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In adverse conditions, individuals follow the
majority more strongly. This phenomenon
is very general across social species, but
explanations have been particular to the
species and context, including antipredatory
responses, deflection of responsibility, or in-
crease in uncertainty. Here we show that
the impact of social information in realistic
decision-making typically increases with ad-
versity, giving more weight to the choices
of the majority. The conditions for this
social magnification are very natural, but
were absent in previous decision-making mod-
els due to extra assumptions that simplified
mathematical analysis, like very low levels
of stochasticity or the assumption that when
one option is good the other one must be
bad. We show that decision-making in collec-
tives can quantitatively explain the different
impact of social influence with different lev-
els of adversity for different species and con-
texts, including life-threatening situations in
fish and simple experiments in humans.

Decision-making theory explains our tendency to fol-
low the majority: when the choices of others inform
about the quality of the options, the majority option
has the highest estimated quality [1–4]. Less intu-
itive is that the probability to follow the majority
should increase in adverse conditions. Yet this is
exactly what happens to many social animals: when
conditions deteriorate individuals follow each other

more strongly, choosing the majority option with
higher probability (Figure 1a). This phenomenon—
which we will call superaggregation in adversity—has
been extensively studied as a response to predators
[5–10], but may also happen in other adverse situa-
tions, such as in the absence of food [11]. In humans,
the occurrence of sudden bank runs [12–14] and hu-
man stampedes [15–21] suggests superaggregation
in adversity, although data are insufficient to draw
definitive conclusions. Different theories explain su-
peraggregation in adversity in particular contexts,
such as when aggregation provides protection against
predators [10, 22–25], when adversity correlates with
uncertainty [26, 27] or, in humans, when copying
others’ behavior can help to deflect the responsibility
for an anticipated failure [28, 29]. In contrast, we hy-
pothesise that superaggregation in adversity is rooted
in the basic structure of decision-making, being a
general phenomenon across species and contexts.

Most studies dealing with superaggregation in ad-
versity look for the optimal level of aggregation given
a particular situation. For example, what is the opti-
mal level of aggregation when a predator attacks the
group? By doing so, they implicitly neglect the limi-
tations of individual decision-makers, whose actions
are constrained by the information available to them.
For example, a given individual may not be certain
whether a predator is approaching the group or not.
This individual-centered approach is the point of
view of decision-making theories [1–4, 27, 30–34],
but it has never been applied to superaggregation
in adversity. We find that decision-making plays a
key role, naturally leading to superaggregation in
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adversity in a wide range of situations.
Let us consider for example a person choosing

between two identical doors (x and y) to find the
exit from a building (Figure 1b). The deciding indi-
vidual may have private information about the two
doors (e.g. from previous experience) and social in-
formation (the behavior of other people). These two
sources of information must be combined to assess
the situation and make the best possible decision.

We divide the decision in two steps. First, the
deciding individual estimates the quality of the avail-
able options. We will use “quality” as a generic
name for whatever is relevant to the decision. In the
context of evolution, quality will measure the fitness
value of each option (for example, the quality of a
particular escape route from a predator may be the
probability to survive). In the language of economic
decision-making, quality refers to the utility of each
option. In the two-door example, we may define
quality as the inverse of the time needed to reach the
street. The qualities (Qx and Qy) are estimated by
combining the privately estimated qualities (Gx, Gy)
with social information. We will consider symmetric
private information, so the privately estimated qual-
ity is the same for both options (Gx = Gy = G). In
the case of a group attacked by a predator, we can
apply this analysis on several escape routes that seem
equally good. In our example with two doors, private
information will be symmetric if the decision-maker
is unfamiliar with the building and both doors look
identical. For two options, we can visualize the esti-
mated qualities in a 2-dimensional quality landscape
(Figure 1c, left). In the second step, a decision rule
transforms the estimated qualities into the probabil-
ity of choosing each option (Figure 1c, right).

Now let’s investigate the effect of adversity on the
decision-making process. We define adversity as a
decrease in the apparent quality of all options. For
example, the approach of a predator creates an ad-
verse situation, since the probability that an animal
dies after choosing any given direction is higher than
when the predator was absent. In our two-door situ-
ation, a fire in the building would create an adverse
situation. We assume that the deciding individual
perceives (at least partially) this deterioration, so
the privately estimated qualities decrease accordingly.
Note that we do not need to assume that the sit-
uation becomes more uncertain in adversity: the
privately estimated qualities may be as accurate as
they were before—just lower.

Adversity thus moves the estimation to a differ-
ent point of the quality landscape, even if the social
information remains constant (Figure 1d). In gen-

eral, this new location corresponds to a different
probability of choosing each option (Figure 1e, top).
The only exception is when the estimated qualities
run along an isoprobability line of the decision rule
(Figure 1e, middle). Such a perfect match is un-
likely except for decision rules with large regions of
constant probability, as for example the determin-
istic rule “always choose the option with highest
estimated quality” (Figure 1e bottom). This deci-
sion rule is used in many simple models, prevent-
ing them to explain superaggregation in adversity
[1, 2]. Also, many current models assume mutually
excluding options (one of them is good and the other
is bad, so P (x is good) = 1 − P (y is good)) [1–3].
These models lack a parameter that measures ad-
versity, which would require lowering P (x is good)
and P (y is good) simultaneously, and cannot predict
superaggregation in adversity.

In general, decision rules are not deterministic and
options are not mutually excluding, so the probability
of following the majority will change with adversity.
But why do we usually observe superaggregation
in adversity rather than subaggregation? We have
found three different mechanisms that promote su-
peraggregation in adversity.
(a) Relative decision rules

Many decisions depend on the relative value of es-
timated qualities, rather than on their absolute value.
Examples range from bacteria to humans, including
rules such as Weber’s law, probability matching, and
others [3, 4, 35–44]. All relative rules have isoproba-
bility lines identical to those in Figure 2a (Methods).
With these rules, when the social information re-
mains the same (Figure 2a, green arrows) its impact
increases in adversity, with a higher probability of
following the majority (Figure 2b). Even when the in-
fluence of social information in the qualities decreases
in adversity, the probability to follow the majority
will increase as long as the estimated qualities fulfil

∂(Qy/Qx)

∂G
< 0. (1)

where Qx, Qy are the final estimated qualities and G
is the privately estimated quality (Methods). This
condition is fulfilled both by non-optimal estimation
rules (such as the one in Figure 2a) and by optimal
ones, such as the Bayesian model shown in Figure 2c
(Methods). This model—which reproduces experi-
mental data of several species [4, 45, 46]—fulfils Equa-
tion 1 for any combination of parameters, predicting
superaggregation in adversity in all conditions (solid
line in Figure 2d; Methods). Other implementations
of Bayesian decision-making produce the same result
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Figure 1: Decision-making predicts that aggregation changes in adversity. a, Definition of superaggregation in
adversity: the probability to choose the majority option increases as the quality of all options decreases. Arrowheads point in
the direction of increasing adversity. b, A subject must choose between two seemingly identical options (doors x and y). One
other person is choosing door x, and three other people are choosing door y, which is therefore the majority option. c, Decision
process: In step 1, social and non-social information are integrated to estimate the qualities of the options, Qx and Qy. Red
diamond: privately estimated qualities (G). Green arrow: contribution of the social information. Blue diamond: Estimated
qualities. In step 2, the decision rule gives the probability of choosing each option (Px and Py) given the estimated qualities
from step 1. In this example, Py = Qy/(Qx + Qy) and Px = 1 − Py. d, Example of the evolution of the estimated qualities
when conditions become adverse. Colours as in c. Diamonds: favorable conditions. Squares: adverse conditions. Blue and
red arrowheads point in the direction of increasing adversity. e, Left: Example of the trajectory followed by the estimated
qualities in adversity (arrowheads point towards higher adversity), for three different decision rules: top: relative decision rule
(Py = Qy/(Qx + Qy)); middle: absolute decision rule Py = 1/(1 + e−2(Qy−Qx)); bottom: deterministic decision rule (Py = 1
if Qy > Qx, and Py = 0 otherwise). Right: Probability to follow the majority as a function of the privately estimated quality,
for the same trajectories and decision rules shown on the left.

(section 1 of Supplement).

(b) Saturation near the upper bound of qualities

The range of qualities is often bounded, for exam-
ple when there is a limit in the amount of food an
animal can consume or when qualities are probabili-
ties. In this case, as the privately estimated qualities
increase, both the private and the final estimates con-
verge to the upper bound, so the difference between
them—the contribution of social information—tends
to zero. Thus, the same amount of social informa-
tion can have a greater impact in adversity, when
the estimation is further away from the upper bound
(Figure 2c). To decouple the effects of saturation
and relative decision rules, we considered a decision
rule that depends on the difference of the qualities,
Qy−Qx (Methods). With this decision rule, Bayesian
estimation predicts superaggregation in adversity
when the initial estimated qualities are high (dashed
line in Figure 2d, see Methods). In the range of very
low qualities we find the opposite effect, due to the
lower bound of the probability. However, social in-
formation usually pushes the estimation towards the
upper bound, making the range for superaggregation
in adversity wider than the range for the opposite
effect, especially for large groups (Methods).

(c) Worsening of the worst-case scenario

Adversity can also modify the values of the po-
tential payoffs behind each option, rather than the
probability of reaching them. In our example of two
doors in an unfamiliar building, a fire alarm does not
change the probability that each door leads to the
street, nor the corresponding payoff rhigh. Instead,
it decreases the payoff of choosing the wrong door
from a low value rlow (detour to street) to an even
lower payoff r′low < rlow (possibility of dying in a
fire). Adversity thus increases the contrast between
a good and a bad choice, effectively rescaling the
estimation from the region between rlow and rhigh
to a wider region of the quality landscape between
r′low and rhigh (Figure 2e). This rescaling results in a
larger contribution of the social information, leading
to superaggregation in adversity for both relative and
absolute decision rules (Figure 2f) and for all combi-
nations of the parameters (Methods). The opposite
effect takes place when adversity affects the gains
of a good option, rather than the cost of a bad one
(Methods). Therefore, among adverse situations, we
expect the life-threatening ones—characterized by a
deterioration of the worst-case scenario—to produce
stronger superaggregation in adversity.
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Figure 2: Mechanisms responsible for superaggregation
in adversity. a, Estimated qualities for an additive estimation
model (Qx = G+Sx, Qy = G+Sy, with Sx = 0.05, Sy = 0.3).
Red: private estimate for favourable conditions (G = 0.6,
diamond) and adverse conditions (G = 0.15, square). Green
arrows: contribution of the social information. Blue: trajectory
of the final estimated qualities when adversity increases (arrows
point towards adversity). Background: probability of choosing
y for each pair of qualities, for the relative decision rule Py =
Qy/(Qx + Qy) (grayscale: black=0, white=1). b, For the
model in a, probability of choosing the majority option (y), as
a function of the privately estimated quality (G). Arrows point
in the direction of adversity. Diamond and square correspond
to the same conditions as in a. c, Estimated qualities for a
Bayesian decision-making model (Equation 17). Colours and
symbols as in a. d, Probability of choosing the majority option
(y) as a function of the privately estimated quality (G), using
the Bayesian estimation model in c and a relative decision
rule (Py = Qy/(Qx + Qy), solid line) or an absolute decision
rule (Py = 1/(1 + e−2(Qy−Qx)), dashed line). e. Estimated
qualities for the model with payoffs (Equation 22). rhigh is
the payoff of a good option, rlow the payoff of a bad option in
favourable conditions, and r′low the payoff of a bad option in
adverse conditions. Colours and symbols as in a. f, Same as
d but for the model in e. Quality from private info is defined
as G = rlow + (rhigh − rlow)Pprivate, where Pprivate = 0.5 is the
privately estimated probability that options have a high reward.

Figure 3: Spatial superaggregation in adversity. a, Four
frames of a simulation where private information is identical
for all locations and changes suddenly at time t = 150 from
favourable conditions (G = 0.1) to adverse conditions (G =
0.0001). Each point is an individual. We chose an individual
(blue) to illustrate its estimated probability that each pixel is a
good location (background colour). b, Average distance among
individuals as a function of time, for the same simulation as in
a. Background colour indicates the value of G. Dots mark the
times of the frames shown on a. c, Same as a, for a simulation
with a predator. d, Same as b, for a simulation with a predator.
e, Average distance between 10 individuals when conditions
are favorable, vs. their average distance when conditions are
adverse (points above the diagonal indicate superaggregation in
adversity). Simulations use the same dynamical model as above,
and a Bayesian decision rule. Each point comes from a random
draw of all parameters of the model. Grey: simulations in 2D.
Red: simulations in 3D. f, Same as e, but with an additive
decision rule. g. Same as e, but with a rule with payoffs
(Equation 22).

Superaggregation in adversity • Pérez-Escudero & de Polavieja page 4 of 11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2016. ; https://doi.org/10.1101/061630doi: bioRxiv preprint 

https://doi.org/10.1101/061630


Each of these three mechanisms can produce super-
aggregation in adversity by itself, but in general we
may observe several of them reinforcing each other,
as for example the solid lines in Figure 2d,f.

To illustrate superaggregation in adversity in a
more general setting, we built a spatial model where
individuals estimate the quality of all points within
a given distance (see section 3 of Supplement for
details). Social information increases the quality of
the space around each individual. In favorable con-
ditions, a point close to other individuals has only
slightly higher quality than the rest of points, so the
animals remain relatively disperse. When conditions
deteriorate, estimated quality is high only for high
density regions, so all individuals converge towards
them (Figure 3a,b and Movies S1, S2). The model
also shows aggregation when a predator approaches
the group. Any individual that perceives the preda-
tor updates its private information to a non-uniform
map of qualities whose minimum is at the predator’s
position. This gradient pushes the individuals away
from the predator and decreases the overall quality,
increasing aggregation (Figure 3c,d and Movie S3).
These results are independent of the mechanism be-
hind superaggregation and of the model’s dynamical
parameters: we have run simulations with different
estimation models, in 2D and 3D, and with random
parameters of the dynamical model (speed, accelera-
tion, etc). Superaggregation in adversity arises often,
independently of these details (Figure 3e,f,g).

We have also confronted our model with experimen-
tal data of groups of ten fish (Fundulus diaphanus)
[11]. To modify the private information of the fish,
the authors sprayed different odours uniformly on
the water. Odours that signal adversity increased the
cohesion in the fish (Figure 4a, insets). Our spatial
model reproduces these data, keeping all parameters
constant across conditions except private information
G (Figure 4a).

Superaggregation in adversity may also take place
in humans, as suggested by the occurrence of sudden
bank runs [12–14] and human stampedes [15–21].
It is however unclear whether these events actually
emerge from superaggregation, to other causes such
as sudden changes in the private information towards
a single preferred option, or to a combination of both.
Tests in these panic situations are difficult, but our
theory suggests that superaggregation in adversity
should also happen when adversity is unrelated to
life-threatening situations. In such situations our
prediction is easy to test, and we did so using an
existing dataset [47]. The experimental subject had
to choose one out of eight face-down cards, and got

Figure 4: Experiments are consistent with superagre-
gation in adversity emerging from decision-making. a,
Mean group size for 10 fish swimming in a closed space as
a function of the privately estimated quality, as predicted by
the spatial model. The black dots indicate the experimental
mean group sizes [11], and the values of G that best fit the
experiments. Insets: Distributions of group sizes for the four
experiments (dots: experimental data. red line: simulations).
b, Layout of the experiment of ref. [47]. c, Probability of
relying in the card choice of another person (a professor for
the green data and a student for the black data), as a function
of the proportion of red cards (which is equivalent to the prob-
ability of getting a good card at random). Dots: experimental
data (curved patches indicate experimental uncertainty due
to sampling, with width proportional to the probability that
the true value falls at each value, and truncated at the 95%
confidence interval). Lines: model (Equation 28).

a reward when the chosen card was red. The subject
knew the proportion of red cards (so had private
information about the probability of success), and
could either choose one card or rely on the opinion
of another person—either a professor or a student
(Fig. 4b). The data show the trend predicted by
our theory: Subjects rely more on social information
the lower is the proportion of good cards (Figure 4c;
Methods).

Discussion

We have shown that aggregation should change in ad-
versity, and proposed three general mechanisms that
make it increase rather than decrease. These mech-
anisms emerge from the basic structure of decision-
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making, explaining the generality of known cases of
superaggregation in adversity [5–9, 11]. Furthermore,
our results suggest that superaggregation in adver-
sity may be a general feature of decisions in social
contexts, and should be investigated in a wider range
of situations.

Our results are complementary to other mecha-
nisms that may increase aggregation in adversity in
specific situations [22–25], and in fact our framework
may incorporate many of these models. For example,
it can reproduce the selfish-herd hypothesis[23] when
the qualities are given by the probability of surviving
a predator attack (see section 2 of Supplement and
Figure S1).

All our results apply to the case when the presence
of other individuals in one particular option increases
its expected quality. This will not be the case if
competition is strong, outweighing the effect of social
information. In this case we might expect different—
perhaps even opposite—trends. We therefore expect
superaggregation in adversity to be strongest when
competition is weak.

Our analysis has focused on symmetric private
information (all options have the same privately esti-
mated quality). The mechanisms discussed are also
at work with asymmetric private information, and
will typically increase aggregation around the pri-
vately preferred option (when it is the same for all
individuals). In this case it is difficult to decouple
the role of private and social information, but super-
aggregation will usually take place. An additional
confounder arises if the asymmetry in private infor-
mation between the options increases or decreases in
adversity, obscuring the effect of social information.
For example, many situations are characterized by
a sharp increase in asymmetry: people wandering
in a building usually have different aims, but a fire
alarm will direct everyone towards the exits. This
type of aggregation is compatible with our results
and fits in our framework, but our results are applica-
ble even when considering symmetric options, as for
example two identical emergency exits. In general,
by sticking to the symmetric case, we have shown
that superaggregation in adversity does not require
any asymmetry in the private information.

Superaggregation in adversity is at the core of
decision-making. This finding does not exclude other
causes for the observed behaviors, but should be
taken as a baseline before resorting to less parsimo-
nious explanations.

Methods

Formal definition of superaggregation in
adversity

For a given decision-making model, we will say that
superaggregation in adversity occurs whenever

∂Py

∂G
< 0, (2)

where Py is the probability to choose the majority op-
tion, and G is the privately estimated quality (equal
for all options because we consider symmetric private
information).

Relative decision rules

Relative decision rules are those that depend on the
relative values of the estimated qualities, rather than
on their absolute values. This family of decision rules
includes those that depend on the ratio of two quali-
ties, Qy/Qx [35], on the relative difference between
qualities, (Qy − Qx)/(Qy + Qx), such as Weber’s
law [36–38], and on the relative value of qualities,
Qy/(Qx+Qy), such as probability matching [3, 4, 39–
44]. All these rules share the condition that

Py/Px = f(Qy/Qx), (3)

where Px, Py are the probabilities to choose x and
y respectively, f is any monotonically increasing
function and Qx ≥ 0, Qy ≥ 0 are the estimated
qualities for options x and y respectively. When
more than two options exist, a relative decision rule
must fulfil Equation 3 for every pair of options.

Relative decision rules give superaggregation in
adversity whenever Equation 2 is fulfilled. If there
are only two options (x and y), we must have Px =
1− Py. Therefore, decreasing Py necessarily means
decreasing Py/Px, so

∂Py

∂G
< 0 ⇔ ∂(Py/Px)

∂G
< 0. (4)

And from Equation 3 we have that

∂(Py/Px)

∂G
= f ′(Qy/Qx)

∂(Qy/Qx)

∂G
, (5)

where f ′(·) is the derivative of f with respect to
its argument, which is always positive because f is
by definition a monotonically increasing function.
Therefore,

∂(Py/Px)

∂G
< 0 ⇔ ∂(Qy/Qx)

∂G
< 0. (6)
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Putting together equations 4 and 6, superaggregation
in adversity will take place whenever

∂(Qy/Qx)

∂G
< 0. (7)

If the choice is among more than two options, a
similar condition is sufficient (but not necessary) to
produce superaggregation in adversity. The proba-
bility to choose the majority option must decrease if
the ratio of this probability with respect to all other
probabilities decreases:

∂Py

∂G
< 0 ⇐ ∂(Py/Pi)

∂G
< 0 ∀ i 6= y. (8)

With this and Equation 6 (which is valid for any two
options), we have that

∂(Qy/Qi)

∂G
< 0 ∀ i 6= y (9)

is a sufficient condition for superaggregation in ad-
versity when there are more than 2 options.

Absolute decision rules

We say that a decision rule is absolute when the
probability to choose option y is of the form

Py = F (Qy −Qx), (10)

where Qx, Qy are the qualities of options x and y,
and F is any monotonically increasing function.

Absolute decision rules give superaggregation in
adversity whenever Equation 2 is fulfilled. From
Equation 10,

∂Py

∂G
= F ′(Qy −Qx)

∂(Qy −Qx)

∂G
, (11)

where F ′(·) is the derivative of F with respect to
its argument, which is always positive because F is
monotonically increasing. Therefore,

∂Py
∂G < 0 ⇔

∂(Qy−Qx)
∂G < 0, so superaggregation in adversity will

take place whenever

∂(Qy −Qx)

∂G
< 0 (12)

Absolute decision rules rule may emerge for ex-
ample if the subject chooses y when Qy > Qx + η,
with η a random number: Let ρ(η) be the probabil-
ity density function of η, and F (η) its cumulative
distribution. Then, the probability to choose y is
equal to the probability to draw a value of η lower
than Qy −Qx,

Py = P (Qy > Qx+η) =

∫ Qy−Qx

−∞
ρ(η)dη = F (Qy−Qx).

(13)

F is a cumulative distribution, which is always mono-
tonically increasing. In Figures 1 and 2 we have used

F =
(

1 + e−
Qy−Qx

λ

)−1
. (14)

This function is the cumulative distribution of the
logistic distribution, whose probability density func-

tion is ρ(η) = e−
η
λλ−1

(
1 + e−

η
λ

)−2
. We have chosen

this distribution because its cumulative density func-
tion has a simple analytical form; all results hold
regardless of the probability distribution that we
choose.

Bayesian estimation model

This model is equivalent to our previously published
model [4], with some changes in notation. We con-
sider an individual choosing between two options, x
and y. Each option may be good or bad, and the de-
ciding individual estimates the probability that each
option is good using both its private information
and the behaviors of other individuals. For option
x, we represent this probability as P (X|B,C) where
X stands for ‘x is good’, B represents the behaviors
of other individuals and C represents the private
information of the deciding individual. Using Bayes’
theorem, we get

P (X|B,C) =
P (B|X,C)P (X|C)

P (B|X,C)P (X|C) + P (B|X̄, C)P (X̄|C)
,

(15)
where X̄ means ’x is not good’ and P (X̄|C) =
1 − P (X|C). We define Gx = P (X|C), which is
the privately estimated probability that x is a good
option. Dividing numerator and denominator over
the numerator, we get

P (X|B,C) =
1

1 + 1−Gx
GxSx

, (16)

where Sx = P (B|X,C)/P (B|X̄, C) contains the so-
cial information. Our previous work develops the
social term further adding some extra hypotheses
in order to obtain an expression that depends on
the number of individuals choosing each option [4].
This is not necessary here because our results are
independent on the exact form of the social term;
we only need to assume that Sx increases when the
behaviors of the other individuals indicate that x is
good.

The quality of each option is given by the proba-
bility that it is good, Qx = P (X|B,C), and similarly
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for option y. In the case of symmetric private infor-
mation, G ≡ Gx = Gy, we have

Qx =
1

1 + 1−G
GSx

, (17)

and similarly for option y.
When combined with a relative decision rule, the

Bayesian model will show superaggregation in adver-

sity when
∂(Qy/Qx)

∂G < 0 (Equation 1). From Equa-
tion 17,

∂(Qy/Qx)

∂G
=

Sy(Sx − Sy)

Sx(GSy −G+ 1)2
. (18)

This expression is always negative because squared
terms are always positive, by definition Sx > 0 and
Sy > 0, and Sy > Sx because y is the majority option.
Therefore, the Bayesian estimation model with a rel-
ative decision rule always produces superaggregation
in adversity.

When combined with an absolute decision rule,
the Bayesian model will show superaggregation in

adversity when
∂(Qy−Qx)

∂G < 0 (Equation 12). From
Equation 17,

∂(Qy −Qx)

∂G
=

(Sy − Sx)
(
(1− SxSy)G2 − 2G+ 1

)
(G(Sx − 1) + 1)2 (G(Sy − 1) + 1)2

.

(19)
The denominator of this expression is always positive,
and Sy−Sx is positive when y is the majority option.
Therefore, the whole expression is negative when

(1− SxSy)G2 − 2G+ 1 < 0. (20)

This inequality has only one solution for G > 0,
which is

G >
1

1 +
√
SxSy

. (21)

Thus, there is superaggregation in adversity in the
range of high G, and the opposite effect in the range
of low G. The higher SxSy, the wider the range for
superaggregation in adversity.

This result matches the intuition that the upper
bound is more important than the lower one because
social information tends to move the estimation to-
wards the upper bound. In principle an individual
choosing option x can indicate both that x is a good
option and/or that y is a bad one. Therefore, this
choice can increase Sx in the same degree as it de-
creases Sy. However, experimental data shows that
social information usually has a positive net effect,
meaning that an individual that chooses x increases
Sx more than it decreases Sy (in our previous work

[4] we defined parameter k to measure this effect.
All experimental data, from three different species,
were consistent with k < 1, meaning that social in-
formation has a positive net effect). When social
information has a positive net effect, the product
SxSy increases as more individuals make choices.
Therefore for large groups (or when behaviours are
very informative) the range of superaggregation in
adversity is very wide. For example, in our previous
study [4] we found that for zebrafish SxSy = 5n,
where n is the total number of individuals that have
already chosen one of the two options. Therefore,
Equation 21 tells us that a group of 10 zebrafish will
show superaggregation in adversity for G > 3 · 10−4,
and a group of 15 for G > 6 ·10−6. As a reference, in
our experiments (that corresponded to an intermedi-
ate level of adversity, with the fish in an unknown
environment but without any direct threat) we found
G ≈ 0.08 [4].

Model with payoffs

Let rlow ≥ 0 be the reward provided by a bad option,
and rhigh ≥ 0 the reward provided by a good one,
with rlow ≤ rhigh. The estimated quality of option x
is its expected payoff

Qx = 〈rx〉 = rlow + (rhigh − rlow)P (xhigh), (22)

and similarly for option y. P (xhigh) is the estimated
probability that x has a high payoff (rhigh), and
Equation 22 takes into account that P (xlow) = 1−
P (xhigh). The private estimate of the quality of the
options is

G = rlow + (rhigh − rlow)Pprivate, (23)

where Pprivate is the privately estimated probability
that an option contains a high reward (equal for
all options, by hypothesis). A change in private
information may translate in three different changes
in the parameters: (1) a change in the probability
(Pprivate), (2) a change in the lower payoff (rlow) and
(3) a change in the higher payoff (rhigh). The first
type of change will depend on the specific model
we use to estimate the probabilities (we may use a
Bayesian model as in previous sections, or any other
model). Here we will consider the other two cases,
in which the new private information changes the
values of the rewards that the subject expects to
obtain.

First let us consider the case in which adversity
means a decrease in the lower reward (rlow), and the
case of a relative decision rule (Equation 3). From
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Equation 23 we have that ∂G/∂rlow > 0 in all cases.
Therefore, any derivative with respect to G will have
the same sign as a derivative with respect to rlow, and

Equation 1 is now equivalent to
∂(Qy/Qx)

∂rlow
< 0. We

compute this derivative from Equation 22, getting

∂(Qy/Qx)

∂rlow
=

rhigh (P (xhigh)− P (yhigh))

(rlow + (rhigh − rlow)P (xhigh))2
.

(24)
The denominator is always positive because it
is squared, and rhigh is positive by definition.
P (yhigh) > P (xhigh) because y is the majority option,
so the derivative is always negative; superaggregation
in adversity always takes place.

We find the same result for an absolute decision
rule. To test for superaggregation in adversity we use
Equation 12, deriving with respect to rlow instead of
G (as explained in the previous paragraph). We get

∂(Qy −Qx)

∂rlow
= (P (xhigh)− P (yhigh)) , (25)

which is always negative because P (yhigh) > P (xhigh)
when y is the majority option. Therefore, cohesion
always increases with adversity.

In contrast, cohesion decreases in adversity when
the higher payoff changes, keeping all other parame-
ters constant. This has a simple intuitive explanation:
in adversity rhigh goes down, becoming more similar
to rlow. Therefore, the difference between choosing
correctly and choosing incorrectly decreases, making
any decision weaker. Mathematically, for relative de-
cision rules we evaluate the condition in Equation 1
(in this case deriving with respect to rhigh instead of
G), finding

∂(Qy/Qx)

∂rhigh
=

rlow (P (yhigh)− P (xhigh))

(rlow + (rhigh − rlow)P (xhigh))2
.

(26)
The denominator of this expression is always positive,
as is rlow by definition. And P (yhigh) > P (xhigh)
because y is the majority option, so the derivative is
always positive, meaning that cohesion decreases in
adversity when using a relative decision rule. Now
we consider an absolute decision rule (Equation 12):

∂(Qy −Qx)

∂rhigh
= (P (yhigh)− P (xhigh)) , (27)

which is always positive because Py > Px when y is
the majority option. Therefore, cohesion decreases
in adversity.

Model for the cards experiment

The experimental design presented social informa-
tion as a separate option (Figure 4b), so we have
implemented the simplest model that mimics this
condition: the subject assumes that the other person
(the professor or the student) has a fixed probability
of making a correct choice (ξ). And the probabil-
ity of making a correct choice by choosing a card is
nred/8, where nred is the number of red cards. We
then consider a 9-choice scenario: the 8 cards plus
the social option. As decision rule we use probability
matching, where the probability to choose one option
is proportional to its corresponding probability of
success. Then, the probability to rely on the other’s
opinion is

P (rely on the other) =
ξ

ξ + 8(nred/8)
. (28)

We fit the parameter ξ to the experimental data,
getting ξ = 0.624 for the professor and ξ = 0.328 for
the student.
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SUPPLEMENTARY MATERIAL:
Adversity magnifies the importance of
social information in decision-making

Alfonso Pérez-Escudero∗ & Gonzalo G. de Polavieja†

1 Alternative Bayesian model

The Bayesian model used in the main text assumes that the quality of each option is
estimated independently of the other. Here we remove this approximation, arriving to
a different and more complex model. Regarding superaggregation in adversity, we find
the same conclusions as for the simpler model presented in the main text.

1.1 Derivation of the estimated qualities

Let us consider a choice between two options, x and y. Each option can be good or bad;
we will write X to denote ’x is good’ and X̄ to denote ’x is bad’, and similarly for option
y. The pair of options can be in four possible states: both options are good (XY ), both
options are bad (X̄Ȳ ), or one option is good and the other is bad (XȲ and X̄Y ). We
calculate the probability for each of these states, using both private information (C) and
the behaviours of the other individuals (B). For example, the probability that option x
is good and option y is bad, using Bayes’, theorem, is

P (XȲ |B,C) =
P (B|XȲ ,C)P (XȲ |C)

Ω
, (S1)

where

Ω = P (B|XY,C)P (XY |C) + P (B|XȲ ,C)P (XȲ |C)+

+ P (B|X̄Y, C)P (X̄Y |C) + P (B|X̄Ȳ , C)P (X̄Ȳ |C). (S2)

The term P (XȲ |C) contains the private information about the state of both options,
and the term P (B|XȲ ,C) contains the social information. If we assume that the two
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†gonzalo.polavieja@neuro.fchampalimaud – Champalimaud Neuroscience Programme, Champalimaud
Center for the Unknown

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2016. ; https://doi.org/10.1101/061630doi: bioRxiv preprint 

https://doi.org/10.1101/061630


options can be good or bad independently, we have P (XȲ |C) = P (X|C)P (Ȳ |C). Now
we define Gx = P (X|C) and Gy = P (Y |C), so P (XȲ |C) = Gx(1 − Gy). If we further
assume that private information is symmetrical (Gx = Gy ≡ G), Equation S1 becomes

P (XȲ |B,C) =

P (B|XȲ ,C)G(1−G)

P (B|XY,C)G2 + [P (B|XȲ ,C) + P (B|X̄Y, C)]G(1−G) + P (B|X̄Ȳ , C)(1−G)2
.

(S3)

The four probabilities P (B|XY,C), P (B|XȲ ,C), P (B|X̄Y, C) and P (B|X̄Ȳ , C) parametrize
the available social information. Because they must sum one, we only have three
free parameters. It is therefore more useful to define Sb ≡ P (B|XY,C)/P (B|X̄Ȳ , C),
Sx ≡ P (B|XȲ ,C)/P (B|X̄Ȳ , C) and Sy ≡ P (B|X̄Y, C)/P (B|X̄Ȳ , C), and write Equa-
tion S3 as

P (XȲ |B,C) =
SxG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
. (S4)

The probabilities for the other three states can be derived in the same way:

P (X̄Y |B,C) =
SyG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
(S5)

P (XY |B,C) =
SbG

2

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
(S6)

P (X̄Ȳ |B,C) =
(1−G)2

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
. (S7)

Now we define the quality of x as the probability that x is good (and the same for option
y), getting

Qx = P (X|B,C) =P (XY |B,C) + P (XȲ |B,C) =

=
SbG

2 + SxG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
(S8)

Qy = P (Y |B,C) =P (XY |B,C) + P (X̄Y |B,C) =

=
SbG

2 + SyG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
. (S9)

1.2 Effect of a relative decision rule

We assume that y is the majority option. If the decision rule is relative (Equation 3 of the

main text), superaggregation in adversity will take place when
∂(Qy/Qx)

∂G < 0 (Equation 7
of the main text). From Equations S8 and S9,

∂(Qy/Qx)

∂G
=

Sb(Sx − Sy)

[G(sb − Sx) + Sx]2
. (S10)
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The denominator of this expression is always positive because it is squared. Sb is always
positive because it is a ratio of probabilities. And Sy > Sx because y is the majority
option, so this derivative is always negative. Therefore, there is superaggregation in
adversity for any values of the parameters.

1.3 Effect of an absolute decision rule

If the decision rule is absolute (Equation 10 in the main text), superaggregation in

adversity will take place when
∂(Qy−Qx)

∂G < 0 (Equation 12 of the main text). From
Equations S8 and S9,

∂(Qy −Qx)

∂G
=

(Sx − Sy)[(sb − 1)G2 + 2G− 1]

[SbG2 + (Sx + Sy)G(1−G) + (1−G)2]2
. (S11)

The denominator is always positive because it is squared. Sx − Sy is always negative
because Sy > Sx when y is the majority option. Therefore, the sign depends on the
sign of (sb − 1)G2 + 2G − 1. This polynomial has a single root between 0 and 1 at
G = (

√
sb+1)−1. Therefore, the derivative is negative when G > (

√
sb+1)−1, recovering

the same result as for the Bayesian model in the main text: there is superaggregation
in adversity in the regime of high G, and the opposite effect in the regime of low G.

2 The selfish herd hypothesis in the quality landscape

We assume that the available space is divided in M possible locations. The i-th location
is occupied by ni individuals (i = 1 . . .M). The quantities ni do not count the focal
individual, which starts from any given location. A predator may arrive to any location
with probability 1−G (we define it in this way to keep the convention that G decreases
when conditions become adverse). If the predator arrives, it will eat one of the individ-
uals in that location, chosen at random. We define the quality of each option as the
probability that the focal individual survives after choosing that location, so for location
k we have

Qk = P (survive in location k) = 1− 1−G

(nk + 1)
, (S12)

where nk +1 is the number of individuals in option k, assuming that the focal individual
chooses it and that no other individual moves in the current round.

Figure S1a shows the trajectory of this estimation rule for the case of two locations
(M = 2), when private information modifies the value of G. The probability of following
the majority increases in adversity both for the relative decision rule (Figure S1b, solid
line) and for the absolute one (Figure S1b, dashed line).

3 Spatial model

In order to simulate animals in motion, we discretize the space in pixels (for 2D simula-
tions) or voxels (for 3D simulations). In each iteration, each individual chooses one pixel
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Figure S1: Selfish herd in the quality landscape. a. Change in estimated qualities
for a selfish herd model (Equation S12). Red: private estimate for favorable conditions
(diamond) and adverse conditions (square). Green arrows: contribution of the social
information. Blue: trajectory of the final estimated qualities. b. For the decision model
in (a), probability of choosing the majority option (y), as a function of the privately
estimated quality (G, higher values indicate more favourable conditions). Solid line:
relative decision rule. Dashed line: absolute decision rule.

and accelerates towards it, up to a maximum acceleration (amax) and never exceeding a
maximum velocity (vmax). The probability to choose a given pixel is proportional to the
probability that it is a good place according to a model based on Bayesian estimation
[1],

P (good) =
1

1 + 1−g
gsNnear

, (S13)

where g is the probability that each location is good from non-social information only.
Here we define the qualities as Q = P (good), so g is also the privately estimated quality
(G = g). Nnear is the number of individuals within a certain radius rinfluence from the
pixel, and s is a parameter measuring the reliability of the other individuals. We also
incorporate a limited field of view for each individual, by assuming that an individual can
only choose pixels within a certain radius from itself, rview (this parameter is needed to
make the model computationally tractable even when the individuals are not restricted
to a finite region).

For the results in Figure 3a,b and Movie S1, we chose the parameters amax = 0.1,
vmax = 0.5, rinfluence = 5, rview = 100, s = 3, and G as indicated in Figure 3b (space
units are in pixels, and time units in iterations).

For the case of predator avoidance the model confirmed our prediction of increased
cohesion in adversity, but was not realistic: in many conditions, when the predator
appears individuals cluster together but fail to run away from it (the social attraction
overcomes the repulsion from the predator). In order to obtain more realistic results,
we added another factor: an individual indicates that the location towards which it is
heading (rather than its current location) is a good place. To account for this, we centre
the circle of influence of each individual at the position where it will be in tprediction

steps in the future (assuming it will keep constant direction and speed), rather than
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at its current location. With this addition, animals not only cluster together when
the predator appears, but also tend to align with each other along the optimal scape
route (Figure 3c,d, and Movie S2; simulations with the same parameters as in previous
paragraph, but with tprediction = 15).

In fact, alignment arises in adversity when individuals pay attention to future positions
rather than current ones (tprediction > 0), even if there is no predator present (Movie S3;
simulations with same parameters as for Movie S1, but with tprediction = 15). Thus, in
our model the group does not need the asymmetry created by the predator to reach a
consensus direction. But if there is a predator, the consensus direction will head away
from it.

Figure 3e shows the average distance between individuals after a simulation with a
high value of G (favorable conditions, y axis) vs. the average distance after a simulation
with a low value of G (adverse conditions, x axis). Each average distance comes from
50 simulations with identical parameters and random initial positions. Each simulation
lasts 200 iterations. For each combination of parameters, we run simulations with all
values of G ∈ {10−3, 10−2.5, 10−2, . . . , 100}. Then we plot the results of all pairs of G
(always with the smaller G in the x axis, and the greater G in the y axis). To generate
combinations of parameters, we drew random numbers uniformly distributed in the
following intervals: amax ∈ [0.1, 5], vmax ∈ [1, 50], rinfluence ∈ [5, 30], rview ∈ [10, 50],
tprediction ∈ [0, 5], s ∈ [2, 20]. For each combination of parameters, we run the simulation
both in 2D and 3D.

To generate Figure 3f we followed the same procedure as for Figure 3e, but instead of
a Bayesian decision rule (Equation S13) we used an additive rule where the quality of a
given pixel is

Q = G + Nnear. (S14)

G is again the privately estimated quality (but note that it is not a probability any more),
and Nnear is the number of individuals near the pixel (as above). We drew random pa-
rameters from the same intervals mentioned in the previous paragraph, except for s (this
parameter does not exist in this model). Also, in this case G ∈ {0, 0.1, 0.5, 1, 2, 5, 10}.
All other details are as described in the previous paragraph.

To generate Figure 3g we followed the same procedure as for Figure 3e, but the quality
of each pixel is given by a model with explicit payoffs (Equation 22 in main text). To
compute the probability that each pixel has a high payoff we use the Bayesian model
above (so P (xhigh) in Eq. 22 is equal to P (good) in Eq. S13). Adverse conditions now
mean a low value of rlow, so we keep g = 0.05 and rhigh = 1 fixed, and we change
rlow ∈ {0, 0.001, 0.01, 0.1, 0.2, 0.4, 0.8}.

To reproduce the experimental data in Figure 4a, we adjusted the model parameters to
mimic the experimental conditions [2]. The experiments were performed in a 100x100x10
cm tank, and the experimenters considered that two fish belonged to the same group
when they were closer than 16 cm. Assuming a scale of 1 pixel/cm, we simulated
10 individuals in a closed 2D space of 100x100 pixels, and set rinfluence = 16 pixels.
When performing the analysis, we consdered that two fish belonged to the same group
when they were within 16 pixels. Then wekov searched parameter space manually and
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non-systematically, finding a good fit for amax = 1, vmax = 12, rview = 30, s = 10,
tprediction = 0, and G as in Figure 4a.
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