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Abstract: Natural image statistics play a crucial role in shaping biological visual systems, 9 
understanding their function and design principles, and designing effective computer-vision 10 
algorithms. High-order statistics are critical for conveying local features, but they are challenging to 11 
study – largely because their number and variety is large.  Here, via the use of two-dimensional 12 
Hermite (TDH) functions, we identify a covert symmetry in high-order statistics of natural images 13 
that simplifies this task.  This emerges from the structure of TDH functions, which are an 14 
orthogonal set of functions that are organized into a hierarchy of ranks.  Specifically, we find that 15 
the shape (skewness and kurtosis) of the distribution of filter coefficients depends only on the 16 
projection of the function onto a 1-dimensional subspace specific to each rank.  The 17 
characterization of natural image statistics provided by TDH filter coefficients reflects both their 18 
phase and amplitude structure, and we suggest an intuitive interpretation for the special subspace 19 
within each rank. 20 

 21 
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1. Introduction 25 

Achieving a thorough understanding the statistics of our visual environment is important from 26 
both a biological point of view and an engineering point of view.  The biological relevance is that 27 
the statistics of the natural environment are a strong constraint under which visual systems evolve, 28 
develop, and function[1].   The engineering relevance is that a knowledge of image statistics is 29 
important for many problems in computer vision [2], including image de-noising, image 30 
classification [3-6]), image compression, and texture synthesis [7].  However, understanding image 31 
statistics is hampered by the simple fact that the space of image statistics is so large.  Here we 32 
describe some progress in this direction:  a specific filter-based approach that identifies a hidden 33 
symmetry, providing a simplified description of high-order natural image statistics, specifically, 34 
those of order three and four.  35 

The reason for our focus on high-order statistics is that they carry local visual features, such as 36 
lines, corners, and edges [8, 9], but – because of the curse of dimensionality, they are challenging to 37 
analyze.  In contrast, second-order statistics are concisely captured by the power spectrum, because 38 
it is the Fourier transform of the autocorrelation function.  As is well-known, the power spectrum of 39 
natural images is approximately 

2k −
 (where k  is spatial frequency) [10, 11].  However, while the 40 

power spectrum captures important spatial regularities of natural images – such as 41 
distance-independent scaling [12], it is far from a complete statistical description of natural images. 42 
For example, a synthetic image consisting of Gaussian noise with a 

2k −
 power spectrum looks 43 

drastically different from a real natural image, even though the spectra are similar.  Conversely, 44 
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modifying a natural image by flattening its power spectrum but preserving its phases leaves its 45 
salient spatial features readily recognizable. Thus, most of the features that make an image look 46 
"natural," such as edges and contours, are coded in its phases as well as its Fourier amplitudes [8, 9, 47 
13]. Translated into the spatial domain, these phase correlations correspond to image statistics that 48 
are ignored by the power spectrum: joint distributions of image intensities at three or more points, 49 
and aspects of the pairwise intensity distributions beyond their variances and covariances. 50 

Since a direct tabulation of the joint distribution of multiple pixel values is impractical, a natural 51 
strategy is to focus on specific univariate distributions – namely, the distribution of outputs of filters 52 
(“filter coefficients”) placed on images. Typically, this approach is implemented with filter profiles 53 
that have a prominent orientation and dominant spatial frequency – either Gabor functions or 54 
Gabor-like wavelets, a choice motivated by concepts of visual processing and independent 55 
components analysis of natural images[14, 15].  For natural images, the distributions of wavelet 56 
coefficients are highly kurtotic, having sharp peaks and much longer tails compared to a Gaussian 57 
distribution with the same variance [16].  Interestingly, [3] showed that this could be used to 58 
distinguish natural images from synthetic ones (including realistic computer-generated scenes), by 59 
applying linear classifiers to a feature space of wavelet coefficients.  Other investigators have also 60 
used wavelet coefficients as a starting point, but focused on the extent to which wavelet coefficients 61 
are independent [17, 18]. Thus, the filter approach provides a useful characterization of natural 62 
image statistics -- but even with a filter-based approach, the number of parameters required to 63 
describe high-order image statistics is still large.  Since a two-dimensional basis set is a 64 
two-parameter family, the number of parameters required to specify these filter coefficient 65 
distributions is still quite large. 66 

Here we show that the description of these filter coefficient distributions is simplified when, 67 
instead of Gabor-like filters, we use a set of filters that have a high degree of symmetry.  These filter 68 
functions – the two-dimensional Hermite functions (TDH’s) [19-25]-- form an orthonormal basis that 69 
is halfway between the pixel basis and the Fourier basis, and their shapes are quite different from 70 
that of Gabor-like filters or one-dimensional wavelets.  Although the TDH functions form a full 71 
two-dimensional basis set, we find that the distribution of filter coefficients for natural scenes 72 
depends chiefly only a single parameter, their rank. The nature of this simplification reflects both the 73 
phase and amplitude characteristics of natural scenes. 74 

2. Materials and Methods  75 

2.1. Two-dimensional Hermite functions: definition and properties 76 

We analyze image statistics via the distribution of values that result from filtering them with 77 
two-dimensional Hermite (TDH) functions. TDH’s (Figure 1) are a set of two-dimensional functions 78 
consisting of a product of Hermite polynomials multiplied by a Gaussian envelope.  Like wavelets, 79 
they are filter functions that are limited in space and spatial frequency.  However, they several 80 
other mathematical properties, including additional symmetries.  First, the TDH’s are optimally 81 
symmetrical with respect to space and spatial frequency:  other than a multiplicative constant, each 82 
TDH is its own Fourier transform.  Second, they are orthonormal functions, and as a set, form a 83 
complete basis set for functions of two variables.  Third, the TDH’s are grouped into “ranks”: the 84 
sole member of the zeroth rank is an ordinary Gaussian; higher rank ranks contain functions of 85 
increasing spatial complexity. Finally, within each rank, the TDH’s have an extended steerability 86 
property. This includes ordinary steerability – the filters can be rotated by forming simple linear 87 
combinations – but also, linear combinations within rank provide equivalent basis sets that are 88 
separable in Cartesian coordinates (see rows of Figure 1). 89 

Below we define these functions in abstract terms and then give their explicit polynomial 90 
expansions; the former makes these and other key properties transparent, while the latter is 91 
necessary for computation.  For further details on this approach, see [25]; other descriptions of the 92 
properties of these functions in the context of image processing may be found in [19-24]. 93 
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Taking inspiration from [26, 27], we define the TDH’s as the eigenvectors of the operator 94 
1/2 1/2D BD , where D  consists of spatial windowing by a two-dimensional Gaussian function (i.e., 95 

pointwise multiplication), and B  consists of filtering by a two-dimensional Gaussian spatial 96 
frequency window (i.e., pointwise multiplication in the spatial frequency domain). This operator 97 

1/2 1/2D BD  is self-adjoint, and has a discrete set of eigenvalues [25].  The approach of [28] shows 98 
that these are of the form 

1 rλ η += , for a positive constant 1η < , where the rank, r , ranges over 99 
the non-negative integers [25].  It also shows that the r th rank contains 1r +  linearly 100 
independent functions [25]. 101 

Since D  corresponds to confinement in space, and B  corresponds to confinement in spatial 102 
frequency, a TDH function f  has the property that successive windowing in space and spatial 103 

frequency results in multiplication by a constant (the eigenvalue λ ): 
1/2 1/2D BD f fλ= . That is, 104 

for functions f  corresponding to eigenvalues λ  close to 1, these windowing operations have a 105 
small effect – which formalizes the notion that f  is confined in both space and spatial frequency.  106 

Since the eigenvalues are all of the form 
1 rλ η += , the TDH function of rank 0r =  has the 107 

eigenvalue that is closest to 1, and is therefore the most confined. Successive ranks have 108 
exponentially-declining eigenvalues, and are therefore progressively less confined (i.e., is more 109 
extensive spatially and contains a progressively broader range of spatial frequencies).  TDH 110 
functions at different ranks are orthogonal, since they correspond to different eigenvalues of the 111 
self-adjoint operator 

1/2 1/2D BD .   112 
The extended steerability of the TDH functions is a consequence of combining this setup with 113 

the fact that a circularly-symmetric Gaussian is separable both in Cartesian and polar coordinates. 114 
As a consequence, both D  and B  have polar symmetry and separability in Cartesian coordinates, 115 
These symmetries are inherited by 

1/2 1/2D BD  as well, and must be retained by the eigenspaces, so 116 
the existence of Cartesian and polar-symmetric eigenvectors are guaranteed.  Since any set of 1r +  117 
linearly independent eigenvectors forms a basis for each rank, it follows that we can express the 118 
Cartesian and polar basis sets as linear combinations of each other. 119 

2.2. Two-dimensional Hermite functions: explicit expressions 120 

As described in §2.1, there are two natural basis sets for the TDH functions of rank r : polar 121 
and Cartesian. The polar basis functions are specified by their rotational symmetry (an integer μ , 122 
for which a rotation by 2 /π μ  leaves the function unchanged) and the number of zero-crossings 123 
along each radius (an integer ν ).  These indices are related to the rank r  by 2r μ ν= + .   For 124 

0μ > , the basis functions form "cosine" and "sine" pairs: 125 
 126 

 

2 2
cos

, , , 2 2
( , ) cos( )( ) ( )exp( )

4

K R R R
A R Pμ

μ ν σ μ νθ μθ
σ σ σ σ

= −
 (1) 127 

and 128 

 
2 2

sin
, , , 2 2

( , ) sin( )( ) ( )exp( )
4

K R R R
A R Pμ

μ ν σ μ νθ μθ
σ σ σ σ

= − , (2) 129 

 130 
where σ  sets the overall size of the filter set, K  is a normalization constant, and , ( )P uμ ν  is a 131 

radial polynomial defined by 132 

 ,
0

( )! !
( ) ( 2)

( )! !( )!
p p

p

P u u
p p p

ν
ν

μ ν
μ ν ν

μ ν
−

=

+= −
+ −∑ . (3) 133 
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For each even ranks, there is also an unpaired basis function, corresponding to 0μ =  and 134 
/ 2rν = .  These basis functions have no angular dependence  (central column of Figure 1A), and 135 

are given by 
cos
0, /2, ( , )rA Rσ θ . 136 

A typical Cartesian basis function has the appearance of vignetted ( 1) ( 1)j k+ × +  137 
checkerboard, where there are j  vertical zero-crossings, k  horizontal crossings, and these indices 138 
are related to the rank by r j k= + .  It is given by 139 

 
2 2

, , 2
( , ) ( ) ( ) exp( )

4j k j k

K x y x y
C x y h hσ σ σ σ σ

+= −  140 

where ( )jh u  and ( )kh u  are Hermite polynomials, normalized so that they have the generating 141 

function 142 

 
2

0

( ) exp( )
! 2

n

n
n

z z
h u uz

n

∞

=
= −∑ . 143 

 144 
As detailed in §2.4, we calculate image statistics of natural images filtered by the polar TDH's, 145 

and then use steerability to calculate the statistics of images filtered by other TDH’s of a given rank, 146 
including the Cartesian TDH filters (as indicated in Figure 2) and intermediate ones. Note that this 147 
“steerability” is much more than geometric rotation, as it allows for filters of different shapes and 148 
symmetries (see Figure 4 below) to be represented in terms of a small basis set.  149 

2.3. Natural images 150 

 All 4167 images from the van Hateren natural image database [15]  (van Hateren & van der 151 
Schaaf, 1998) were chosen for analysis.  Each image is 1536 by 1024 pixels, with each pixel’s 152 
intensity represented by a 16-bit unsigned integer.  The images mainly contain landscapes and 153 
plants, but occasionally manmade objects such as houses appear. 154 

2.4. Analysis 155 

 To characterize high-order statistics of natural images, we calculated the skewness and 156 
kurtosis (as “excess kurtosis”) of the distribution of filter coefficients, i.e., the distribution of values 157 
that result from convolving the images with TDH functions.  To focus on the structure of the 158 
individual scenes (rather than the overall differences across scenes), skewness and kurtosis were 159 
calculated individually for each image, and values were then averaged across the image database.  160 

As shown in Figure 3, this calculation was carried out across 7 spatial scales, spaced in 161 
approximately octave steps.  The smallest scale used 7 /12σ =  (0.58) pixels and the largest, 162 

511/12σ =  (42.6) pixels.  At each scale, the image was convolved with polar TDH functions of 163 
ranks 0-7 (36 filters in all), and the convolution was sampled at points placed in a rectangular grid on 164 
the filtered image.  Filters centers were separated by 10 pixels for scales 1-5 and 50 pixels for scales 6 165 
and 7. We then calculated the pure and mixed moments of these distributions up to order 4, and 166 
used the extended steerability property (detailed below) to go from the moments for the polar TDH 167 
functions to the moments for arbitrary TDH functions.  From these moments, skewness and 168 
kurtosis were then calculated in the standard fashion.  169 

In detail, computation of the skewness and kurtosis for all TDH functions F  of rank r  were 170 
carried out in parallel, as follows. For each image I , we calculated the pure moments for each polar 171 
basis function f   172 

 ( )( )
,

( ) ( , )
m

m
x y

M f f I x y= ∗  (4) 173 

up to 4m = , along with the mixed moments for each pair of functions f  and f ′   174 
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 ( )( ) ( )( ),
,

( , ) ( , ) ( , )
m m

m m
x y

M f f f I x y f I x y
′

′ ′ ′= ∗ ∗  (5) 175 

up to 4m m′+ = , and, analogously, the mixed moments 1,1,1( , , )M f f f′ ′′ ,  2,1,1( , , )M f f f′ ′′ , 176 

and 1,1,1,1( , , , )M f f f f′ ′′ ′′′ . 177 

To use the steerability property, we wrote the filter function F  as a linear combination of the 178 
polar basis functions of that rank:  179 

 
1

1

( , ) ( , )
r

n n
n

F x y b f x y
+

=
=∑ . 180 

Therefore, the convolution of F  with an image I  can be calculated as a linear combination of the 181 
convolutions of the basis functions with the image,  182 

  ( ) ( )
1

1

( , ) ( , )
r

n n
n

F I x y b f I x y
+

=
∗ = ∗∑ .  (6) 183 

Expressions relating the moments of the distribution of the filter coefficients for F   to the 184 
moments for the basis functions nf  now follow via multinomial expansion of (6), using (4)and (5): 185 

 186 

 ( )1 1,
( ) ( , ) ( )n nx y

n

M F F I x y b M f= ∗ =∑ , (7) 187 

 ( )( )
1 2 1 2

1 2

2 2
2 2 1,1

,
( ) ( , ) ( ) 2 ( , )n n n n n n

x y n n n

M F F I x y b M f b b M f f
<

= ∗ = +∑ ∑ , (8) 188 

 189 
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1 2

1 2 3 1 2 3

1 2 3
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( ) ( , ) ( ) 3 ( , )
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M F F I x y b M f b b M f f

b b b M f f f

≠
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+
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∑
,  (9) 190 

and 191 
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1 2 1 2

1 2
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≠
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+ +

+

∑ ∑

∑ ∑

∑

. (10) 192 

As is standard, the cumulants of the distribution of the filter outputs of F  are determined from its 193 
moments by  194 

 ( )2

2 2 1( ) ( )M F M Fκ = − ,  (11) 195 

 196 

 ( )3

3 1 1 2 32 ( ) 3 ( ) ( ) ( )M F M F M F M Fκ = − + ,  (12) 197 

and 198 

 ( ) ( ) ( )4 2 2

4 1 1 2 2 1 3 36 ( ) 12 ( ) ( ) 3 ( ) 4 ( ) ( ) ( )M F M F M F M F M F M F M Fκ = − + − − + .  (13) 199 

Skewness and (excess) kurtosis are ratios of the cumulants: 200 
 

3/2
3 3 2/γ κ κ= ,  (14) 201 

and 202 
 

2
4 4 2/γ κ κ= .  (15) 203 

 204 

3. Results 205 
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We characterized the high-order statistics of natural images via the distribution of filter 206 
coefficients for two-dimensional Hermite (TDH) functions. We present the findings for rank 2 first 207 
because this low rank allows for a detailed visualization, and then turn to higher ranks. 208 

3.1. Statistics of rank-2 TDH filter coefficients for natural images 209 

To visualize the results for rank 2, we note that the full set of rank-2 filters can be regarded as 210 
points on the surface of an ordinary sphere (Figure 4).  This follows from the general observation 211 
that the r th rank of TDH functions is spanned by contains 1r +  orthonormal filters, so the full set 212 
of unit-magnitude filters of rank r  (i.e., the full set of unit-magnitude linear combinations of these 213 

1r +  basis elements) may be regarded as the surface of a sphere in ( 1)r + -space.  In this spherical 214 
representation of rank-2 TDH functions shown in Figure 4, the polar filters correspond to one set of 215 
orthogonal directions, the Cartesian filters to a second orthogonal set of directions, and intermediate 216 
directions correspond to mixtures of polar or Cartesian filters. The latitude (altitude) indicates the 217 
size of the projection onto the target-like TDH function.  For TDH functions at the same latitude, the 218 
azimuth on the sphere corresponds to the orientation (i.e., the in-plane rotation angle) of the filter 219 
function. 220 

Figure 5 shows skewness and kurtosis of the distributions for all TDH filters of rank 2, plotted 221 
on the filter space shown in Figure 4.   Skewness and kurtosis depends strongly on latitude, but is 222 
largely are largely independent of orientation, although there is a small dependence of kurtosis at 223 
orientation at the two largest scales.  Skewness is largest for the circularly-symmetric (target-like) 224 
filters at the poles and zero for filters on the equator, while kurtosis was smallest for the target-like 225 
filters, and largest for filters on the equator. 226 

3.2. Statistics of higher-rank TDH filter coefficients for natural images 227 

For higher ranks, a similar visualization strategy is not possible, so we begin with the skewness 228 
and kurtosis for each of the filters in the polar basis set (Figure 6). We focus on filter scale 4, the 229 
middle of the range studied; other filter scales gave a similar pattern of results. 230 

With regard to skewness (Figure 6A, second column), there is a single polar filter for which 231 
skewness is large; for the others, is close to zero for the others.  For even ranks (consistent with the 232 
rank-2 results shown in Figure 5), the single polar filter that has a large skewness is the target-like 233 
filter 

cos
0, /2rA ; this is the only polar filter with a nonzero mean.  For odd ranks, the filter with the 234 

largest skewness is the filter with a single horizontal inversion axis, 
sin
1,( 1)/2rA − ; this filter is 235 

specifically sensitive to vertical gradients. 236 
With regard to kurtosis (Figure 6A, third column), the pattern is also a simple one.  For even 237 

ranks (also consistent with Figure 2), kurtosis is uniform for all filters except the target-like one 238 
cos
0, /2rA  , shown as the middle bar of each histogram in the right column); for the target-like filter is 239 

approximately half the size of the others.  For odd ranks, the kurtosis is large but uniform across all 240 
filters.  Thus, we find that for each rank, skewness and kurtosis are either uniform across all polar 241 
basis functions, or uniform for all basis functions except for one special filter – the odd-rank filter 242 
with a single horizontal inversion axis, or the even-rank filter that is target-like. 243 

For completeness, the first column of Figure 6A shows the variance of each filter’s outputs.  244 
This is large for target-like filters (center filter in even ranks), and small for all other filters, with sine 245 
and cosine pairs resulting in similar variances.  As variance is a second-order statistic, this behavior 246 
is a consequence of the 

2k −
 power spectrum of the images. 247 

The simple behavior of skewness and kurtosis for the TDH functions is not merely a 248 
consequence of their polar symmetry.  To see this, we repeated the analysis of Figure 6A, but with 249 
the polar TDH functions replaced by binarized variants, in which positive values of the polynomial 250 
component (eq. (3)) are replaced by +1, and negative values by -1.  The binarized variants have the 251 
same polar symmetry and sine/cosine pairing as the original TDH functions, and, within ranks, are 252 
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mutually orthogonal as well. However, neither skewness nor kurtosis have the same simple 253 
behavior seen in Figure 6A.  254 

While Figure 6A suggests that skewness and kurtosis of a general TDH filter depends only on 255 
its projection onto the special axis, it only examines filters that are orthogonal to the special axis.  256 
For oblique directions, it is possible that this result will not hold.  The reason that more complex 257 
behavior may arise in oblique directions is that for moments of order 3 and higher, the steering 258 
equations (eqs. (9) and (10) in §2.4) include contributions from mixed moments of the polar TDH’s. 259 

Figure 7 shows that despite this potential complication, skewness and kurtosis of a TDH filter’s 260 
output depends chiefly on the projection of the filter onto the single special axis identified in Figure 261 
6A.  It is noteworthy that this holds not only for the Cartesian TDH’s, but also for generic TDH’s – 262 
which typically lack rotational symmetry. Moreover, for ranks 3r ≥ , TDH functions that share the 263 
same projection onto this axis are intrinsically different in shape, and are not merely physical 264 
rotations of one another.  265 

In sum, within each rank, skewness and kurtosis of the filter coefficient distribution is either 266 
uniform, or uniform in all but one direction in filter space.  This axis has a simple interpretation – it 267 
is either the target-like TDH function, or the single TDH function that is sensitive to a top-to-bottom 268 
gradient. In other words, although TDH filter space has a high dimensionality (equal to the rank+1), 269 
the behavior of skewness and kurtosis is always low-dimensional – either uniform, or rotationally 270 
symmetric. 271 

Figure 8 uses this finding to describe the distribution of TDH filter coefficients across all spatial 272 
scales in a concise manner.  Skewness is characterized by its value for the target-like filter at even 273 
ranks ( 3,targetγ , Figure 8A) and for the filter with a single horizontal inversion axis at odd ranks (274 

3,horizγ , Figure 8B). 3,targetγ  is a decreasing function of scale and rank and 3,horizγ is an increasing 275 

function of scale, and (except for rank 1) nearly independent of rank. Kurtosis is characterized by its 276 
value for the target-like filter at even ranks ( 4,targetγ , Figure 8C) and by its value for the remaining 277 

filters, at both even and odd ranks ( 4,non targetγ − , Figure 8D).  Both kurtosis parameters are decreasing 278 

functions of scale and rank. 279 
 280 

3.3. Statistics TDH filter coefficients for altered images 281 

To understand the attributes of natural images that underlie the above findings, we carried out 282 
parallel analyses for natural images that were manipulated in several ways prior to the 283 
determination of filter coefficients. 284 

First, we examined the role of local mean luminance.  To do this, we repeated the analysis of 285 
Figure 6, but with subtraction of the local mean luminance over a disk of radius 6σ  prior to 286 
computing TDH filter outputs (Figure 9A).   This manipulation eliminated the difference between 287 
the kurtosis for the target-like filter and the others, so that kurtosis was uniform within each rank.  288 
Subtraction of the local mean reduced, but did not eliminate, the value of the skewness for the 289 
target-like filter. As expected, subtraction of the local mean did not change the distributions for the 290 
polar TDH filters that were not target-like, since for 0μ ≠ , the trigonometric terms in eqs. (1) and 291 
(2) necessarily integrate to 0.  292 

To distinguish the roles of spatial frequency content and phase correlations, we analyzed the 293 
distribution of filter coefficients for phase-scrambled images and for images that are spectrally 294 
flattened.  To isolate the role of spatial frequency content, we created phase-scrambled images by 295 
randomizing the phases of the Fourier components in the original images. This effectively results in 296 
samples of a spatial Gaussian noise whose power spectrum matches that of the original image.  As 297 
expected, analysis of these images yielded distributions of TDH filter outputs whose variances 298 
matched those of the original images, but for which skewness and kurtosis were zero (not shown).  299 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2016. ; https://doi.org/10.1101/060947doi: bioRxiv preprint 

https://doi.org/10.1101/060947
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Page 8 
 

This confirms that spatial frequency content alone does not carry the high-order statistics observed 300 
in natural images [8]. 301 

To isolate the role of phase correlations, we set the Fourier component amplitudes in the 302 
original images to unity, but retained their phases.  As in Figure 9A, calculation of filter outputs 303 
was carried out with subtraction of the local mean, to retain the isotropy of the kurtosis. Other than 304 
for the rank-0 filter, this eliminated the skewness (Figure 9B). The kurtosis remains isotropic.  Thus, 305 
the heavy-tailed nature of the coefficient distributions depends not only on phase, but also on 306 
amplitude. 307 

Finally, to determine the role of the luminance distribution, we calculated the filter coefficient 308 
distributions for images subjected to manipulation of the pixel histogram:  logarithmic 309 
transformation, histogram equalization, and transformation of the intensity histogram to a Gaussian, 310 
truncated to 2.56 s.d. (Figure 10).  All of these reduced both skewness (by approximately a factor of 311 
10) and kurtosis (by approximately a factor of 5), with near-complete elimination of skewness 312 
following the logarithmic transformation.  Skewness was concentrated in the filter with a single 313 
horizontal inversion axis at odd ranks, and kurtosis was approximately constant within rank. 314 

4. Discussion 315 

Here we show that two-dimensional Hermite (TDH) filters, an orthogonal basis set with a high 316 
degree of symmetry, simplify the description of high-order statistics of natural images, both locally 317 
and over wide areas. The significance of this result is that high-order statistics carry the local features 318 
that distinguish natural images from  Gaussian processes [3, 8, 17, 18, 29], but they are challenging 319 
to analyze because of their high dimensionality.  By identifying a hidden symmetry in high-order 320 
statistics, TDH functions provide a kind of dimensional reduction, and therefore, a needed 321 
simplification.  We note that this application of TDH functions to characterize natural image 322 
statistics is distinct from two other applications of them to vision: a body of work in image 323 
processing [19, 21, 23, 24] that uses them to extract local features, and neurophysiologic studies that 324 
use them as visual stimuli to analyze the properties of neuronal receptive fields[30, 31].    325 

Our findings can be viewed as building on [17] and [32], which also focus on the high-order 326 
image statistics in natural images. Specifically, these authors examined the distributions of outputs 327 
of filters acting on whitened natural images, and the joint distributions of outputs of pairs of filters 328 
identified by independent components analysis.  [17] showed that the joint distribution is 329 
approximately circular, and [32] showed that an improved characterization of the joint distribution 330 
could be obtained using an  

pL -norm, rather than the Euclidean norm.  This near-circularity 331 
implies that for any filter, the distribution of outputs has a qualitatively similar heavy-tailed shape.  332 
However, this is similarity is only a loose approximation:  when analyzed quantitatively (e.g., 333 
Figure 5 of [17]), the kurtosis of these distributions varied by at least as factor of two.  Here, we 334 
show that analysis in terms of TDH filters concisely summarizes this variation:  at each rank, the 335 
kurtosis of a filter’s output is determined by its projection onto a specific direction in filter space. 336 

Examination of the polar TDH filters (Figure 1) suggests the reasons that specific axes are 337 
singled out.  For the even-rank filters, the special axis is the only filter whose mean is nonzero; all 338 
other filters necessarily have a mean of zero because of their sinusoidal dependence on angle.  Thus, 339 
these filters are the ones that are sensitive to the distribution of local luminances, which are 340 
well-known to be heavy-tailed in natural images, both in terms of skewness [33, 34] and kurtosis 341 
[35].  For the odd-rank filters, the identified axis has a horizontal mirror-inversion, with large lobes 342 
above and below the horizon. Thus, these filters are likely to be highly sensitive to vertical gradients, 343 
and thus, the distributions of their outputs will be skewed by the tendency of illumination to come 344 
from above. Consistent with these hypotheses, removal of the local mean (Figure 9A) eliminated the 345 
distinctive behavior of target-like filter for kurtosis, and reduced its skewness.  When the low 346 
spatial frequencies were reduced by spectral flattening, the skewness was eliminated for the 347 
odd-rank filters as well.  Figure 10 provides further evidence that the distinctive kurtosis for the 348 
target-like filters is primarily a consequence of luminance distributions, as it is reduced by 349 
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attenuating the tails of the luminance distribution via log transformation, histogram-equalization, or 350 
Gaussianization. 351 

However, the simplification we observe is not simply a consequence of the arrangement of the 352 
positive and negative lobes of the TDH filters. The evidence for this is that replacing the Hermite 353 
polynomial values by ±1, which preserves the arrangement of their lobes, does not result in a similar 354 
simplification of the skewness and kurtosis (Figure 6B). Thus, the gradations of the polynomials that 355 
define the TDH’s, which underlies their generalized steerability, is crucial. 356 

5. Conclusions  357 

Two-dimensional Hermite filters provide a simple description of third- and fourth-order 358 
statistics of natural images across a range of scales. This simplification is a consequence of the high 359 
degree of symmetry of this orthogonal basis set, and the phase, amplitude, and luminance 360 
characteristics of natural images. 361 
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Figure 2. Cartesian TDH functions are linear combination of polar TDH functions.  Examples are shown for 
rank 2 (left) and rank 3 (right).  For rank 2, the coefficients are 2 / 2, 1, 2 / 2a b c    .  For rank 3, the 

coefficients are 1/ 2, 3 / 2,a b   3 / 2, 1/ 2c d    .  

Rank 3Rank 2
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Figure 3. The seven filter sizes used to calculate image statistics, compared to the size of natural images used in 
this study (1536×1024).  
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Figure 4. Generalized steerability of the rank 2 TDH filters.  Each unit-magnitude filter corresponds to a point 
on the surface of a sphere.  The polar and Cartesian basis functions form two sets of orthogonal coordinate axes.  
Filters with a red frame are polar TDH filters; filters with blue frame are Cartesian TDH filters; one filter is in 
both sets as indicated by its two frames.  Filters without frame are intermediate filters; they can be constructed 
from a linear combination of either polar or Cartesian filters. 
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Figure 6. Variance, skewness, and kurtosis for (A) natural images filtered by polar TDH filters of rank 0 to 7 
(spatial scale 4), and (B) modified TDH filters in which the polynomial component is replaced by its sign.  
Error bars are 3 SEM.  
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Figure 7. Skewness and kurtosis of natural images filtered by 1000 random TDH filters of rank 2 to 7, at scale 
4.  The abscissa is the projection of each random TDH filter onto the polar TDH filter shown at the lower right 
of each plot, which is the target-like filter for even ranks and the filter with a single, horizontal inversion axis 
for odd ranks.  The filters placed along the abscissa are examples of filters whose projections onto the rightmost 
polar filter are 0, 0.25, 0.5, and 0.75.  They illustrate the diversity of filters with a given value of the projection; 
the examples shown for the skewness and kurtosis columns at corresponding points along the abscissa are 
interchangeable.
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Figure 8. At each spatial scale, skewness of TDH-filtered images is characterized by two values:  3,target  (A) 

for even ranks and 3,horiz  for odd ranks (B), and kurtosis is characterized by 4,target  (C) for even ranks and 

4,non target   for all ranks (D). 
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Figure 9. Variance, skewness, and kurtosis for (A) natural images filtered by polar TDH filters of rank 0 to 7 
(spatial scale 4) after local mean subtraction. (B) as in (A), but natural images are whitened prior to analysis. 
Error bars are 3 SEM.  
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Figure 10. Skewness, and kurtosis TDH filters of rank 9 to 7 (spatial scale 4) processed by pointwise 
nonlinearities prior to analysis. (A) logarithmic transformation, (B) histogram equalization, (C) Gaussian 
luminance distribution. Error bars are 3 SEM.  
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