox and Dodd 2001) though the opposite pattern was

found by Green and Swets (1966).

Finally, the exact payoff structure may also influence observers’ optimality. For instance,
introducing a cost for incorrect answers leads to more suboptimal criterion placement compared
to conditions with the same optimal criterion shift but without a cost for incorrect answers

(Maddox and Bohil 2000; Maddox et al. 2003; Maddox and Dodd 2001).

3.3.3 Explaining suboptimality in adjusting choice criteria

Why do people appear not to adjust their decision criteria optimally in response to priors and
rewards? One possibility is that they do not have an accurate internal representation of the
relevant probability implied by the prior or reward structure [general] (Acerbi, Vijayakumar, and
Wolpert 2014; Ackermann and Landy 2015; Zhang and Maloney 2012). For example, Zhang &
Maloney (2012) argued for the presence of “ubiquitous log odds” that systematically distort

people’s probability judgments such that small values are overestimated while large values are
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underestimated (Brooke and MacRae 1977; Juslin, Nilsson, and Winman 2009; Kahneman and

Tversky 1979; Varey, Mellers, and Birnbaum 1990).

A possible explanation for the suboptimality in base-rate experiments is the “flat-maxima”
hypothesis, according to which the observer adjusts the decision criterion based on the change
in reward and has trouble finding its optimal value if other criterion positions result in similar
reward rates [methodological] (Bohil and Maddox 2003b; Busemeyer and Myung 1992;
Maddox and Bohil 2001, 2003, 2004, 2005; Maddox et al. 2003; Maddox and Dodd 2001; von
Winterfeldt and Edwards 1982). Another possibility is that the prior observers adopt in base-rate
experiments comes from a separate process of Bayesian inference. If observers are uncertain
about the true base rate, a prior assumption that it is likely to be unbiased would result in
insufficient base-rate adjustment [methodological]. A central tendency bias can also arise
when observers form a prior based on the sample of stimuli they have encountered so far,
which are unlikely to cover the full range of the experimenter-defined stimulus distribution
(Petzschner and Glasauer 2011). We classify these issues as methodological since if the
observers have not been able to learn a particular LPC component, then they cannot adopt the

optimal decision rule.

Finally, another possibility is that observers also place a premium on being correct rather than
just maximizing reward [cost function]. Maddox & Bohil (1998a) posited the COmpetition
Between Reward and Accuracy maximization (COBRA) hypothesis according to which
observers attempt to maximize reward but also place a premium on accuracy (Maddox and
Bohil 2004, 2005). This consideration applies to manipulations of payoffs but not of prior
probabilities, and may explain why payoff manipulations typically lead to larger deviations from

optimality than priors.
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3.4 Tradeoff between speed and accuracy

In the examples above, the only variable of interest has been observers’ choice irrespective of
their reaction times (RTs). However, if instructed, observers can provide responses faster at
lower accuracy, a phenomenon known as speed-accuracy tradeoff (SAT; Fitts, 1966; Heitz,
2014). An important question here is whether observers can adjust their RTs optimally to
achieve maximum reward in a given amount of time (Figure 5). A practical difficulty for studies
attempting to address this question is that the accuracy/RT curve is not generally known and is
likely to differ substantially between different tasks (Heitz 2014). Therefore, the only Standard
Assumption here is that accuracy increases monotonically as a function of RT. Precise
accuracy/RT curves can be constructed by assuming one of the many models from the
sequential sampling modeling framework (Forstmann, Ratcliff, and Wagenmakers 2016), and
there is a vibrant discussion about the optimal stopping rule depending on whether signal
reliability is known or unknown (Bogacz 2007; Bogacz et al. 2006; Drugowitsch et al. 2012,
2015; Hanks et al. 2011; Hawkins et al. 2015; Thura et al. 2012). However, since different
models predict different accuracy/RT curves, in what follows we only assume a monotonic

relationship between accuracy and RT.

22


https://doi.org/10.1101/060194
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/060194; this version posted January 31, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A Accuracy/RT curve
100 1
©
o
8 807
c
[0}
o
o 60f
o
0 0.2 0.4 0.6 0.8 1
B 800 Total reward/RT cyrve
1
2 i
£ 700+
o 1
i 1
©
£ 600 :
= 1
500 : : —1 ‘ !
0 0.2 0.4 0.6 0.8 1

Reaction time (s)

Figure 5. A. Depiction of one possible accuracy/RT curve. Percent correct responses increases
monotonically as a function of RT and asymptotes at 90%. B. The total reward/RT curve for the
accuracy/RT curve from panel A with the following additional assumptions: (i) observers
complete as many trials as possible within a 30-minute window, (ii) completing a trial takes 1.5
seconds on top of the RT (due to stimulus presentation and between-trial breaks), and (iiij) each
correct answer results in 1 point, while incorrect answers result in 0 points. The optimal RT — the

one which maximizes the total reward — is depicted with dashed lines.

3.4.1 Trading off speed and accuracy

While observers are able to adjust their behavior to account for both accuracy and RT, they
cannot do so optimally (Balci et al. 2011; Bogacz et al. 2010; Simen et al. 2009; Starns and
Ratcliff 2010, 2012; Tsetsos et al. 2015). In most cases observers take too long to decide,
leading to slightly higher accuracy but substantially longer RTs than optimal (Bogacz et al. 2010;
Simen et al. 2009; Starns and Ratcliff 2010, 2012). This effect occurs when observers have a

fixed period of time to complete as many trials as possible (Bogacz et al. 2010; Simen et al.
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2009; Starns and Ratcliff 2010, 2012), and in the more familiar design with a fixed number of
trials per block (Starns and Ratcliff 2010, 2012). Further, observers take longer to decide for
more difficult compared to easier conditions, even though optimizing the total reward demands
that they always do the opposite (Oud et al. 2016; Starns and Ratcliff 2012). Older adults are
even more suboptimal than college-age participants by this measure (Starns and Ratcliff 2010,

2012).

3.4.2 Keeping a low error rate under implicit time pressure

Even though observers tend to overemphasize accuracy, they are also suboptimal in tasks that
require an extreme emphasis on accuracy. This conclusion comes from a line of research on
visual search in which observers are typically given unlimited amount of time to decide whether
a target is present or not (Eckstein 2011). In certain situations, such as airport checkpoints or
detecting tumors in mammograms, the goal is to keep a very low miss rate irrespective of RT,
because misses can have dire consequences (Evans, Birdwell, and Wolfe 2013; Wolfe et al.
2013). The optimal RT can be derived from Figure 5A as the minimal RT that results in the
desired accuracy rate. A series of studies by Wolfe and colleagues found that observers, even
trained doctors and airport checkpoint screeners, are suboptimal in such tasks in that they allow
overly high rates of misses (Evans et al. 2011, 2013; Wolfe et al. 2013; Wolfe, Horowitz, and
Kenner 2005; Wolfe and Van Wert 2010). Further, this effect was robust and resistant to a
variety of methods designed to help observers take longer in order to achieve higher accuracy
(Wolfe et al. 2007) or correct motor errors (Van Wert, Horowitz, and Wolfe 2009). An
explanation of this suboptimality based on capacity limits is rejected by two studies that found
that observers can be induced to take longer time, and thus achieve higher accuracy, by first
providing them with a block of high prevalence targets accompanied with feedback (Wolfe et al.

2007, 2013).
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3.4.3 Explaining suboptimality in the speed-accuracy tradeoff

Why do people appear to be unable to trade off speed and accuracy optimally? As above, it is
possible to account for overly long RTs by postulating that, in addition to maximizing their total
reward, observers place a premium on being accurate [cost function] (Balci et al. 2011;
Bogacz et al. 2010; Holmes and Cohen 2014). Another possibility is that observers’ judgments
of elapsed time are noisy [general], and longer-than-optimal RTs lead to a higher reward rate
than RTs that are shorter than optimal by the same amount (Simen et al. 2009; Zacksenhouse,
Bogacz, and Holmes 2010). Finally, in some situations observers may also place a premium on

speed [cost function], making it impossible to keep a very low error rate (Wolfe et al. 2013).

3.5 Confidence in one’s decision

The Bayesian approach prescribes how the posterior probability should be computed. While
researchers typically examine the question of whether the stimulus with highest posterior
probability is selected, it is also possible to examine whether observers can report the actual
value of the posterior distribution or perform simple computations with it (Figure 6). In such
cases, observers are asked to provide “metacognitive” confidence ratings about the accuracy of
their decisions (Metcalfe and Shimamura 1994; Yeung and Summerfield 2012). Such studies
rarely provide subjects with an explicit cost function (but see Kiani and Shadlen 2009; Rahnev
et al. 2013), but in many cases reasonable assumptions can be made in order to derive optimal

performance (see below).
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Figure 6. Depiction of how an observer should give confidence ratings. Similar to Figure 4, both
the measurement distributions and posterior probabilities as a function of x assuming uniform
prior are depicted. The confidence thresholds (depicted as yellow lines) correspond to criteria
defined on x (depicted as thick gray lines). The horizontal thresholds and vertical criteria
intersect on the posterior probability functions. The y-axis is probability density for the
measurement distributions, and probability for the posterior probability functions (the y-axis ticks

refer to the posterior probability).

3.5.1 Over- and under-confidence (confidence calibration)

It is straightforward to construct a payoff structure for confidence ratings such that observers
gain the most reward when their confidence reflects the posterior probability of being correct
(e.g., Fleming et al. 2016; Massoni, Gajdos, and Vergnaud 2014). Most studies, however, do
not provide observers with such a payoff structure, so assessing the optimality of the confidence
ratings necessitates the further assumption that observers create a similar function internally. To
test for optimality, we can then consider, for example, all trials in which an observer has 70%

confidence of being correct, and test whether the average accuracy on those ftrials is indeed
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70%. This type of relationship between confidence and accuracy is often referred to as
confidence calibration (Baranski and Petrusic 1994). Studies of confidence have found that for
certain tasks observers are overconfident (i.e., they overestimate their accuracy) (Adams 1957;
Baranski and Petrusic 1994; Dawes 1980; Harvey 1997; Keren 1988; Koriat 2011) while for
other tasks observers are underconfident (i.e., they underestimate their accuracy) (Baranski and
Petrusic 1994; Bjorkman, Juslin, and Winman 1993; Dawes 1980; Harvey 1997; Winman and
Juslin 1993). One pattern that emerges consistently is that overconfidence often occurs for
difficult tasks while underconfidence appears in easy tasks (Baranski and Petrusic 1994, 1995,
1999), a phenomenon known as the hard-easy effect (Gigerenzer, Hoffrage, and Kleinbdlting
1991). Similar results are seen for tasks outside of the perceptual domain such as answering
general knowledge questions (Griffin and Tversky 1992). Over- and under-confidence are stable
over different tasks (Ais et al. 2015; Song et al. 2011) and depend on non-perceptual factors

such as one’s optimism bias (Ais et al. 2015).

3.5.2 Dissociations of confidence and accuracy across different experimental conditions

While precise confidence calibration is computationally difficult, a weaker test of optimality
examines whether experimental conditions that lead to the same performance are judged with
the same level of confidence (even if this level is too high or too low). This test only requires that
observers’ confidence ratings follow a consistent internal cost function across the two tasks.
Many studies demonstrate dissociations between confidence and accuracy across tasks, thus
showing that observers fail this weaker optimality test. For example, speeded responses can
decrease accuracy but leave confidence unchanged (Baranski and Petrusic 1994; Vickers and
Packer 1982), while slowed responses can lead to the same accuracy but lower confidence
(Kiani, Corthell, and Shadlen 2014). Dissociations between confidence and accuracy have also
been found in conditions that differ in attention (Rahnev, Bahdo, et al. 2012; Rahnev,

Maniscalco, et al. 2011; Wilimzig et al. 2008), the variability of the perceptual signal (de
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Gardelle and Mamassian 2015; Koizumi, Maniscalco, and Lau 2015; Samaha et al. 2016; Song,
Koizumi, and Lau 2015; Spence, Dux, and Arnold 2016; Zylberberg, Roelfsema, and Sigman
2014), the stimulus-onset asynchrony in metacontrast masking (Lau and Passingham 2006), the
presence of unconscious information (Vlassova, Donkin, and Pearson 2014), and the relative
timing of a concurrent saccade (Navajas, Sigman, and Kamienkowski 2014). Further, some of
these biases seem to arise from individual differences that are stable across multiple sessions
(de Gardelle and Mamassian 2015). Finally, dissociations between confidence and accuracy
have been found in studies that applied transcranial magnetic stimulation (TMS) to the visual
(Rahnev, Maniscalco, et al. 2012), premotor (Fleming et al. 2015), or frontal cortex (Chiang et

al. 2014).

3.5.3 Metacognitive sensitivity (confidence resolution)

The sections above were concerned with the average magnitude of confidence ratings over
many trials. Another measure of interest is the degree of correspondence between confidence
and accuracy on individual trials (Metcalfe and Shimamura 1994), called metacognitive
sensitivity (Fleming and Lau 2014) or confidence resolution (Baranski and Petrusic 1994).
Recently, Maniscalco & Lau (2012) developed a method to quantify how optimal an observer’s
metacognitive sensitivity is. Their method computes meta-d’, a measure of how much
information is available for metacognition, which can then be compared with the actual d’ value.
An optimal observer would have a meta-d’/d’ ratio of 1. Maniscalco & Lau obtained a ratio of
.77, suggesting a 23% loss of information for confidence judgments. Even though some studies
that used the same measure but different perceptual paradigms found values close to 1
(Fleming et al. 2014), many others arrived at values substantially lower than 1 (Bang, Shekhar,
and Rahnev 2017; Maniscalco and Lau 2015; Maniscalco, Peters, and Lau 2016; Massoni
2014; McCurdy et al. 2013; Schurger, Kim, and Cohen 2015; Sherman et al. 2015; Vlassova et

al. 2014). Interestingly, at least one study has reported values significantly above 1, suggesting
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that in certain cases the metacognitive system has more information than was used for the
primary decision (Charles et al. 2013), thus implying the presence of suboptimality in the

perceptual decision.

3.5.4 Confidence does not simply reflect the posterior probability of being correct

Another way of assessing the optimality of confidence ratings is to determine whether observers
compute confidence in a manner consistent with the posterior probability of being correct. This
is also a weaker condition than reporting the actual posterior probability of being correct,
because it does not specify how observers should place decision boundaries between different
confidence ratings, only that these boundaries should depend on the posterior probability of
being correct. While one study found that confidence ratings are consistent with computations
based on the posterior probability (Sanders, Hangya, and Kepecs 2016; but see Adler and Ma
2017b), others showed that either some (Aitchison et al. 2015; Navajas et al. 2017) or most
(Adler and Ma 2017a; Denison et al. 2017) observers are described better by heuristic models
in which confidence depends on uncertainty but not on the actual posterior probability of being

correct.

Further, confidence judgments are influenced by a host of factors unrelated to the perceptual
signal at hand and thus in violation of the principle that they should reflect the posterior
probability of being correct. For example, emotional states, such as worry (Massoni 2014) and
arousal (Allen et al. 2016), affect how sensory information relates to confidence ratings. Other
factors, such as eye gaze stability (Schurger et al. 2015), working memory load (Maniscalco and
Lau 2015) and age (Weil et al. 2013), affect the relationship between confidence and accuracy.
Sequential effects have also been reported for confidence judgments such that a high
confidence rating is more likely to follow a high, rather than low, confidence rating (Mueller and

Weidemann 2008). Confidence dependencies exist even between different tasks, such as letter
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and color discrimination, that depend on different neural populations in the visual cortex
(Rahnev et al. 2015). Inter-task confidence influences have been dubbed “confidence leak” and
have been shown to be negatively correlated with observers’ metacognitive sensitivity (Rahnev

et al. 2015).

Confidence has also been shown to exhibit a “positive evidence” bias (Maniscalco et al. 2016;
Zylberberg, Barttfeld, and Sigman 2012). In 2-choice tasks, one can distinguish between
sensory evidence in a trial that is congruent with the observer’s response on that trial (positive
evidence) and sensory evidence that is incongruent with the response (negative evidence).
Even though the perceptual decisions usually follow the optimal strategy of weighting equally
both of these sources of evidence, confidence ratings are suboptimal in depending more heavily
on the positive evidence (Koizumi et al. 2015; Maniscalco et al. 2016; Samaha et al. 2016; Song

et al. 2015; Zylberberg et al. 2012).

3.5.5 Explaining suboptimality in confidence ratings

Why do people appear to give inappropriate confidence ratings? Some components of over-
and underconfidence can be explained by inappropriate transformation of internal evidence into
probabilities [general] (Zhang and Maloney 2012), methodological considerations such as
interleaving conditions with different difficulty levels, which can have inadvertent effects on the
prior [methodologicall (Drugowitsch, Moreno-Bote, and Pouget 2014), or even individual
differences such as shyness about giving high confidence, which can be conceptualized as
extra cost for high confidence responses [cost function]. Confidence-accuracy dissociations
are often attributed to observers’ inability to maintain different criteria for different conditions,

even if they are clearly distinguishable [decision rule] (Koizumi et al. 2015; Rahnev,
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Maniscalco, et al. 2011). The “positive evidence” bias [decision rule] introduced in the end of

Section 3.5.4 can also account for many suboptimalities of confidence ratings.

More generally, it is possible that confidence ratings are not only based on the available
perceptual evidence as assumed by most modeling approaches (Drugowitsch and Pouget 2012;
Green and Swets 1966; Macmillan and Creelman 2005; Ratcliff and Starns 2009; Vickers 1979).
Other theories postulate the existence of either different processing streams that contribute
differentially to the perceptual decision and the subjective confidence judgment (Del Cul et al.
2009; Jolij and Lamme 2005; Weiskrantz 1996) or a second processing stage that determines
the confidence judgment, and which builds upon the information in an earlier processing stage
responsible for the perceptual decision (Bang et al. 2017; van den Berg, Yoo, and Ma 2017; Lau
and Rosenthal 2011; Maniscalco and Lau 2010, 2016; Pleskac and Busemeyer 2010). Both
types of models could be used to explain the various findings of suboptimal behavior and imply
the existence of different measurement distributions for decision and confidence [likelihood

function).

3.6 Comparing sensitivity in different tasks

The above sections discussed observers’ performance on a single task. Another way of
examining optimality is to compare the performance on two related tasks. If the two tasks have
a formal relationship, then an optimal observer’s sensitivity on the two tasks should follow that

relationship.

3.6.1 Comparing performance in 1-stimulus and 2-stimulus tasks

Visual sensitivity has traditionally been measured by employing either (1) a 1-stimulus

(detection or discrimination) task in which a single stimulus from one of two stimulus classes is

31


https://doi.org/10.1101/060194
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/060194; this version posted January 31, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

presented on each trial, or (2) a 2-stimulus task in which both stimulus classes are presented on
each trial (see Section 1.3). Intuitively, 2-stimulus tasks are easier because the final decision is
based on more perceptual information. Assuming independent processing of each stimulus, the
relationship between the sensitivity on these two types of tasks can be mathematically defined:
the sensitivity on the 2-stimulus task should be /2 times higher than on the 1-stimulus task
(Macmillan & Creelman, 2005; Figure 7). Nevertheless, empirical studies have often
contradicted this predicted relationship: Many studies found sensitivity ratios smaller than /2
(Creelman and Macmillan 1979; Jesteadt 1974; Leshowitz 1969; Markowitz and Swets 1967;
Pynn 1972; Schulman and Mitchell 1966; Swets and Green 1961; Viemeister 1970; Watson et
al. 1973; Yeshurun, Carrasco, and Maloney 2008), though a few have found ratios larger than

V2 (Leshowitz 1969; Markowitz and Swets 1967; Swets and Green 1961).

>

Evidence 2" stimulus is s,

Evidence 1% stimulus is s,

Figure 7. Depiction of the relationship between 1-stimulus and 2-stimulus tasks. Each axis
corresponds to a 1-stimulus task (e.g., Figure 2). The three sets of concentric circles represent
2D circular Gaussian distributions corresponding to presenting two stimuli in a row (e.g., S2,S1

means that s> was presented first and s; was presented second). If the discriminability between
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St and sz is d’ (1-stimulus task; gray lines in triangle), then the Pythagorean theorem gives us

the expected discriminability between s1,s2 and s2,81 (2-stimulus task; blue line in triangle).

3.6.2 Comparing performance in other tasks

Many other comparisons between tasks have been performed. In temporal 2IFC tasks
observers often have different sensitivity to the two stimulus intervals (Garcia-Pérez and Alcala-
Quintana 2010, 2011; Yeshurun et al. 2008), suggesting an inability to distribute resources
equally. Other studies find that longer inter-stimulus intervals in 2IFC tasks lead to decreases in
sensitivity (Berliner and Durlach 1973; Kinchla and Smyzer 1967; Tanner 1961), presumably
due to memory limitations. Further, choice variability on 3-choice tasks is greater than what
would be predicted by a related 2-choice task (Drugowitsch et al. 2016). Creelman and
Macmillan (1979) compared the sensitivity on 9 different psychophysical tasks and found a
complex pattern of dependencies, many of which were at odds with optimal performance.
Finally, Olzak (1985) demonstrated deviations from the expected relationship between detection

and discrimination tasks.

An alternative approach to comparing an observer’'s performance on different tasks is allowing
observers to choose which tasks they prefer to complete and analyzing the optimality of these
decisions. In particular, one can test for the presence of transitivity: if an observer prefers task A
to task B and task B to task C, then the observer should choose task A to task C. Several
studies suggest that human observers violate the transitivity principle both in choosing tasks
(Zhang, Morvan, and Maloney 2010) and choosing stimuli (Tsetsos et al. 2016), though there is
considerable controversy surrounding such findings (Davis-Stober et al. 2016; Kalenscher et al.

2010; Regenwetter et al. 2011, 2017; Regenwetter, Dana, and Davis-Stober 2010).
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3.6.3 Explaining suboptimality in between-task comparisons

Why does human performance on different tasks violate the expected relationship between
these tasks? One possibility is that observers face certain capacity limits in one but not the other
task that alter how the stimuli are encoded [likelihood function]. For example, compared to 1-
stimulus tasks, the more complex 2-stimulus task requires the simultaneous processing of two
stimuli. If limited resources hamper the processing of the second stimulus, then sensitivity in

that task would fall short of what is predicted based on the 1-stimulus task.

In some experiments observers performed worse than expected on the 1-stimulus, rather than
on the 2-stimulus task. A possible explanation of this effect is the presence of a larger “criterion
jitter” in the 1-stimulus task, i.e., a larger variability in the decision criterion from trial to trial.
Since 2-stimulus tasks involve the comparison of two stimuli on each trial, these tasks are less
susceptible to criterion jitter. Such criterion variability, which could stem from sequential
dependencies or even random criterion fluctuations (see Section 3.2), decreases the estimated
stimulus sensitivity (Mueller and Weidemann 2008). The criterion jitter could also be due to
computational imprecision [general] (Bays and Dowding 2017; Beck et al. 2012; Dayan 2014;
Drugowitsch et al. 2016; Renart and Machens 2014; Whiteley and Sahani 2012; Wyart and
Koechlin 2016). Such imprecision could arise from constraints at the neural level and may

account for a large amount of choice suboptimality (Drugowitsch et al. 2016).

3.7 Cue combination

Studies of cue combination have been fundamental to the view that sensory perception is
optimal (Trommershauser, Kording, and Landy 2011). Cue combination (also called “cue
integration”) is needed whenever different sensory features provide separate pieces of
information about a single physical quantity. For example, auditory and visual signals can

separately inform about the location of an object. Each cue provides imperfect information about
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the physical world, but different cues have different sources of variability. As a result, integrating
the different cues can provide a more accurate and reliable estimate of the physical quantity of

interest.

One can test for optimality in cue combination by comparing the perceptual estimate formed
from two cues with the estimates formed from each cue individually. The optimal estimate is
typically taken to be the one that maximizes precision (minimizes variability) across trials
(Figure 8). When the variability for each cue is Gaussian and independent of the other cues, the
maximum likelihood estimate (MLE) is a linear combination of the estimates from each cue,
weighted by their individual reliabilities (Landy, Banks, and Knill 2011). Whether observers
conform to this weighted sum formula can be readily tested psychophysically, and a large
number of studies have done exactly this for different types of cues and tasks (see Ma, 2010

and Trommershauser et al., 2011 for reviews).

In particular, the optimal mean perceptual estimate (x) after observing cue 1 (with feature

estimate x, and variance of o) and cue 2 (with feature estimate x, and variance of ¢2) is:

X, | X
X+ 5
oy 0p

x:

1 1
52T 52
1 2

such that the feature estimate x; is weighted by its reliability % and the whole expression is

L

normalized by the sum of the reliabilities. The optimal variance of the perceptual estimate (g2)

is:
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Figure 8. Optimal cue combination. Two cues that give independent information about the value
of a sensory feature (red and blue curves) are combined to form a single estimate of the feature
value (yellow curve). The combined cue distribution is narrower than both individual cue

distributions, and its mean is closer to the mean of the distribution of the more informative cue.

3.7.1 Examples of optimality in cue combination

A classic example of cue combination is a study of visual-haptic cue combination by Ernst &
Banks (2002). In this study, observers estimated the height of a rectangle using 1) only sight, 2)
only touch, or 3) both sight and touch. Performance in the visual-haptic condition was well
described by the MLE formula: the single cue measurements predicted both the reliability of the
combined estimates and the weights given to each cue. Many studies have observed similar
optimal cue combination behavior in a range of tasks estimating different physical quantities

(Trommershauser et al. 2011). These studies have investigated integration across two
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modalities (including vision, touch, audition, the vestibular sense, and proprioception; e.g., Alais
& Burr, 2004; Emst & Banks, 2002; Gu, Angelaki, & DeAngelis, 2008; van Beers, Sittig, &
Denier van der Gon, 1996) and across two features in the same modality, such as various visual
cues to depth (e.g., Jacobs 1999; Landy et al. 1995). Common among these experiments is that
trained observers complete many trials of a psychophysical task, and the two cues provide
similar estimates of the quantity of interest. Optimal cue combination has also been observed
during sensory-motor integration (Maloney and Zhang 2010; Trommershauser 2009; Wei and

Koérding 2011; Yeshurun et al. 2008).

3.7.2 Examples of suboptimality in cue combination

Because optimality is often the hypothesized outcome in cue combination studies, findings of
suboptimality may be underreported or underemphasized in the literature (Rosas and
Wichmann 2011). Still, a number of studies have demonstrated suboptimal cue combination that
violates some part of the MLE formula. These violations fall into two categories: 1) those in
which the cues are integrated but are not weighted according to their independently-measured
reliabilities, and 2) those in which estimates from two cues are no better than estimates from a

single cue.

In the first category are findings from a wide range of combined modalities: visual-auditory
(Battaglia, Jacobs, and Aslin 2003; Burr, Banks, and Morrone 2009; Maiworm and Réder 2011),
visual-vestibular (Fetsch et al. 2012; Prsa, Gale, and Blanke 2012), visual-haptic (Battaglia,
Kersten, and Schrater 2011; Rosas et al. 2005), and visual-visual (Knill and Saunders 2003;
Rosas, Wichmann, and Wagemans 2007). For example, auditory and visual cues were not
integrated according to the MLE rule in a localization task; instead, observers treated the visual

cue as though it were more reliable than it really was (Battaglia et al. 2003). Similarly, visual and
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haptic texture cues were integrated according to their reliabilities, but observers underweighted
the visual cue (Rosas et al. 2005). Suboptimal integration of visual and auditory cues was also
found for patients with central vision loss, but not for patients with peripheral vision loss (Garcia

etal. 2017).

In some of the above studies, cue misweighting was restricted to low-reliability cues: in a visual-
vestibular heading task, observers overweighted vestibular cues when visual reliability was low
(Fetsch et al. 2012), and in a visual-auditory temporal order judgment task, observers
overweighted auditory cues when auditory reliability was low (Maiworm and Rdder 2011).
However, overweighting does not only occur within a limited range of reliabilities (e.g., Battaglia

et al., 2003; Prsa et al., 2012).

Several studies have failed to find optimal cue combination in the temporal domain. In an audio-
visual rate combination task, observers only partially integrated the auditory and visual cues,
and they did not integrate them at all when the rates were very different (Roach, Heron, and
McGraw 2006). Observers also overweight auditory cues in temporal order judgment tasks
(Maiworm and Rdder 2011) and temporal bisection tasks (Burr et al. 2009). It is well-established
that when two cues give very different estimates, observers tend to discount one of them
(Gepshtein et al. 2005; Jack and Thurlow 1973; Koérding et al. 2007; Roach et al. 2006; Warren
and Cleaves 1971), an effect which has been called “robust fusion” (Maloney and Landy 1989),
which may arise from inferring that the two cues come from separate sources (Koérding et al.
2007). However, in most of these studies, suboptimal cue combination was observed even

when the cues gave similar estimates.
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In the second category of suboptimal cue combination findings, two cues are no better than one
(Chen and Tyler 2015; Drugowitsch, DeAngelis, et al. 2014; Landy and Kojima 2001; Orug,
Maloney, and Landy 2003; Rosas et al. 2005, 2007). (Note that some of these studies found a
mix of optimal and suboptimal observers.) Picking the best cue is known as a “veto” type of cue
combination (Bulthoff and Mallot 1988) and is considered a case of “strong fusion” (Clark and
Yullie 1990; Landy et al. 1995). This is an even more serious violation of optimal cue
combination, since it is as though no integration has taken place at all -- the system either picks

the best cue or in some cases does worse with two cues than with one.

Cues may also be mandatorily combined even when doing so is not suitable for the observer’s
task. For example, texture and disparity information about slant is subsumed in a combined
estimate, rendering the single cue estimates unrecoverable (Hillis et al. 2002). Interestingly, the
single cue estimates are not lost in children, allowing them to outperform adults when the cues
disagree (Nardini, Bedford, and Mareschal 2010). In a related finding, observers used multiple
visual features to identify a letter even when the optimal strategy was to use only a single,

relevant feature (Saarela and Landy 2015).

3.7.3 Combining stimuli of the same type

So far, we have only considered cue combination studies in which the two cues come from
different sensory modalities or dimensions. Suboptimal behavior has also been observed when
combining cues from the same dimension. For example, Summerfield and colleagues showed
that observers do not weight every sample stimulus equally in a decision (Summerfield and
Tsetsos 2015). For simultaneous samples, observers underweight “outlier” stimuli lying far from
the mean of the sample (de Gardelle and Summerfield 2011; Michael et al. 2015; Michael, de
Gardelle, and Summerfield 2014; Vandormael et al. 2017). For sequential samples, observers

overweight stimuli toward the end of the sequence (a recency effect) as well as stimuli that are
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similar to recently presented items (Bang and Rahnev 2017; Cheadle et al. 2014; Wyart, Myers,
and Summerfield 2015). Observers also use only a subset of a sample of orientations to
estimate its mean (Dakin 2001). More generally, accuracy on tasks with sequential samples is
substantially lower than what would be predicted by sensory noise alone (Drugowitsch et al.

2016).

3.7.4 Combining sensory and motor cues

Suboptimal cue integration has also been found in sensory-motor tasks. For example, when
integrating the path of a pointing movement with online visual feedback, observers
underestimate the uncertainty indicated by the feedback (Kérding and Wolpert 2004). In a
pointing task in which observers are rewarded for physically touching the correct visual target,
observers underweight the difficulty of the motor task by aiming for a small target even though
the perceptual information indicating the correct target was also uncertain (Fleming, Maloney,
and Daw 2013). Similar biases were reported in related task (Landy et al. 2007). Within the
action domain (and so beyond our focus on perception), Maloney and Zhang (2010) have

reviewed studies showing both optimal and suboptimal behavior.

3.7.5 Cue combination in children

Optimal cue integration takes time to develop. Children are suboptimal until around 10 years of
age when combining multisensory (Gori et al. 2008; Nardini et al. 2008; Petrini et al. 2014) or

visual (Dekker et al. 2015; Nardini et al. 2010) cues.

3.7.6 Explaining suboptimal cue combination

Why do people sometimes appear to combine cues suboptimally? One possible explanation is

that observers do not have accurate representations of the reliability of the cues (Knill and
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Saunders 2003; Rosas et al. 2005) because learning the reliability is difficult [methodologicall.
This methodological issue is particularly acute when the cues are new to the observer. For
example, in one task for which cue combination was suboptimal, observers haptically explored a
surface with a single finger to estimate its slant. However, observers may have little experience
with single-finger slant estimation, since multiple fingers or the whole hand might ordinarily be
used for such a task (Rosas et al. 2005). Alternatively, cue combination may be suboptimal
when one cue provides all information in parallel but the other cue provides information serially
(Plaisier et al. 2014). Reliability estimation might also be difficult when the reliability is very low.
This possibility may apply to studies in which observers were optimal within a range of sensory

reliability, but not outside it (Fetsch et al. 2012; Maiworm and Rdéder 2011).

Some authors suggest that another reason for over- or under-weighting a certain cue could be
prior knowledge about how cues ought to be combined [prior]. This could include a prior
assumption about how likely a cue is to be related to the desired physical property (Battaglia et
al. 2011; Ganmor, Landy, and Simoncelli 2015), how likely two cue types are to correspond to
one another (and thus be beneficial to integrate) (Roach et al. 2006), or a general preference to

rely on a particular modality, such as audition in a timing task (Maiworm and Réder 2011).

For certain tasks, some researchers question the assumptions of the MLE model, such as
Gaussian noise [likelihood function] (Burr et al. 2009) or the independence of the neural
representations of the two cues [likelihood function] (Rosas et al. 2007). In other cases, it
appears that observers use alternative cost functions by, for example, taking RT into account

[cost function] (Drugowitsch, DeAngelis, et al. 2014).
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“‘Robust averaging,” or down-weighting of outliers, has been observed when observers must
combine multiple pieces of information that give very different perceptual estimates. Such down-
weighting can stem from adaptive gain changes [likelihood function] that result in highest
sensitivity to stimuli close to the mean of the sample (or in the sequential case, the subset of the
sample that has been presented so far; Summerfield & Tsetsos, 2015). This adaptive gain
mechanism is similar to models of sensory adaptation (Barlow 1990; Carandini and Heeger
2012; Wark, Lundstrom, and Fairhall 2007). By following principles of efficient coding that place
the largest dynamic range at the center of the sample (Barlow 1961; Brenner, Bialek, and de
Ruyter van Steveninck 2000; Wainwright 1999), different stimuli receive unequal weightings.
Note that psychophysical studies in which stimulus variability is low would not be expected to

show this kind of suboptimality (Cheadle et al. 2014).

It is debated whether suboptimal cue combination in children reflects a switching strategy
(Adams 2016), immature neural mechanisms for integrating cues, or whether the developing
brain is optimized for a different task, such as multisensory calibration or conflict detection (Gori

et al. 2008; Nardini et al. 2010).

3.8 Other examples of suboptimality
Thus far we have specifically focused on tasks where the optimal behavior can be specified
mathematically in a relatively uncontroversial manner (though see Section 4.2 below). However,

the issue of optimality has been discussed in a variety of other contexts.

3.8.1 Perceptual biases, illusions, and improbabilities

A number of basic visual biases have been documented. Some examples include repulsion of

orientation or motion direction estimates away from cardinal directions (Figure 9A; Jastrow,
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1892; Rauber & Treue, 1998), a bias to perceive speeds as slower than they are when stimuli
are low contrast (Stone & Thompson, 1992; Thompson, 1982; but see Thompson, Brooks, &
Hammett, 2006), a bias to perceive surfaces as convex (Langer and Biilthoff 2001; Sun and
Perona 1997), and a bias to perceive visual stimuli closer to fixation than they are (whereas the

opposite is true for auditory stimuli; Odegaard, Wozny, & Shams, 2015).

When biases, context, or other factors lead to something looking dramatically different from its
physical reality, we might call it a visual illusion. A classic example is the brightness illusion
(Figure 9B) in which two squares on a checkerboard appear to be different shades of gray even
though they actually have the same luminance (Adelson 1993). Perceptual illusions persist even
when the observer knows about the illusion and even after thousands of trials of exposure (Gold

et al. 2000).

Some illusions are difficult to reconcile with existing theories of optimal perception. Anderson,
O'Vari, & Barth (2011), for example, reported strong percepts of illusory surfaces that were
improbable according to optimal frameworks for contour synthesis. In the size-weight illusion,
smaller objects are perceived as heavier than larger objects of the same weight, even though
the prior expectation is that smaller objects are lighter (Brayanov and Smith 2010; Peters, Ma,

and Shams 2016).
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Figure 9. Examples of illusions and biases. A) Cardinal repulsion. A nearly vertical (or
horizontal) line looks more tilted away from the cardinal axis than it is. B) Adelson’s
checkerboard brightness illusion. Square B appears to be brighter than square A, even though
the two squares have the same Iuminance. Figure courtesy of Michael Bach
(http://www.michaelbach.de/ot/lum-adelsonCheckShadow/index.html). C) Tilt aftereffect. After
viewing a tilted adapting grating (left), observers perceive a vertical test grating (right) to be
tilted away from the adaptor. D) Effects of spatial attention on contrast appearance (Carrasco,
Ling, and Read 2004). An attended grating appears to have higher contrast than the same
grating when it is unattended. E) Effects of action affordances on perceptual judgments (Witt
2011). Observers judge an object to be closer (far white circle compared to near white circle)
relative to the distance between two landmark objects (red circles) when they are holding a tool

that allows them to reach that object than when they have no tool.

3.8.2 Adaptation

Adaptation is a widespread phenomenon in sensory systems in which responsiveness to
prolonged or repeated stimuli is reduced (Webster 2015). As some researchers have discussed
(Wei and Stocker 2015), adaptation could be seen as suboptimal from a Bayesian perspective

because subsequent perceptual estimates tend to diverge from rather than conform to the prior
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stimulus. For example, after prolonged viewing of a line tilted slightly away from vertical, a
vertical line looks tilted in the opposite direction (the “tilt aftereffect’, Figure 9C; Gibson &
Radner, 1937). Or, after viewing motion in a certain direction, a stationary stimulus appears to
drift in the opposite direction (Wohlgemuth 1911). After adapting to a certain color, perception is
biased toward the complementary color (Sabra 1989; Turnbull 1961), and after adapting to a
specific face, another face appears more different from that face than it would have otherwise
(Webster et al. 2004; Webster and MacLeod 2011). In all of these examples, perception is
repelled away from the prior stimulus, which, at least on the surface, appears suboptimal (but

see Section 3.8.5).

3.8.3 Appearance changes due to visual attention

The same physical stimulus can also be perceived in different ways depending on the state of
visual attention. Directing spatial attention to a stimulus can make it appear larger (Anton-
Erxleben, Henrich, and Treue 2007), faster (Anton-Erxleben, Herrmann, and Carrasco 2013;
Fuller, Park, and Carrasco 2009; Turatto, Vescovi, and Valsecchi 2007), and brighter (Tse
2005), and to have higher spatial frequency (Abrams, Barbot, and Carrasco 2010; Gobell and
Carrasco 2005) and higher contrast (Figure 9D; Carrasco et al. 2004; Liu, Abrams, and
Carrasco 2009; Stérmer, Mcdonald, and Hillyard 2009) than it would otherwise. Often
attentional effects improve performance on a visual task, but sometimes they make
performance worse (Ling and Carrasco 2006; Yeshurun and Carrasco 1998), demonstrating

inflexibility in the system.

3.8.4 Cognition-based biases

Other studies have documented visual biases associated with more cognitive factors, including

action affordances (Witt 2011), motivation (Balcetis 2015), and language (Lupyan 2012). For
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example, when people will be reaching for an object with a tool that allows them to reach
further, they report the object as looking closer than when they will be reaching without the tool
(Figure 9E; Witt, Proffitt, & Epstein, 2005). In the linguistic domain, calling an object a “triangle”
leads observers to report the object as having more equal sides than when the object is called
“three-sided” (Lupyan 2016). How much these more cognitive factors affect perception per se,
as opposed to post-perceptual judgments, and to what extent the observed visual biases are

mediated by attention, remain controversial questions (Firestone and Scholl 2016).

3.8.5 Explaining these other examples of apparent suboptimality

Why are people prone to certain biases and illusions? Some biases and illusions have been
explained as arising from priors in the visual system [prior]. Misperceptions of motion direction
(Weiss et al. 2002) and biases in reporting the speed of low contrast stimuli (Stocker and
Simoncelli 2006a; Thompson 1982; Vintch and Gardner 2014) have been explained as optimal
percepts for a visual system with a prior for slow motion (Stocker and Simoncelli 2006a; Weiss
et al. 2002). Such a prior is motivated by the fact that natural objects tend to be still or move
slowly but has been empirically challenged by subsequent research (Hammett et al. 2007;
Hassan and Hammett 2015; Thompson et al. 2006; Vaziri-Pashkam and Cavanagh 2008).
Priors have been be invoked to explain many other biases and illusions (Brainard et al. 2006;
Girshick, Landy, and Simoncelli 2011; Glennerster et al. 2006; Raviv, Ahissar, and Loewenstein
2012). The suggestion is that these priors have been made stable over a lifetime and influence

perception even when they do not apply (i.e., in a laboratory task).

Optimal decoding of sensory representations in one task can be accompanied by suboptimal
biases in another task using the same stimuli. For example, in a fine motion discrimination task,

observers seem to overweight the neurons tuned away from the discrimination boundary,
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because these neurons distinguish best between the two possible stimuli. This overweighting
could explain why motion direction judgments in an interleaved estimation task are biased away
from the boundary (Jazayeri and Movshon 2007). Another interpretation of these results is in
terms of an improper decision rule (Zamboni et al. 2016). Specifically, observers may discard
sensory information related to the rejected decision outcome [decision rule] (Bronfman et al.
2015; Fleming et al. 2013; Luu and Stocker 2016), an effect known as self-consistency bias

(Stocker and Simoncelli 2008).

Various efforts have been made to explain adaptation in the framework of Bayesian optimality
(Grzywacz and Balboa 2002; Hohwy, Roepstorff, and Friston 2008; Schwiedrzik et al. 2014;
Snyder et al. 2015). One of the most well-developed lines of work explains the repulsive effects
of adaptation as a consequence of efficient coding [likelihood function] (Stocker and
Simoncelli 2006b). In this framework, a sensory system adapts to maximize its dynamic range
around the value of previous input. This change in coding does not affect the prior (as might be
expected in a Bayesian treatment of adaptation) but rather affects the likelihood function.
Specifically, it skews new observations away from the adapted stimulus, giving rise to repulsive
aftereffects. A similar principle has been suggested to explain why perceptual estimates are
repelled from long-term priors, such as those determined by the statistics of natural images (Wei

and Stocker 2012, 2015).

4. ASSESSING OPTIMALITY: NOT A USEFUL GOAL IN ITSELF
The extensive review in the previous section demonstrates that general claims about the
optimality of human perceptual decision making are empirically false. But there are also

theoretical reasons to turn away from assessing optimality as a primary research goal.
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4.1. Challenges in defining optimality

Section 2 introduced a formal definition of optimality based on Bayesian Decision Theory.
However, the question of what phenomena should be considered optimal vs. suboptimal quickly
becomes complicated in many actual applications. There are at least two issues that are not

straightforward to address.

The first issue concerns the exact form of the cost function. Bayesian Decision Theory
postulates that observers should minimize the expected loss. However, observers may
reasonably prefer to minimize the maximum loss, minimize the variability of the losses, or
optimize some other quantity. Therefore, behavior that is suboptimal according to standard
Bayesian Decision Theory may be optimal according to other definitions. A related, and deeper,
problem is that some observers may also try to minimize other quantities such as time spent,
level of boredom, or metabolic energy expended (Carrasco 2011; Lennie 2003). What appears
to be a suboptimal decision on a specific task may be optimal when all these other variables are
taken into account (Beck et al. 2012; Bowers and Davis 2012a). Even the clearest cases of
suboptimal decision rules (e.g., the self-consistency bias) could be construed as part of a
broader optimality (e.g., being self-consistent may be important for other goals). In a Bayesian
framework, taking into account extra variables requires that each of the LPCD components is
defined over all these variables. If one pursues this logic, it leads to a cost function that operates
over our entire evolutionary history. We do not think efforts to understand such cost functions
should be abandoned, but specifying them quantitatively is impossible given our current

knowledge.

The second issue concerns whether optimality should depend on the likelihood, prior, and cost
function adopted by the observer. In order to be able to review a large literature using consistent
assumptions, we defined a set Standard Assumptions and labeled any deviation from these
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assumptions as suboptimal. This approach is by no means uncontroversial. For example, priors
based on a lifetime of experience may be inflexible, so one could consider the Standard
Assumption about following the experimenter-defined prior overly restrictive. An alternative view
could be that suboptimal behavior concerns only deviations from the experimenter-defined
quantities that are under observers’ control (Tenenbaum and Griffiths 2006; Yu and Cohen
2009). The problem with this definition is that it introduces a new variable to consider — what
exactly is truly under observers’ control — which is often hard to determine. A third approach is
to define optimality exclusively in terms of the decision rule regardless of what likelihood, prior,
and cost function the observer adopts. In this view, observers are under no obligation to follow
the experimenter’s instructions (e.g., they are free to bring in their own priors and cost function).
The problem with this approach is that failing to adopt the proper prior or cost function can result
in just as much missed objective reward as adopting an improper decision rule. Similar
problems apply to “improper” likelihood functions: as an extreme example, a strategy in which
the observer closes her eyes (resulting in a non-informative likelihood function) and chooses
actions randomly has to be labeled “optimal” because the decision rule is optimal. The
ambiguity regarding the role of the likelihood, prior, or cost function points to the difficulties in

constructing a general-purpose definition of optimality.

In short, optimality is impossible to define in the abstract. It is only well-defined in the context of
a set of specific assumptions, rendering general statements about the optimality (or

suboptimality) of human perceptual decisions meaningless.

4.2. Optimality claims in and of themselves have limited value

The current emphasis on optimality is fueled by the belief that demonstrating optimality in
perception provides us with important insight. On the contrary, simply stating that observers are
optimal is of limited value for two main reasons.
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First, it is unclear when a general statement about the optimality of perceptual decisions is
supposed to apply. While most experimental work focuses on very simple tasks, it is widely
recognized that the computational complexity of many real-world tasks makes optimality
unachievable by the brain (Bossaerts and Murawski 2017; Cooper 1990; Gershman et al. 2015;
van Rooij 2008; Tsotsos 1993). Further, in many situations, the brain cannot be expected to
have complete knowledge of the likelihood function, which all but guarantees that the decision
rule will be suboptimal (Beck et al. 2012). (It should be noted that attempting to incorporate
observers’ computational capacities or knowledge brings back the problems related to how one
defines optimality discussed in Section 4.1.) Therefore, general statements about optimality
must be intended only for the simplest cases of perceptual decisions (although, as Section 3

demonstrated, even for these cases, suboptimality is ubiquitous).

Second, even for a specific task, statements about optimality alone are insufficient to predict
behavior. Instead, to predict future perceptual decisions, one needs to specify each part of the
process underlying the decision. Within the Bayesian framework, for example, one needs to
specify each LPCD component, which goes well beyond a statement that “observers are

optimal.”

Is it useless to compare human performance to optimal performance? Absolutely not. Within the
context of a specific model, demonstrating optimal or suboptimal performance is immensely
helpful (Goodman et al. 2015; Tauber et al. 2017). Such demonstrations can support or
challenge components of the model and suggest ways to alter the model to accommodate

actual behavior. But the critical part here is the model, not the optimality.
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5. TOWARD A STANDARD OBSERVER MODEL
If there are so many empirical examples of suboptimality (Section 3) and optimality can be

challenging even to define (Section 4), then what is the way forward?

5.1. Creating and testing observer models

Psychophysics has a long history of creating ideal observer models (Geisler 2011; Green and
Swets 1966; Ulehla 1966). These models specify a set of assumptions about how sensory
information is represented internally and add an optimal decision rule in order to generate
predictions about behavior. The motivation behind these models has been to test the collective
set of assumptions incorporated into the model. However, over time, the “ideal” part of the ideal
observer models has become dominant, culminating in the current outsized emphasis on
demonstrating the optimality of the decision rule — what we call the optimality approach. Even
frameworks such as “bounded rationality” (Gigerenzer and Selten 2002; Simon 1957) or
“‘computational rationality” (Gershman et al. 2015), which explicitly concern themselves with the
limitations of the decision-making process, still place the greatest emphasis on the optimality of

the decision rule.

The emphasis on the decision rule in the optimality approach has led to an overly flexible
treatment of the other LPCD components (Bowers and Davis 2012a). This issue is especially
problematic due to the inherent degeneracy of Bayesian Decision Theory (Acerbi 2014):
different combinations of the likelihood, prior, cost, and decision rule can lead to the same
expected loss. Further, for any likelihood, cost function, and decision rule, a prior can be found

for which that decision rule is optimal (“complete class theorem”) (Berger 1985; Jaynes 2003).

To eliminate the flexibility of the optimality approach, the field should return to the original
intention of building ideal observer models, namely to test the collective set of assumptions
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incorporated into such models. To this end, we propose that researchers drop the “ideal” and
shift emphasis to building, simply, “observer models.” Creating observer models should differ
from the current optimality approach in two critical ways. First, whether or not the decision rule
is optimal should be considered irrelevant. Second, the nature of the decision rule should not be

considered more important than the nature of the other components.

These two simple changes address the pitfalls of the optimality approach. Within the optimality
approach, a new finding is often modeled using flexibly-chosen LPCD components (Bowers and
Davis 2012a). Then, depending on the inferred decision rule, a conclusion is reached that
observers are optimal (or suboptimal). At this point, the project is considered complete and a
general claim is made about optimality (or suboptimality). As others have pointed out, this
approach has led to many “just-so stories” (Bowers and Davis 2012a), since the assumptions of
the model are not rigorously tested. On the contrary, when building observer models (e.g., in the
Bayesian framework), a new finding is used to generate hypotheses about a particular LPCD
component (Maloney and Mamassian 2009). Hypotheses about the likelihood, prior, or cost
function are considered as important as hypotheses about the decision rule. Critically, unlike in
the optimality approach, this step is considered just the beginning of the process! The
hypotheses are then examined in detail while evidence is gathered for or against them.
Researchers can formulate alternative hypotheses to explain a given dataset and evaluate them
using model comparison techniques. In addition, researchers can conduct follow-up
experiments in which they test their hypotheses using different tasks, stimuli, and observers.
There are researchers who already follow this approach, and we believe the field would benefit
from adopting it as the standard practice. In Box 1, we list specific steps for implementing
observer models within a Bayesian framework (the steps will be similar regardless of the

framework).
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Box 1. Implementing observer models within a Bayesian framework

1. Describe the complete generative model including assumptions about what
information the observer is using to perform the task (e.g., stimulus properties,
training, experimenter's instructions, feedback, explicit vs. implicit rewards, response
time pressure, etc.).

2. Specify the assumed likelihood function, prior, and cost function. If multiple options are
plausible, test them in different models.

3. Derive both the optimal decision rule, as well as plausible alternative decision rules.
Compare their ability to fit the data.

4. Interpret the results with respect to what has been learned about each LPCD
component, not optimality per se. Specify how the conclusions depend on the
assumptions about the other LPCD components.

5. Most importantly, follow up on any new hypotheses about LPCD components with
additional studies in order to avoid “just-so stories.”

6. New hypotheses that prove to be general eventually become part of the Standard

Observer Model (see Section 5.2).

Two examples demonstrate the process of implementing observer models. A classic example
concerns the existence of Gaussian variability in the measurement distribution. This assumption
has been extensively tested for decades (Green and Swets 1966; Macmillan and Creelman
2005), thus eventually earning its place among the Standard Assumptions in the field. A second
example comes from the literature on speed perception. A classic finding is that reducing the
contrast of a slow-moving stimulus reduces its apparent speed (Stone and Thompson 1992;
Thompson 1982). A popular Bayesian explanation for this effect is that most objects in natural

environments are stationary, so the visual system has a prior for slow speeds. Consequently,
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when sensory information is uncertain, as occurs at low contrasts, slow-biased speed
perception could be considered “optimal” (Weiss et al. 2002). Importantly, rather than stopping
at this claim, researchers have investigated the hypothetical slow motion prior in follow-up
studies. One study quantitatively inferred observers’ prior speed distributions under the
assumption of a Bayesian decision rule (Stocker and Simoncelli 2006a). Other researchers
tested the slow motion prior and found that, contrary to its predictions, high speed motion at low
contrast can appear to move faster than its physical speed (Hammett et al. 2007; Hassan and
Hammett 2015; Thompson et al. 2006). These latter studies challenged the generality of the

slow motion prior hypothesis.

5.2. Creating a Standard Observer Model

We believe that an overarching goal of the practice of creating and testing observer models is
the development of a Standard Observer Model that predicts observers’ behavior on a wide
variety of perceptual tasks. Such a model would be a significant achievement for the science of
perceptual decision making. It is difficult — perhaps impossible — to anticipate what form the
Standard Observer Model will take. It may be a Bayesian model (Maloney and Mamassian
2009), a “bag of tricks” (Ramachandran 1990), a neural network (Yamins et al. 2014), etc.
However, regardless of the framework in which they were originally formulated, hypotheses with
overwhelming empirical support will become part of the Standard Observer Model. In this
context, perhaps the most damaging aspect of the current outsized emphasis on optimality is
that while it has generated many hypotheses, few of them have received sufficient subsequent

attention to justify inclusion in (or exclusion from) the eventual Standard Observer Model.

We suggest that immediate progress can be made by a concerted effort to test the hypotheses
that have already been proposed to explain suboptimal decisions. To facilitate this effort, here

we compile the hypotheses generated in the course of explaining the findings from Section 3.
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Within a Bayesian framework, these hypotheses relate to the likelihood function, prior, cost

function, or decision rule (the LPCD components). Further, a few of them are general and apply

to several LPCD components, and a few are methodological considerations. In some cases,

essentially the same hypothesis was offered in the context of several different empirical effects.

We summarize these hypotheses in Table 1. Note that the table by no means exhaustively

covers all existing hypotheses that deserve to be thoroughly tested.

Table 1. Summary of hypotheses proposed to account for suboptimal decisions.

LPCD : e : Relevant
Component Hypothesis Description of the hypothesis sections
Capacity limitations All stimuli may not be processed fully due to 3.1, 3.2, 3.6,
Likelihood pactty limited resources 3.7, &3.8
function Incorrect likelihood The experimenter may make wrong assumptions 3.1, 3.5, &
function about the likelihood function 3.7
Prior Inapprooriate oriors Priors may not be appropriate to the experimental 3.2,3.7, &
pprop P setting (may instead reflect habitual assumptions) 3.8
Placing a premium on | Observers may sacrifice total reward in order to 33834
accuracy have higher accuracy level ' '
Cost function - - -
Idiosyncratic cost Observers may place a premium on speed and 3.1, 34, 3.5,
functions avoid false alarms or high/low confidence ratings & 3.7
Observers may have a tendency to give the same
Non-random guesses response when uncertain 3.1
Inability to emplov a Observers may adopt a simpler, suboptimal
Decision rule y mploy decision rule when the optimal one is relatively 3.2&35
complex decision rule complex
N . Observers may not consider all information
Ignoring information relevant to theydecision 3.5&3.8
Computational Internal computations may carry inherent 34836
imprecision imprecision leading to behavioral variability : :
General o P ——
- servers may represent or transform
Incorrect probabilities probabilities in}(/:orchtIy 3.3
Incomplete learnin If observers could not learn a specific LPCD 33837
P 9 component, then they cannot perform optimally ' '
. Task specification "Irrelevant” experimental details may lead 35
Methodological P observers to alter their assumptions or strategy '
subc?pt)itrlnn;leer]\ivior Optimal and suboptimal decision rules cannot be 3.3
?oo similar distinguished if they result in similar behavior '

55



https://doi.org/10.1101/060194
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/060194; this version posted January 31, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Table 1 classifies instances of deficient learning as methodological issues. This choice is not to
downplay the problem of learning. Questions of how observers acquire their priors and cost
functions are of utmost importance, and meaningful progress has already been made on this
front (Acerbi et al. 2014; Acerbi, Wolpert, and Vijayakumar 2012; Beck et al. 2012; Geisler and
Najemnik 2013; Gekas et al. 2013; Seriés and Seitz 2013). Here we categorize deficient
learning as a methodological issue when, due to the experimental setup, an observer cannot

acquire the relevant knowledge even though they have the capacity to do so.

Future research should avoid the methodological issues from Table 1. In particular, great care
must be taken to ensure that observers’ assumptions in performing a task match exactly the

assumptions implicit in the analysis.

We have stated the hypotheses in Table 1 at a fairly high level to succinctly capture the broad
categories from our review. Much of the work ahead will be to break each high-level hypothesis
down into multiple, specific hypotheses and incorporate these hypotheses into observer models.
For example, statements about “inappropriate priors” or “capacity limitations” prompt more fine-
grained hypotheses about specific priors or limitations whose ability to predict behavior can be
tested. Some hypotheses, like capacity limitations, have already been investigated extensively —
for example in studies of attention and working memory (e.g., Carrasco 2011; Cowan 2005).
Turning our existing knowledge of these phenomena into concrete observer models that predict
perceptual decisions is an exciting direction for the field. Other hypotheses, like placing a
premium on accuracy, have not been tested extensively and therefore should still be considered
“‘just-so stories” (Bowers and Davis 2012a). Thus, the real work ahead lies in verifying, rejecting,

and expanding the hypotheses generated from findings of suboptimal perceptual decisions.
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5.3. Implications of abandoning the optimality approach
Abandoning the optimality approach has at least two immediate implications for research

practices.

First, researchers should stop focusing on optimality. What should be advertised in the title and
abstract of a paper is not the optimality but what is learned about the components of the
perceptual process. One of the central questions in perceptual decision making is how best to
characterize the sources that corrupt decisions (Beck et al. 2012; Drugowitsch et al. 2016;
Hanks and Summerfield 2017; Wyart and Koechlin 2016). By shifting attention away from

optimality, the effort to build complete observer models sharpens the focus on this question.

Second, new model development should not unduly emphasize optimal models. According to
some Bayesian theorists, models that assume optimal behavior are intrinsically preferable to
models that do not. This preference stems from the argument that because people can
approximate optimal behavior on some tasks, they must possess the machinery for fully optimal
decisions (Drugowitsch & Pouget, 2012). Many models have been judged positively for
supporting optimal decision rules: probabilistic population codes for allowing optimal cue
combination (Ma et al. 2006), neural sampling models for allowing marginalization (which is
needed in many optimal decision rules) (Fiser et al. 2010), and drift diffusion models for allowing
optimal integration of information across time (Bogacz 2007). The large body of findings of
suboptimality reviewed here, however, should make this reasoning suspect: if the brain is built
to make optimal decisions, then why does it produce so many suboptimal ones? It is also
important to remember that close-to-optimal behavior can also be produced by suboptimal
decision rules (Bowers and Davis 2012a; Maloney and Mamassian 2009; Shen and Ma 2016).

Influential theories postulate that evolutionary pressures produced heuristic but useful, rather
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than normative, behavior (Gigerenzer and Brighton 2009; Juslin et al. 2009; Simon 1956). Thus,
models should be judged solely based on their ability to describe actual behavior and not on

their ability to support optimal decision rules.

6. CONCLUSION

Are perceptual decisions optimal? A substantial body of research appears to answer this
question in the affirmative. Here we showed instead that every category of perceptual tasks that
lends itself to optimality analysis features numerous findings of suboptimality. Perceptual
decisions cannot therefore be claimed to be optimal in general. In addition, independent of the
empirical case against optimality, we questioned whether a focus on optimality per se can lead
to any real progress. Instead, we advocated for a return to building complete observer models
with an equal focus on all model components. Researchers should aim for their models to
capture all the systematic weirdness of human behavior rather than preserve an aesthetic ideal.
To facilitate this effort, we compiled the hypotheses generated in the effort to explain the
findings of suboptimality reviewed here. The real work ahead lies in testing these hypotheses,

with the ultimate goal of developing a Standard Observer Model of perceptual decision making.
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