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Abstract

In the course of influenza A virus (IAV) infections, a secondary bacterial infection

frequently leads to serious respiratory conditions provoking high hospitalization and

death tolls. Although abundant pro-inflammatory responses have been reported as key

contributing factors for these severe dual infections, the relative contribution of cytokines

remain largely unclear.

In the current study, mathematical modelling on in vivo experimental data highlight

IFN-γ as a decisive candidate responsible for impaired bacterial clearance, thereby

promoting bacterial growth and systemic dissemination during acute IAV infection.

Moreover, we found a time-dependent detrimental role of IL-6 in curtailing bacterial

outgrowth which was however not as distinct as for IFN-γ. Importantly, our results

furthermore challenge current beliefs that the TNF-α response or the increased availability

of nutrients modulated by IAV infection have a central role to the bacterial outgrowth.

Ultimately, our findings contribute to a detailed understanding of the mechanisms

underlying impaired bacterial clearance following influenza infection.
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Introduction

Retrospective studies performed on victims of the devastating 1918/1919 influenza A

virus (IAV) pandemic and also the recent H1N1 IAV pandemic revealed a high incidence of

coinfections with unrelated bacterial pathogens [1–5]. In fact, 71% of the alarmingly high

death toll during the 1918/1919 outbreak was attributed to coinfection with Streptococcus

pneumoniae (S. pneumoniae) [5]. This copathogen is a human adapted gram-positive

colonizer of the nasopharynx in asymptomatic children and individuals over 65 years of

age but at the same time remains to be the most common cause of community-acquired

pneumonia [6]. Animal and human studies have shown that preceding IAV infection

enhances all aspects of S. pneumoniae pathogenesis from nasopharyngeal colonization to

invasive pneumococcal disease [7], leading to the strong predisposition to lethal secondary

pneumococcal infection in IAV infected patients.

Several mechanisms have been implicated in the viral-bacterial synergism which

altogether demonstrate a multifactorial and complex nature of copathogenesis. One

central dogma is the disruption of the protective alveolar epithelial cell barrier due to

the cytolytic mode of viral replication which in turn exposes otherwise cryptic bacterial

adherence factors on the basal membrane and thereby promotes invasive pneumococcal

disease. Along these lines, a recent study showed that an increase in nutrient availability

due to the virus-mediated accumulation of sialylated mucins and enhanced desialylation

of host glycoconjugates in the upper respiratory tract was a major factor contributing

to bacterial outgrowth [8].

Additionally identified and more debatable mechanisms are the IAV-mediated im-

mune modulations such as immune cell dysfunction and apoptosis causing an aberrant

production of inflammatory mediators in the case of a secondary bacterial encounter.

Experimental reports indicate dampened innate inflammatory responses to the bacteria

in IAV pre-infected hosts due to an enhanced activation threshold of lung innate immune

cells that renders them hypo-responsive [9].

In contrast, a number of studies describe a massive and overshooting inflammatory

cell influx due to the hyper-production of pro-inflammatory cytokines such as Type

I interferons (IFN-I), Interferon-γ (IFN-γ), Interleukin-6 (IL-6) and Tumor Necrosis

Factor-α (TNF-α) during secondary bacterial infection. These are often linked to
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pulmonary edema due to irreparable damage to the alveoli and immunopathology

leading to mortality during coinfections [7,10–13]. Taken together, these studies strongly

reflect an exacerbated cytokine and chemokine production to significantly contribute to

the detrimental changes in the lung microenvironment that favor secondary bacterial

infections. However it is still largely unknown what the relative contribution of these

cytokines to bacterial outgrowth, morbidity and mortality in secondary infection is and

whether they work alone or in synergism as ‘friend or foe’ to the coinfected host.

Dissecting the detailed contributions of the identified players in enhancing suscep-

tibility to severe secondary bacterial disease following IAV as well as their respective

interactions is crucial to develop prophylactic and therapeutic strategies. In the past,

mathematical modelling has made valuable contributions to our understanding of IAV

infection, focusing either on IAV replication [14–19] and/or host immune responses

to IAV [20–29]. Regarding the interactions between IAV and S. pneumoniae, the only

modeling approach proposed so far has been through the pioneering work of Smith et

al. [30]. However, to the best of the authors knowledge, untangling the contributions of

the different mechanisms by which changes in the immune response affect bacterial clear-

ance in a temporal manner has not been attempted until now. Therefore, by combining

the results of tailored in vivo experiments and mathematical modelling approaches, we

aimed at clarifying the relative contributions of different underlying mechanisms of the

the IAV-S. pneumoniae synergism.

Results

Study Design. The dynamics of IAV and S. pneumoniae coinfection were investigated

by establishing a murine model displaying disease upon subsequent infection with sub-

lethal infection dosages of both copathogens. Secondary infection with 1×106 CFU

of Streptococcus pneumoniae strain TIGR4 (T4) was performed on day 7 after IAV

infection based on previous experimental observations that indicated peak susceptibility

to pneumococcal disease at this time point during acute IAV infection [3,31]. Bacterial

burden, viral titers, cytokine concentrations and alveolar macrophages (AM) counts were

determined in the respiratory tract for three experimental groups: coinfected (IAV+T4),

single IAV and single T4 infected animals. A schematic representation of the experiments
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is provided in Figure 1.
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Figure 1. Experimental scheme. (a) C57BL/6J wildtype mice were intranasally
infected with a sub-lethal dose of IAV (A/PR8/34) followed by bacterial infection with
the S. pneumoniae strain T4 on day 7. BAL, post-lavage lung and blood were collected
at indicated time points post secondary bacterial infection (hours post infection (hpi)).
(b) The infection groups were single viral infection (IAV), single bacterial infection (T4)
and coinfection (IAV+T4). (c) The bacterial burden, viral titers and cytokine
concentrations were determined as the experimental readouts.

The complexity and at times redundancy of immune responses to infections often

render to arduous and expensive experimental settings when attempting to identify the

key components and their temporal contributions during coinfections. Thus, merging

mathematical modelling with the relevant in vivo data is a promising tool to tailor future

experiments [23,30,32,33]. In order to dissect the dynamics observed in our experimental

results, mathematical modelling was employed not as a quantitative recapitulation of

experimental data but as a tool to accept or reject hypotheses on the basis of various

mathematical models as “thought experiments” using the Corrected Akaike Information

Criterion (AICc) for the model selection process.

Bacterial growth kinetics during IAV-pneumococcal coinfection. Mouse coin-

fection experiments revealed that the bacterial load in the post-lavage lung tissue and

bronchoalveolar lavage (BAL) were comparable between the IAV+T4 and single T4

infected groups until 6 hpi (Figure 2a and b). At 18 hpi, a significantly higher bacterial

load was observed in both the lung tissue and BAL of the coinfected compared to

the single T4 infected group. The bacterial load further increased until 31 hpi in the

coinfected group. At the later time points, the high grade pneumonia, i.e the high
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bacterial numbers in the respiratory tract, was homogeneously accompanied by the

systemic spread via the blood (bacteremia) in all the coinfected animals (Figure 2c).

Significantly lower grade bacteremia was observed in the single T4 infected mice starting

18 hpi (Figure 2c).

Taken together, assessing the kinetics of bacterial growth and clearance in the

respiratory tract and blood following IAV/S. pneumoniae coinfection revealed a “turning-

point” between 6 and 18 hpi. At 18 hpi bacterial outgrowth became clearly evident in

the coinfected group and was in strong contrast to the onset of bacterial clearance in

the T4 only infected group (also see CFU data for individual mice in Supplementary

Figure A.1).
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Figure 2. Organ-wide bacterial burden in the single and coinfected animals.
Bacterial titers in single T4 infected and IAV+T4 coinfected mice were determined in
(a) post-lavage lung, (b) BAL and (c) blood. All experiments were performed in groups
of 4-7 WT C57BL/6J mice, raw data can be found in the Supplementary Figure A.1.
Statistical analysis was performed using the two-tailed Mann-Whitney t test. Asterisks
indicate significant differences between single and coinfected mice: *, p<0.05; **,
p<0.01.

Mathematical modeling revealed AM dynamics in the lungs of the coinfected

animals insufficient to determine bacterial outgrowth. Previous results in [34]

revealed that 90% of resident AM are depleted in the first week after influenza infection

forming a favourable niche for a secondary pneumococcal infection. To evaluate this

finding in our experimental setting and mathematical modeling approach, we determined

the absolute numbers of AM in the lung tissue early after secondary S. pneumoniae

infection. Experimental results in Figure 3 show a significant decrease in AM numbers
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in the IAV+T4 group compared to the single T4 group at 18 hpi, coinciding with the

established bacterial outgrowth in these mice at this time point.
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Figure 3. Absolute numbers of alveolar macrophages (AM) in post-lavage
lungs of single and coinfected animals. Statistical analysis was performed using
the two-tailed Mann-Whitney t test. Asterisks indicate significant differences between
single and coinfected mice: **, p<0.01. Experiments were performed in groups of 3-4
WT C57BL/6J mice.

Thus, we evaluated the hypothesis of AM dynamics as a determinant to represent

the bacterial kinetics in the single S. pneumoniae infected or in the coinfected group.

To this end, by using AM counts dynamics for the different groups, we proposed several

mathematical models to represent the dynamics observed in the single S. pneumoniae

infected (Supplementary D) and coinfected animals (Supplementary E).

A model selection process by AICc revealed that assuming bacterial clearance with a

constant number of functional AM (model D2 or D3 at Supplementary D) provided the

best fitting to the data in the single T4 group. Surprisingly, for both the single T4 group

and the IAV+T4 group, considering dynamic AM numbers rendered the worst fitting

among the different models, thereby rejecting the hypothesis that bacterial clearance is

mainly driven by AM dynamics. However, it is possible that only a fraction of functional

AMs is required to clear the bacterial infection. These results were supported by

considering the experimental data variability in mathematical models with bootstrapping

procedures (see Supplementary F).
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Coinfection leads to a significant increase of IFN-γ, IL-6 and TNF-α airway

concentrations. In contrast to previous animal studies that often focused on a single

time point post secondary infection [10, 11], we assessed the early kinetics of pro-

inflammatory cytokines in the respiratory tract. For this purpose, we determined

the IFN-γ, TNF-α, IL-6, Monocyte chemoattractant protein-1 (MCP-1), Interferon-β

(IFN-β), Interleukin 22 (IL-22) and Granulocyte-macrophage colony-stimulating factor

(GM-CSF) protein concentrations in the BAL fluid of single and coinfected mice. A

time-dependent significant increase in the protein concentrations of IFN-γ, TNF-α, and

IL-6 was observed in the coinfected animals when compared to the single T4 infected

animals (Figure 4).
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Figure 4. Pro-inflammatory cytokine profiles of the BAL of coinfected and
single T4 infected mice. Protein concentrations of (a) IFN-γ, (b) TNF-α, (c) IL-6
and (d) MCP-1 were determined in the BAL fluid at the indicated time points after
secondary T4 infection on day 7 post IAV or single T4 infection on day 7 post PBS
treatment. Raw data can be found in the Supplementary Figure A.2. Asterisks indicate
significant differences between single and coinfected mice: *, p<0.05; **, p<0.01.

Bacterial infection alone led to a transient increase in IFN-γ at 6 hpi and IL-6 at

6 hpi and 18 hpi, which hardly reached the elevated IFN-γ and IL-6 levels detected in
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the IAV-infected group at all time points analyzed (Figure 4). For IFN-γ, coinfection

led a further increase early at 1.5 hpi and 6 hpi compared to the single IAV infection

whereas the levels remained constant compared to the underlying IAV infection for the

later time points and significant increase was only observed when compared to the single

T4 infection. Overshooting IL-6 responses in the coinfected mice were detected at 26 hpi

and 31 hpi compared to the single T4 infection. At the same time, TNF-α levels hardly

changed between mice infected with IAV alone and T4 alone but were increasingly and

significantly elevated in coinfected mice from 18 hpi on. This late surplus in IL-6 and

TNF-α compared to both the single IAV and T4 infected groups indicated a steady

induction of these two pro-inflammatory cytokines in the dual-infected animals (Figure

4b and c). Of note, the chemokine MCP-1 was also significantly increased in the IAV+T4

group compared to the single T4 infected group and marginally increased to the IAV

only group at 26 hpi and 31 hpi (Figure 4d). The protein concentrations of the other

inflammatory mediators did not show significant changes between the groups at all time

points (see Supplementary Figure A.3).

Decisive and robust role of IFN-γ in bacterial outgrowth. To dissect the tem-

poral contribution of the measured pro-inflammatory cytokines in preventing bacterial

clearance, mathematical models fitted from single S. pneumoniae infection were chal-

lenged in order to assess the effects of pro-inflammatory responses on bacterial lung

titers. Hence, we adopted the best model for single S. pneumoniae infection (model

D2 from the Supplementary D) and challenged the mathematical term representing

bacterial clearance (cbB) with different functions (cbfxB) to evaluate which of the pro-

inflammatory cytokines or their combinations rendered the best fitting to the bacterial

burden detected in the coinfected mice. A brief list of mathematical models tested is

presented in Table 1 and a complete version with estimated parameters and parameter

uncertainty analysis is shown in Supplementary E and F, respectively.

Considering the AICc scores, criterion of small differences (less than 2 units) were

not significant (see Materials and Methods), the best group of models were M3 and

M7 (Table 1). The common component of these two models are the IFN-γ kinetics

and, remarkably, a mechanism solemnly based on the IFN-γ response (M3) provided a

better fitting than both TNF-α (M4) and IL-6 (M5) even though we assumed a more
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conservative AICc criterion (e.g ≤ 10). Additionally, the models M6, M7, M8 and M9,

that also had IFN-γ dynamics involved in the impairment function fx, scored closely to

M3 (see Supplementary E). In agreement with previous works [11], our model selection

process rendered IFN-γ as the crucial and sufficient modulator in the impairment of

bacterial clearance.

Table 1. Selected list of the coinfection models to test different hypotheses that facilitate S. pneumoniae
colonization. A complete model list with estimated parameters can be found in Supplementary E.

No Hypothesis fx Estimated
Parameters

RSS AICc

M1 AM number dynamics MA(t) are sufficient to
facilitate bacterial outgrowth [34].

MA(t) cB 47.74 12.27

M2 AM impairment is enough to explain bacterial
outgrowth.

M∗A cB 21.84 -15.87

M3 Solemnly IFN-γ responses can impair bacterial
clearance facilitating bacterial colonization [11].

AIFN-γ

IFN-γ(t)+AIFN-γ
AIFN-γ(t) 16.13 -26.78

M4 Solemnly TNF-α responses can impair bacterial
clearance facilitating bacterial colonization [35].

ATNF-α

TNF-α(t)+ATNF-α
ATNF-α 39.82 5.74

M5 Solemnly IL-6 responses can impair bacterial
clearance facilitating bacterial colonization [35].

AIL-6

IL-6(t)+AIL-6
AIL-6 27.22 -7.94

M6 A synergistic effect of the IFN-γ (X1), IL-6
(X2), and TNF-α (X3) cytokine responses in
facilitation of bacterial outgrowth.

3∏
i=1

(
Ai

Xi+Ai

)
AIFN-γ

AIL-6

ATNF-α

14.57 -25.82

M7 A synergistic effect of the IFN-γ (X1) and IL-6
(X2) cytokine responses in facilitation of bacte-
rial outgrowth.

2∏
i=1

(
Ai

Xi+Ai

)
AIFN-γ

AIL-6

14.57 -28.21

a Best models based on AICc difference lower than 2 units are in bold.

The IL-6 response contributes to the impairment of bacterial clearance in a

temporal manner. Both the models M6 and M7 suggested that IL-6 contributed to

impairing bacterial clearance during coinfection. However, the AICc score for the model

M5 pointed out that it may not be as crucial as IFN-γ for promoting bacterial growth.

However, it could be deduced that IL-6 is involved in the majority of the best models

(e.g M6, M7, M8 and M9), indicating a time-dependent detrimental role in curtailing

bacterial outgrowth.

To disentangle the time-dependent roles of significant pro-inflammatory cytokines,
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we selected the model M6 to perform in silico experiments. Simulation results suggested

that a single neutralization of IFN-γ directly modulates the bacterial clearance. In

contrast, neutralization of IL-6 or TNF-α did not present a conclusive role in impairing

bacterial clearance (Figure 5a). Interestingly, when the IFN-γ response was neutralized

in the model, simulations suggested that the IL-6 response may increase the duration of

bacterial colonization in the lungs (Figure 5a). This possibly explains the experimental

observation that coinfected mice still presented a marginal increase in the bacterial

burden and degree of lethality even after in vivo IFN-γ blockade [11].
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Figure 5. Simulations for the coinfection model M6. In silico neutralizations of
the different pro-inflammatory responses in model M6 are presented in the panel (a).
The time-dependent contributions of pro-inflammatory cytokines to the impairment of
bacterial clearance by the function fx are depicted in the panel (b). When the
mathematical function fx is 1 means that there is no any impairment to the bacterial
clearance.

To weigh the inhibitory effects of different pro-inflammatory cytokines on bacterial

clearance, we simulated the time evolution of the bacterial clearance impairment function

(fx) for the different pro-inflammatory cytokines using the model M6. Indeed, the main

modulator early after S. pneumoniae coinfection was IFN-γ. However after 18 hours

the detrimental effects of IL-6 for the impairment of the bacterial clearance became

more apparent (Figure 5b). In contrast, model selection procedures and numerical

simulations rejected the hypothesis that TNF-α kinetics contributed to the impairment

of bacterial clearance yielding one of the worst models (Table 1). These in silico results

were supported by other model structures (M7, M8 and M9 at Supplementary E) and

parameter uncertainty studies (Supplementary F).
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Stochastic fate decision explains the dichotomy in bacterial burdens observed

in S. pneumoniae infection but plays only a minimal role during coinfections.

The bacterial load detected in the BAL and lung tissue revealed that the single S.

pneumoniae infected animals divided into two groups at 18 hpi (Figure A.1). We found

that 50% of the animals had cleared the bacteria while the remaining 50% were still

colonized at this time point. This dichotomy was also reported by Smith et al. [30] and

was suggested to result from the heterogeneity of the biological host.
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Figure 6. Probability of S. pneumoniae extinction dynamics. The branching
process formulation governed by the Kolmogorov equation (Supplementary C) provides
the probability of eradication Pe(t) at time t for single S. pneumoniae infection and
coinfection considering parameter values from model D2 (Supplementary D) and model
M2 respectively.

To evaluate the stochastic fate decision, we derived the probability of extinction

by developing a stochastic Markov branching process analogous to the model (1), see

Supplementary C. For the single S. pneumoniae infection, the probability of bacterial

extinction at 35 hpi is approximately 50% (Figure 6a), supporting the hypothesis of

cell to cell heterogeneity [30]. In contrast, a stochastic fate decision with cell to cell

heterogeneity is suggested to play only a minimal role in the case of coinfection (Figure

6b).

Impairment of bacterial clearance by direct IAV kinetics is not supported.

Viral titers in the single IAV infected group remained stable at day 7 post the viral

infection, i.e 1.5 and 6 hpi post secondary challenge, and the viral load then declined

from 26 hpi (see Supplementary Figure A.4b). In accordance with previous experimental
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observations by Smith et al. [30], viral titers of the coinfected group showed a marginal,

however not statistically significant viral rebound at 31 hpi, as the coinfected mice

yielded higher viral loads than the single infected mice.

The modelling work by Smith et al. [30] tested the hypothesis that influenza infection

modulates the bacterial clearance by AM phagocytosis. However, their model did not

include aspects of host defense [30]. As a comparison, we considered the inhibitory

function proposed by [30] using the kinetics of the viral load detected in our experiments

(model M10 of Supplementary E). Model selection procedures however did not support

the hypothesis that a time-dependent modulation by IAV kinetics contributes to the

impairment of bacterial clearance.

The modulation of nutrient availability through the IAV infection promotes

the extent of initial bacterial colonization but not the decision of replication.

Experimental evidence by Siegel et al. [8] established that higher rates of disease during

coinfection could stem from increased sialic acid availability that further supports

bacterial colonization and proliferation. From a mathematical point of view, nutrient

sources can be represented by the current capacity KB in equation (1). By the steady

state and stability analysis presented in the Supplementary B, which is independent of

parameter fitting procedures, it can be inferred that the bacterial nutrient source (KB)

determines the size of the initial bacterial colony but not the decision to grow. Of note,

this approach is also valid assuming more complex logistic growth terms. For instance,

the mathematical term rB
(

1− B
KB(1+ΨV )

)
previously proposed by Smith et al. [30] to

integrate the increase in the carrying capacity, KB(1 + ΨV ), may provide equivalent

conclusions.

Discussion

The threat of newly emerging pandemic IAV strains together with the increasing preva-

lence of antibiotic-resistant bacterial pathogens underline the need for a complete

understanding of the mechanisms for secondary pneumonia. Recently, a substantial

number of studies have uncovered several mechanisms through which IAV compromises

efficient anti-bacterial defense. These different contributing factors for the viral-bacterial
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synergism highlight the multifactorial nature of copathogenesis.

At times however, the identified mechanisms are contradictory, e.g both de-sensitization

and hyper-sensitization have been reported to favor bacterial infection post-influenza

infection [9, 12,36]. Nevertheless, a common observation is an altered pro-inflammatory

cytokine response to the bacterial infection if preceded by influenza and many studies

have attributed the altered lung cytokine milieu to be sufficient to skew host susceptibility

to severe secondary pneumococcal infection [10,11,37].

The relative contribution of the different identified players however has not been

addressed comprehensively to date. Although murine experiments are crucial to advance

our knowledge of mechanisms which underlie virus-bacteria interactions, examining

all different factors in detail renders an extremely difficult work. In this study, we

combined an in vivo experimental approach and mathematical modelling to dissect

the contributions of some of the circulating hypotheses proposed in driving bacterial

outgrowth in IAV pre-infected hosts with the main focus on pro-inflammatory cytokines.

Unlike described by previous reports, in our experiments the inflammatory responses

to secondary pneumococcal infection were not dampened but instead heightened when

compared to the single bacterial infection [9]. Through mathematical modelling we

identified a definite role for IFN-γ in impairing anti-pneumococcal clearance leading to

outgrowth and systemic spread. This was in line with the finding that IFN-γ released

during IAV-infection suppresses alveolar macrophage phagocytosis and increases oxidative

radicals by downregulating their expression of the scavenger receptor MARCO in a

state of coinfection, favoring bacterial outgrowth [9, 11, 36]. As in vivo neutralization of

IFN-γ failed to fully alleviate bacterial outgrowth following coinfection with IAV and S.

pneumoniae, other mediators are most likely to also contribute to the strongly impaired

bacterial clearance [11].

In accordance with other possible key players during coinfection, we found in our

murine experiments significantly higher concentrations of IL-6 and TNF-α during coin-

fection compared to the single infections [12, 37]. The exact role of these cytokines

in the pathogenesis of coinfections still remains debatable. Here, our in silico studies

suggest that the inhibitory effect of IL-6 is both concentration and time-dependent but

not as conclusive for bacterial outgrowth as IFN-γ. Early after pneumococcal infection,

IL-6 is likely to play a predominantly protective role due to its immune-regulatory
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function in the feedback circuit of cytokines. Indeed, it was reported that IL-6 KO mice

displayed a significantly enhanced susceptibility to S. pneumoniae infection with elevated

concentrations of TNF-α, Interleukin 1β (IL-1β) and IFN-γ in the lungs in comparison

to wild-type mice [38]. On the other hand, due to its potent pro-inflammatory functions,

IL-6 is also known to be a marker for disease severity in pneumococcal infections [39].

Importantly, our finding that increased amounts of IL-6 predominantly impair bacterial

clearance in synergism with the IAV-dependent IFN-γ present in the coinfected lung

reflects how alterations in the inflammatory status affect host susceptibility in a dynamic

temporal manner.

In order to address the possibly overlapping roles of IFN-γ and IL-6, we observed that

TNF-α showed the least contribution in impairing bacterial clearance following influenza.

This was well in line with previous findings describing that TNF-α neutralization elevated

mortality during single S. pneumoniae infection and IAV coinfections suggesting more

of a protective role for TNF-α [40, 41]. However, TNF-α is in contrast known to induce

apoptosis of various pulmonary cells and disrupt the epithelial barrier integrity and

therefore TNF-α blockade ameliorates pulmonary immunopathology in single IAV infected

animals [42–44]. In our mathematical models however, effects such as the detrimental

contribution of immunopathology on S. pneumoniae outgrowth were not considered.

Therefore it is likely that an excessive production of TNF-α during coinfections may

potentiate host tissue damage and thereby may still exert an indirect negative influence

on bacterial clearance.

Under homeostatic conditions, tightly regulated immune responses are co-ordinated

by the action of pro- and anti-inflammatory cytokines and chemokines with the goal to

clear pathogens and at the same time curtail immunopathology. By our experimental

and mathematical modelling approach we found that during coinfections this balance is

lost due to the exaggerated amounts of pro-inflammatory cytokines causing a pathogenic

effect on bacterial clearance. Notably, this finding was further supported by the results

of challenging our mathematical models for the IAV-S. pneumoniae coinfection with

the cytokine data from the single S. pneumoniae infection group. Here, in silico results

predicted bacterial clearance as in the single bacterial infection without further parameter

fitting (Figure E.1).

In conclusion, by combining tailored experimental data and mathematical modelling
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our study clearly demonstrated a strong detrimental effect of IFN-γ alone and in

synergism with IL-6 but no conclusive pathogenic effect of IL-6 and TNF-α alone. In

silico knock-out predictions pave the way for further murine experiments to proof the

advantage of a double IFN-γ and IL-6 neutralization approach. Ultimately, these findings

correlate well with our previous results [29] suggesting that the increased levels of pro-

inflammatory cytokines (the “inflammaging” state), in particular IFN-γ, contribute to

the reported impaired responses in people over 65 years of age. Thereby, IFN-γ plays a

pivotal role in driving severe disease during primary IAV infection in the elderly as well

as bacterial outgrowth during coinfections.

In summary, our experimental setting and subsequent modelling approach suggest

hierarchical and dynamic effects of several hallmark innate immunological factors on

pneumococcal outgrowth in IAV pre-infected hosts. On this basis, future experimental

studies will need to dissect the exact mechanisms underlying these detrimental effects

predicted by our models. Our study also underscores the importance of further determin-

ing immune cell function, especially for AMs. Ultimately, such full understanding of the

downstream effects of the altered inflammatory response in bacterial coinfection follow-

ing IAV will be crucial when attempting to design future prophylactic and therapeutic

interventions.
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Materials and Methods

Mice

7-8 weeks old wildtype C57BL\6J female mice were purchased from Harlan Winkelmann

(Borchen, Germany) and housed in specific pathogen-free conditions. All animal ex-

periments were approved by the local ethical body “Niedersächsisches Landesamt für

Verbraucherschutz und Lebensmittelsicherheit”.

Viral and bacterial pathogens

For viral infection experiments, Influenza A virus IAV strain A/Puerto Rico/8/1934

(A/PR8/34) subtype H1N1 was used [31]. The virus was grown and stored as described

previously in [31]. The tissue culture infectious dose (TCID50) was calculated using

the Reed and Muench endpoint calculations. For bacterial infection experiments S.

pneumoniae serotype 4, TIGR4 (ATCC BAA-334TM) was used. Bacteria were grown

to mid-logarithmic phase in Todd-Hewitt yeast medium (THY; THB Sigma-Aldrich,

Germany and Yeast extract, Roth, Germany) at 37◦C for the preparation of frozen

stocks. Bacterial counts were determined by plating 10-fold serial dilutions on blood

agar plates (BD Diagnostic Systems, Columbia Agar with 5% sheep blood) overnight for

16-18 h at 37◦C with 5% CO2. Before each infection, aliquots were thawed, centrifuged

at 8000 rpm and resuspended in the desired amount of phosphate buffered saline (PBS,

Gibco, UK) followed by serial plating to confirm the infection dose.

Infection experiments

Mice were sedated via intraperitoneal injection of ketamine/rompun solution (working

concentration of 0.1ml/10g per mouse). For viral challenges, a sub-lethal dose of

0.31 TCID50 was administered intranasally in 25µl PBS. For bacterial challenges, mice

were held with their backs on an intubation slope, and an infectious dose of 1×106 CFU

in 25µl PBS was instilled at the end of their nasopharynx using a long flexible pipet tip.

All the mice were monitored and scored for the following clinical symptoms: weight loss,

mobility, posture, pilo-erection, respiration, response to stimuli and eye infection. An

animal with a severe score of any one of the parameters or moderate scores for two-three
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parameters was euthanized.

Determination of bacterial colony forming units in blood, bron-

choalveolar lavage and lung tissue

Bacterial colony forming units (CFU) were determined post-mortem by plating 10-fold

serial dilutions of the blood, BAL and lung tissue homogenate. For the blood, 5 µL

of heart blood were collected and diluted in 45µl PBS. BAL samples were obtained by

flushing the lung once with 1 mL PBS. Next, the lungs were perfused with PBS and

excised. Whole lungs were homogenized in 1 mL PBS though a 100 µm cell stainer

(Corning Inc, USA). Serial dilutions of BAL and lung homogenates were prepared and

10µl were plated onto blood agar plates. Plates were incubated overnight at 37◦C and

5% CO2. For determination of CFU the colonies of each dilution were counted manually

and calculated as CFU/mL.

Quantification of viral load with qRT-PCR

Lungs were perfused with PBS and the RNA was extracted from lung tissue homogenates

with the RNeasy mini kit (Qiagen, Germany) according the manufacturer’s protocol.

After extraction and purification, cDNA synthesis was performed with 100 ng RNA

using the first strand synthesis buffer (Invitrogen, USA). For cDNA quality control, a

PCR of the housekeeping gene RPS9 (Eurofins MWG, Germany) was performed. Viral

nucleoprotein copy numbers were quantified by RT-PCR on a Light cycler (Roche) using

a plasmid standard with defined NP copy numbers. The following primers were used:

rps9 5’CTGGACGAGGGCAAGATGAAGC and 3’TGACGTTGGCGGATGAGCACA;

np 5’GAGGGGTGAGAATGGACGAAAAAC and 3’CAGGCAGGCAGGCAGGACTT.

Flow cytometry for alveolar macrophages

Single cell suspensions of perfused excised lungs were prepared by enzymatic digestion

for 45 minutes at 37◦C with Iscove’s Modified Dulbecco’s Medium (IMDM) containing

GlutaMax-1 (Gibco, USA) supplemented with 5% fetal bovine serum (FBS; PanBiotech,

Germany), 0.2 mg/ml collagenase D (Roche, Germany) and 1 mg/ml DNAse (Sigma-

Aldrich, Germany). The enzymatic reaction was stopped with 5mM EDTA and cell
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suspensions were filtered through a 100 µm strainer.

Cells were pelleted by centrifugation and resuspended in LIVE/DEAD® fixable blue

stain (ThermoFisher, USA) and anti-mouse CD16/CD32 antibody (purified; BioLegend,

USA) as Fc-block following erythrocyte lysis. Cell surface marker staining for lung

resident alveolar macrophages (SSChighFSChighCD11b-F4/80+autoflourescence+ AM)

was performed using anti-mouse CD11b (Pacific Blue; BioLegend, USA) and anti-mouse

F4/80 (PE-Cy7; BioLegend, USA). All samples were acquired on a BD LSRII Fortessa

instrument with FACS DIVA software (BD) and analyzed using FlowJo software (Tree

Star).

Cytokine measurement

The protein concentration of the cytokines IFN-γ, TNF-α, IL-6, IFN-β, IL-22 and the

chemokines MCP-1 and GM-CSF was measured with a customized Mouse LegendPlexTM

kit (BioLegend, USA) according to the manufacturers protocol. All samples were acquired

on a BD LSRII Fortessa with FACS DIVA software (BD) and analyzed with the provided

LegendPlexTM Data Analysis Software (BioLegend, USA).

Mathematical Models

This work advocates to disentangle the mechanisms modulated by IAV that can contribute

to the colonization of S. pneumoniae. Although, we recognize that bacterial infection

may enhance viral release from infected cells [30], these interactions are outside of the

aim of the work proposed here. Therefore, we model the S. pneumoniae infection (B)

with the following ordinary differential equations (ODEs):

dB

dt
= rB

(
1− B

KB

)
− cbfxB (1)

where r is the bacterial proliferation rate with a maximum carrying capacity KB.

Phagocytosis of the bacteria is considered by the multiplicative term cbfx, where cb

is the constant phagocytosis rate and the term fx is the mathematical function which

served to test different hypotheses.

The previous work by Smith et al. [30] proposed and tested that IAV induces phenotypic

changes in AM. However, the work in [30] assumed the restrictive condition that the
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phagocytosis rate cb is impaired directly by the viral load (V (t)). This hypothesis was

written with the term n2MA

n2MA+B2(t)

(
1− φ V (t)

KBV +V (t)

)
where the values for the uptake

of bacteria by AM were expressed by n and the number of AM was constant in the

quasi steady state M∗A [30]. The reduction of the bacterial clearance was included by

the saturation function φV (t)/(KBV + V (t)), where φ is the maximal reduction of the

phagocytosis rate and KBV is the half-saturation constant.

In order to evaluate the AM dynamics, our model section considers AM experimental

data to build a piecewise linear function to feed the model term MA(t). Additionally, we

tested the hypothesis that AM depletion by IAV is a sufficient mechanism to facilitate

bacterial outgrowth. This is represented by a direct input of M∗A in equation (1).

Beyond the work of [30], different functions (fx) were tested to dissect the contribu-

tions of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6) to modulate the bacterial

clearance. To this end, we used the experimental data for the different cytokines to

build piecewise linear functions to dynamically feed the equation (1). We opted for this

approach instead of mechanistic modelling with ODEs for each cytokine for different rea-

sons. First, our main aim was not to quantify dynamics but to determine the contribution

of important pro-inflammatory cytokines in promoting bacterial colonization. Second,

modelling with ODEs for each cytokine may not improve the model selection process but

only increase the complexity of mathematical models and parameter fitting procedures.

Finally, our experimental data sets were measured frequently enough allowing us to use

the data as an input in the equation (1).

To evaluate if IAV infection modulates a specific pro-inflammatory cytokine X(t),

which subsequently facilitates bacterial colonization, we considered the saturating term(
A

X(t)+A

)
with A as the “half-saturation constant”. Different mathematical terms and

other term combinations to dissect the pro-inflammatory effect responsible to impair

bacterial clearance are summarized in Table 1 and Supplementary E.

Parameter Fitting

Note that the purpose of our in silico work was not biological quantification of the

experiments but using a model selection process to provide mechanistic insights into

coinfection. Thus, in this case, finding a working set of parameter values deemed
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sufficient. Nevertheless, for good practice procedures, we checked identifiability and

parameter uncertainty expanded in the Supplementary F.

To focus on the mechanisms that promote S. pneumoniae colonization, we fixed

the growth rate (r =1.13 h−1) and the carrying capacity (KB =2.3×108 CFU/ml)

corresponding to single S. pneumoniae infection from previous works [18]. Using similar

reasoning as Smith et al. [18], we assumed that only a proportion of the bacterial

inoculum may reach the lung since some bacteria can be removed by mucocilliary

mechanisms. Thus, we considered 1000 CFU/mL S. pneumoniae as inoculum to fit the

model parameters in (1). Note that different assumptions of parameters and inoculation

will only rescale the fitted parameters, but not the mechanistic insights from the model

selection procedures. Other model parameters were obtained minimizing the residual

sum of squares (RSS) between the model output and the experimental measurement,

both on log scales. ODEs were solved in Matlab software using the ode45 solver. The

minimization of RSS was performed using different optimization solvers, including both

deterministic and stochastic methods. However, the Differential Evolution algorithm

(DE), a global optimization algorithm, was selected to avoid relying on any initial

parameter guesses and producing more robust results than other tested methods [45–47].

In separate form, model fitting was performed to all the models summarized in Table

1 for the single infection (T4) and the IAV+T4 coinfection starting at day 7 post IAV

infection respectively.

Model Selection

The Akaike information criterion (AIC) was used to compare the goodness-of-fit for

models that evaluate different hypotheses [48]. A lower AIC value means that a given

model describes the data better than other models with higher values. However, small

differences in AIC scores (e.g. <2) are not significant [48]. For a small number of data

points, the corrected (AICc) has the form:

AICc = N log

(
RSS

N

)
+

2MN

N −M − 1
(2)

where N is the number of data points, M is the number of unknown parameters and

RSS is the residual sum of squares obtained from the fitting routine.
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Parameter uncertainty

Bootstrapping is a statistical method for assigning measures of accuracy to estimates

[49, 50]. Due to the large variability of viral and bacterial infections, bootstrapping

methods have been applied to different viral infectious diseases [47, 51]. Here, the

non-parametric bootstrap was considered. Of note, instead of using all replications

at each time point, three replications at each time point were randomly selected and

used to generate a new data set. Note that this procedure was based exclusively on the

observed measurement data. For each repetition, the model parameters were refitted to

obtain the corresponding parameter distribution. The 95% Confidence Interval (CI) of

parameter estimates was computed using the outcome of the bootstrap method [50]. For

each parameter, the 2.5% and 97.5% quantiles of the estimates were used to form the

95% CI.

Parameter identifiability

A relevant aspect to verify in quantifying mechanisms is whether model parameters

are identifiable based on the measurements of output variables [52–55]. A system that

is algebraically identifiable may still be practically non-identifiable if the amount and

quality of the measurements is insufficient and the data shows large deviations. The

computational approach proposed in [56] exploits the profile likelihood to determine

identifiability and was considered here. This method is able to detect both structurally

and practically non-identifiable parameters. Briefly, the idea behind this approach is

to explore the parameter space for each parameter θi by re-optimizing the RSS with

respect to all other parameters θj 6=i. The main task is to detect directions where the

likelihood flattens out [56]. The resulting profiles are plotted versus each parameter

range with the respective 95% CI to assess the parameter identifiability.

Stochastic Modelling

In order to evaluate the stochastic fate between different cells in single S. pneumoniae

infection and coinfection, we considered the stochastic Markov branching process. This

framework has been applied to predict immune response dynamics, for instance for CD8+

T cell clonal expansion [57,58] and infectious diseases [59, 60]. According to the Markov
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branching process definition, each S. pneumoniae cell can proliferate at rate r and die at

rate cb (birth and death process). We derived an analytical solution for the extinction

probability information to investigate the extinction probability evolution for different

inocula B(0). Further details of the stochastic modelling framework can be found in

Supplementary C.

Statistical Analysis

All statistical analyses were performed by a non-parametric t-test called Mann-Whitney

using the Graph Pad Prism software (Graph Pad Software, La Jolla/USA).

Acknowledgments

This work was supported by iMed - the Helmholtz Initiative on Personalized Medicine

and by the Department of Systems Immunology at the Helmholtz Centre for Infection

Research. Dunja Bruder was supported by the President’s Initiative and Networking

Fund of the Helmholtz Association of German Research Centers (HGF) under contract

number W2/W3-029 and by a grant from the German Research Foundation (DFG) in

frame of the SFB854 (subproject A23N). NS received support from the International

Research Training Group (IRTG) 1273.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2016. ; https://doi.org/10.1101/060293doi: bioRxiv preprint 

https://doi.org/10.1101/060293
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Ballinger MN, Standiford TJ. Postinfluenza bacterial pneumonia: host defenses

gone awry. Journal of interferon & cytokine research : the official journal of the

International Society for Interferon and Cytokine Research. 2010 sep;30(9):643–52.

2. Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annual

review of pathology. 2008 jan;3:499–522.

3. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Strepto-

coccus pneumoniae: characterization of a mouse model and the role of platelet-

activating factor receptor. The Journal of infectious diseases. 2002 aug;186(3):341–

50.

4. McCullers JA. Insights into the interaction between influenza virus and pneumo-

coccus. Clinical microbiology reviews. 2006 jul;19(3):571–82.

5. McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung.

Nature Reviews Microbiology. 2014;12(4):252–262.

6. Ortqvist A, Hedlund J, Kalin M. Streptococcus pneumoniae : Epidemiology ,

Risk Factors , and Clinical Features. Seminars in Respiratory and Critical Care

Medicine. 2005;1(212):563–574.

7. Mina MJ, McCullers JA, Klugman KP. Live attenuated influenza vaccine enhances

colonization of Streptococcus pneumoniae and Staphylococcus aureus in mice.

mBio. 2014 jan;5(1):e01040–13–.

8. Siegel SJ, Roche AM, Weiser JN. Influenza Promotes Pneumococcal Growth

during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source.

Cell Host & Microbe. 2014;16(1):55–67.

9. Goulding J, Godlee A, Vekaria S, Hilty M, Snelgrove R, Hussell T. Lowering the

threshold of lung innate immune cell activation alters susceptibility to secondary

bacterial superinfection. Journal of Infectious Diseases. 2011;204(7):1086–1094.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2016. ; https://doi.org/10.1101/060293doi: bioRxiv preprint 

https://doi.org/10.1101/060293
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Shahangian A, Chow EK, Tian X, Kang JR, Ghaffari A, Liu SY, et al. Type I

IFNs mediate development of postinfluenza bacterial pneumonia in mice. Journal

of Clinical Investigation. 2009;119(7):1910–1920.

11. Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-

gamma during recovery from influenza infection. Nature medicine. 2008

may;14(5):558–64.

12. Damjanovic D, Lai R, Jeyanathan M, Hogaboam CM, Xing Z. Marked im-

provement of severe lung immunopathology by influenza-associated pneumococcal

superinfection requires the control of both bacterial replication and host immune

responses. American Journal of Pathology. 2013;183(3):868–880.

13. Cauley LS, Vella AT. Why is coinfection with influenza virus and bacteria so

difficult to control? Discovery medicine. 2015 jan;19(102):33–40.
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