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 2 

Abstract 1 

Gaining insights into the regulatory mechanisms that underlie the transcriptional variation observed 2 

between individual cells necessitates the development of methods that measure chromatin 3 

organization in single cells. Here I adapted Nucleosome Occupancy and Methylome-sequencing 4 

(NOMe-seq) to measure chromatin accessibility and endogenous DNA methylation in single cells 5 

(scNOMe-seq). scNOMe-seq recovered characteristic accessibility and DNA methylation patterns 6 

at DNase hypersensitive sites (DHSs). An advantage of scNOMe-seq is that sequencing reads are 7 

sampled independently of the accessibility measurement. scNOMe-seq therefore controlled for 8 

fragment loss, which enabled direct estimation of the fraction of accessible DHSs within individual 9 

cells. In addition, scNOMe-seq provided high resolution of chromatin accessibility within 10 

individual loci which was exploited to detect footprints of CTCF binding events and to estimate the 11 

average nucleosome phasing distances in single cells. scNOMe-seq is therefore well-suited to 12 

characterize the chromatin organization of single cells in heterogeneous cellular mixtures. 13 
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 3 

Introduction 1 

Extensive transcriptional variation between individual cells has been observed using single cell 2 

RNA-seq. These data facilitate identification of functional subpopulations in seemingly 3 

homogeneous cell populations (Shalek et al. 2014), or characterization of the cellular composition 4 

of complex tissues (Jaitin et al. 2014; Treutlein et al. 2014; Macosko et al. 2015). To gain 5 

mechanistic insights into regulatory features that underlie cellular heterogeneity it is essential to 6 

measure chromatin organization in individual cells. A number of methods that map chromatin 7 

organization in populations of cells have been adapted for single cells, including ATAC-seq 8 

(Cusanovich et al. 2015; Buenrostro et al. 2015b), DNase-seq (Jin et al. 2015), methylome 9 

sequencing (Smallwood et al. 2014; Farlik et al. 2015), and ChIP-seq (Rotem et al. 2015). 10 

Interpretation of these data in single cells is complicated because of the near binary and extremely 11 

sparse signal (Cusanovich et al. 2015; Buenrostro et al. 2015b; Maurano and Stamatoyannopoulos 12 

2015). Nucleosome Occupancy and Methylome-sequencing (NOMe-seq) (Kelly et al. 2012) 13 

employs the GpC methyltransferase (MTase) from M.CviPI  to probe chromatin accessibility (Kelly 14 

et al. 2012; Kilgore et al. 2007). The GpC MTase methylates cytosines in GpC dinucleotides in 15 

non-nucleosomal DNA in vitro. Combined with high-throughput bisulfite sequencing this approach 16 

has been used to characterize nucleosome positioning and endogenous methylation in human cell 17 

lines (Kelly et al. 2012; Taberlay et al. 2014) and in selected promoters of single yeast cells (Small 18 

et al. 2014). NOMe-seq data have several unique features that are advantageous considering the 19 

challenges associated with single cell measurements (Fig. 1 a). First, NOMe-seq simultaneously 20 

measures chromatin accessibility (through GpC methylation) and endogenous CpG methylation. 21 

Chromatin accessibility indicates whether a putative regulatory region might be utilized in a given 22 

cell (ENCODE Project ConsortiumThe ENCODE Project Consortium 2012), while endogenous 23 

DNA methylation in regulatory regions has been connected to a variety of regulatory processes 24 

often associated with repression (Schübeler 2015). The ability to combine complementary assays 25 

within single cells is essential for a comprehensive genomic characterization of individual cells 26 
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 4 

since each cell represents a unique biological sample which is almost inevitably destroyed in the 1 

process of the measurement. Second, each sequenced read might contain several GpCs which 2 

independently report the accessibility status along the length of that read. NOMe-seq therefore 3 

captures additional information compared to purely count-based methods, such as ATAC-seq and 4 

DNase-seq, which increases the confidence associated with the measurements and allows detection 5 

of footprints of individual transcription factor (TF) binding events in single cells. Third, the DNA is 6 

recovered and sequenced independently of its methylation status, which is a pre-requisite to 7 

distinguish between true negatives (i.e. closed chromatin) and false negatives (i.e. loss of DNA) 8 

when assessing accessibility at specified locations in single cells. This is especially important in 9 

single cells where allelic drop-out is pervasive. In single cells, NOMe-seq can therefore measure the 10 

fraction of accessible regions among a set of covered, pre-defined genomic locations. In this proof-11 

of-principle study, I showed that NOMe-seq, which previously had only been performed on bulk 12 

samples (Kelly et al. 2012; Taberlay et al. 2014), can be performed on single cells. In addition to 13 

endogenous methylation at CpG dinucleotides, single cell NOMe-seq (scNOMe-seq) measured 14 

chromatin accessibility at DHSs and TF binding sites in individual cells, and detected footprints of 15 

CTCF binding at individual loci. Finally, the average phasing distance between nucleosomes within 16 

individual cells can also be estimated from scNOMe-seq data. 17 

 18 

Results 19 

To adapt the NOMe-seq protocol (Kelly et al. 2012; Miranda et al. 2010) to single cells, individual 20 

nuclei were first incubated with GpC MTase and then sorted into wells of a 96-well plate using 21 

fluorescence-activated cell sorting (FACS) (Fig. 1b and Figure 1 – figure supplement 1). DNA 22 

from isolated nuclei was subjected to bisulfite conversion and sequencing libraries were prepared 23 

using a commercial kit for amplification of low amounts of bisulfite-converted DNA (Methods). To 24 

assess the feasibility and performance of NOMe-seq in single cells, I used the well-characterized 25 
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 5 

cell lines GM12878 and K562. The scNOMe-seq datasets in this study represent 19 individual 1 

GM12878 cells and 11 individual K562 cells. The set of GM12878 cells included seven control 2 

cells that were not treated with GpC MTase (Figure 1– figure supplement 2). Each GpC MTase-3 

treated library was sequenced to at least 16 M individual reads (Methods). Reads were aligned to 4 

the human genome using the aligner Bismark (Krueger et al. 2012) and, after removal of duplicate 5 

reads, between 2.5M and 5M reads were retained per library (Supplemental Table 1). On average 6 

6,679,864 (2.9%) of all cytosines in GpCs and 1,291,180 (3.6%) of all cytosines in CpGs were 7 

covered per cell (Figure 2– figure supplement 1 and Supplemental Table 1).  8 

 9 

scNOMe-seq accurately detected accessible chromatin at DNaseI hypersensitive sites 10 

To test whether the GpC methylation observed in GpC MTase treated samples (Figure 2– figure 11 

supplement 1) captured known chromatin accessibility patterns, I focused on DNaseI 12 

hypersensitive sites (DHSs) that were previously identified in GM12878 and K562 cell lines 13 

(ENCODE Project ConsortiumThe ENCODE Project Consortium 2012). DHSs were associated 14 

with strong enrichment of GpC methylation, both in data from pooled and individual GM12878 15 

(Figure 2 a, b, Figure 2– figure supplement 2) and K562 cells (Figure 2– figure supplement 3, 16 

4). Conversely, endogenous CpG methylation decreased around the center of the DHSs in 17 

agreement with previous reports (Stadler et al. 2011; Ziller et al. 2014) (Figure 2 a and Figure 2– 18 

figure supplement 3). These data show that scNOMe-seq detected chromatin accessibility at 19 

DHSs. To assess how many of the DHSs regions were covered in a single cell, I first filtered DHSs 20 

that contained GpC dinucleotides within their primary sequence and thus could be theoretically 21 

detected by NOMe-seq. The frequent occurrence of GpC di-nucleotides renders the majority (> 22 

85%) of DHSs detectable by NOMe-seq (Figure 2– figure supplement 5, 6). Of the theoretically 23 

detectable DHSs, 10.6% (20388/191566) and 17.3% (33182/191598) had 1 or more GpCs covered 24 

and, using a more stringent criterion, 5.2% (9083/174896) and 9.5% (16608/174828) were covered 25 
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 6 

at 4 or more GpCs in individual GM12878 cells and K562 cells, respectively (Fig. 2 c). Chromatin 1 

accessibility signal can vary along the length of a given DHSs due to binding of transcription 2 

factors (Neph et al. 2012) and the specific position of a GpC within a DHS will thus affect its 3 

chance of being methylated. To account for this variability and to obtain more robust estimates of 4 

GpC methylation only DHSs with at least 4 covered GpC were used for the subsequent analyses and 5 

referred to as ‘covered DHSs’.  6 

In single cells, the average GpC methylation at covered DHSs was strongly correlated with the 7 

observed DNaseI accessibility at these sites in bulk populations (Fig. 2 d, Figure 2 –figure 8 

supplement 7, 8). The opposite trend was observed for endogenous CpG methylation which was 9 

lowest for DHSs with the highest DNaseI accessibility (Figure 2 –figure supplement 7). The 10 

correlation between GpC methylation and DNaseI accessibility was lower for scNOMe-seq data 11 

compared to bulk NOMe-seq data in the same cell line (Figure 2 –figure supplement 8). At the 12 

level of individual sites the distribution of GpC methylation suggested that around 50% of the 13 

covered DHS showed less than 25% GpC methylation in individual cells (Figure 2 –figure 14 

supplement 9). To estimate the proportion of covered DHSs that were concurrently accessible in a 15 

single cell I applied a fixed threshold of 40% GpC methylation above which sites were considered 16 

accessible (Methods). At this GpC methylation threshold 32-44% and 26-37% of all covered DHSs 17 

were determined to be accessible in single GM12878 and K562 cells, respectively. As expected 18 

these results depended to some degree on the cutoffs used for GpC methylation and the number of 19 

required GpCs per DHS. However, even under the most lenient conditions less than 50% of DHSs 20 

were accessible in individual cells (Figure 2 –figure supplement 10). Grouping the DHSs based on 21 

DNaseI accessibility in bulk samples, confirmed that the degree of DNaseI accessibility related 22 

closely to the frequency of DHS accessibility in single cells (Fig. 2 e). This analysis leveraged the 23 

NOMe-seq-specific property that the DNA sequence is recovered independently of its accessibility 24 

status. It provided direct evidence for the notion that the degree of DNaseI accessibility observed in 25 

DNase-seq of bulk samples reflects the frequency with which a region is accessible in individual 26 
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 7 

cells. Consequently, chromatin accessibility between cells is less variable at regions with high 1 

DNaseI accessibility in bulk samples (Figure 2 –figure supplement 11). Correspondingly, 2 

correlation of GpC methylation between individual cells is stronger at DHS loci compared to 3 

randomized locations (Figure 2 –figure supplement 12). 4 

scNOMe-seq captured characteristic chromatin organization associated with transcription 5 

Chromatin accessibility and endogenous methylation show characteristic patterns at gene promoters 6 

and within gene bodies (Schübeler 2015; ENCODE Project ConsortiumThe ENCODE Project 7 

Consortium 2012). To test whether these features can be observed in scNOMe-seq data, I first 8 

plotted the average GpC and CpG methylation around transcription start sites (TSS). The average 9 

GpC methylation showed the expected increase of chromatin accessibility directly upstream of the 10 

TSS (Fig. 3 a, Figure 3 – figure supplement 1). In contrast, and as expected, the endogenous CpG 11 

methylation decreased towards the TSS (Fig. 3 b). To visualize the distribution of CpG methylation 12 

throughout entire gene loci, I plotted the aggregated CpG methylation across regions containing the 13 

entire gene body and 50 kb upstream and 50 kb downstream of each gene (Fig. 3 c, Figure 3 –14 

figure supplement 1). Endogenous methylation was specifically reduced at the narrow promoter 15 

region and gradually increased throughout the gene body. Downstream of the transcription end site 16 

(TES) the average level CpG methylation level fell back to the non-genic background level. 17 

Endogenous CpG methylation is typically increased within highly expressed genes (Schübeler 18 

2015). This trend was clearly apparent in the single cell data where gene body methylation was 19 

highest in highly expressed genes (Fig. 3 d, Figure 3 –figure supplement 1). Correspondingly, in 20 

promoter regions (-500bp to +150bp) chromatin accessibility (GpC methylation) increased with the 21 

transcript level of the adjacent gene (Fig. 3 e, Figure 3 –figure supplement 2). In contrast to 22 

chromatin accessibility, endogenous methylation was lowest in promoters of genes with high 23 

transcript levels (Fig. 3 f). These data show that scNOMe-seq recapitulated known characteristics of 24 

chromatin accessibility and endogenous methylation at gene promoters and within gene bodies. 25 
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 8 

GpC methylation and endogenous CpG methylation data separated individual GM12878 and 1 

K562 cells 2 

A potentially powerful application for single cell genomic approaches is the label-free classification 3 

of single cells from heterogeneous mixtures of cells solely based on the measured feature 4 

(Cusanovich et al. 2015; Buenrostro et al. 2015a; Jaitin et al. 2014; Macosko et al. 2015). Of note, 5 

using a union set of DHSs from both cell types was sufficient to classify individual GM12878 and 6 

K562 cells into their respective cell types based on GpC methylation (Fig. 4 a, Figure 4 –figure 7 

supplement 1). While this assessment might have been influenced in part by the separate 8 

processing of the cell types, both cell types showed preferential enrichment of GpC methylation at 9 

their respective DHSs compared to DHSs identified in the other cell type (Fig. 4 b). Similar to GpC 10 

methylation, endogenous CpG methylation at multiple sets of genomic features was sufficient to 11 

separate the cells into the respective cell types (Fig. 4 c, Figure 4 –figure supplement 1).   12 

Detection of footprints of CTCF binding at individual loci in single cells 13 

To examine in detail whether scNOMe-seq captures features of chromatin accessibility that are 14 

specifically associated with transcription factor binding, I analyzed scNOMe-seq data at 15 

transcription factor binding sites (TFBS). The average GpC methylation around CTCF ChIP-seq 16 

peaks (ENCODE Project ConsortiumThe ENCODE Project Consortium 2012) in single cells 17 

recapitulated the accessibility previously observed in NOMe-seq bulk samples (Kelly et al. 2012): 18 

Accessibility increased strongly towards the CTCF binding sites while the location of the CTCF 19 

motif at the center of the region showed low accessibility suggesting that CTCF binding protected 20 

from GpC MTase activity and thus creating a footprint of a CTCF binding event, both when 21 

averaged across data from all single cells (Fig. 5 a and Figure 5 – figure supplement 1) and in 22 

individual cells (Fig. 5 b and Figure 5 – figure supplement 2). In contrast, endogenous CpG 23 

methylation was generally depleted around the center of CTCF binding sites (Fig. 5 a and Figure 5 24 

– figure supplement 1). Similar accessibility profiles, albeit less pronounced compared to CTCF, 25 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2017. ; https://doi.org/10.1101/061739doi: bioRxiv preprint 

https://doi.org/10.1101/061739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

were observed for additional transcription factors, for example EBF1 and PU.1 (Figure 5 – figure 1 

supplement 3). These analyses provided evidence that, in aggregate, scNOMe-seq detected 2 

chromatin accessibility characteristic of CTCF binding in single cells. To test whether scNOME-seq 3 

data detected CTCF footprints at individual motifs loci, GpC methylation at motifs within CTCF 4 

ChIP-seq peaks was compared to the GpC methylation level in the regions flanking each motif (Fig. 5 

5 c). On average, two-thirds of CTCF motif instances within these accessible regions showed no 6 

GpC methylation, suggesting that CTCF binding prevented the GpC MTase from methylating the 7 

cytosines within the binding motif and thus creating a footprint (Fig. 5 d and f). Of note, motifs 8 

associated with a footprint had significantly higher scores than motifs without a footprint suggesting 9 

that the motif score is a strong determinant of CTCF binding within these accessible regions (Fig. 5 10 

e, g and Figure 5 – figure supplement 4). Of note, the CTCF footprints could be observed at 11 

individual loci within individual cells and were shared across cells (Figure 5 h and Figure 5 – 12 

figure supplement 5).  13 

 14 

Estimating nucleosome phasing in single cells 15 

The pattern of GpC methylation adjacent to CTCF sites suggested that scNOMe-seq also detected 16 

the well-positioned nucleosomes flanking these regions (Fig. 5 a) (Kelly et al. 2012). This 17 

observation was confirmed by the oscillatory distribution of the average GpC and CpG methylation 18 

around locations of well-positioned nucleosomes identified from MNase-seq data (ENCODE 19 

Project ConsortiumThe ENCODE Project Consortium 2012)  (Fig. 6 a). While nucleosome core 20 

particles are invariably associated with DNA fragments of  147 bp, nucleosomes are separated by 21 

linker DNA of varying lengths, resulting in different packaging densities between cell types and 22 

between genomic regions within a cell (Valouev et al. 2011; Schones et al. 2008). To determine 23 

whether scNOMe-seq data can be used to measure the average linker length, average distances 24 

between nucleosome midpoints in single cells (phasing distances) were estimated by correlating the 25 
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methylation status between pairs of cytosines in GpC di-nucleotides at offset distances from 3 bp to 1 

400 bp (Fig. 6 c, d and Figure 6 – figure supplement 1, 2). The estimated phases fell between 187 2 

bp and 196 bp (mean = 196.7 bp) in GM12878 cells, and between 188 bp and 200 bp (mean = 194.2 3 

bp ) in K562 cells (Fig. 6 e). These estimates are in general agreement with phase estimates derived 4 

from MNase-seq data in human cells (Valouev et al. 2011). In addition, estimated phasing distances 5 

varied within individual cells depending on the chromatin context, similar to observation from bulk 6 

MNase-seq data (Valouev et al. 2011) (Fig. 6 f). 7 

Discussion 8 

In this study, I demonstrated that scNOMe-seq simultaneously measures chromatin accessibility by 9 

GpC methylation as well as endogenous CpG and DNA methylation in single cells. scNOMe-seq 10 

detected chromatin accessibility at DHSs and TFBS and, in aggregate, these data recapitulated 11 

NOMe-seq data obtained from bulk cells (Kelly et al. 2012). scNOMe-seq data also detected 12 

footprints of CTCF binding, and was used to estimate nucleosome phasing distances. 13 

Similar to other single cell genomic methods, scNOMe-seq relies on annotations obtained from bulk 14 

measurements ((Cusanovich et al. 2015; Buenrostro et al. 2015b; Smallwood et al. 2014; Farlik et 15 

al. 2015). A limitation of single cell genomic methods is their sparse coverage which leads to high 16 

allelic drop-out. For methods in which the signal is based on counting the sequenced fragments, 17 

such as ATAC-seq and DNase-seq, this poses a challenge since true negatives at a specific location 18 

cannot be distinguished from false negatives that are a consequence of read loss. Compared to these 19 

methods, scNOMe-seq has the unique advantage, that reads are recovered independently of the 20 

signal and allelic drop-out events therefore can be distinguished from closed or inaccessible 21 

chromatin configurations. The frequency of accessible sites in the population of DHSs can be 22 

estimated. Using this approach only about 30-50 % of DHSs detected in the population were found 23 

accessible in a single cell, depending on the thresholds chosen to call a site accessible. While this 24 

assessment would have been possible using bulk NOMe-seq data, scNOMe-seq offers important 25 
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possibilities for future applications. For example, to compare accessibility across multiple loci 1 

within a single cell and the use of heterogeneous cellular mixtures as input material. 2 

As expected, the chance of a covered DHS to being open or closed is not equally distributed across 3 

all DHSs from the population. Instead, DHSs with strong DNaseI accessibility showed a higher 4 

frequency of accessibility in single cells compared to those sites with low DNaseI accessibility in 5 

the population (Fig. 2 e) suggesting that the peak height is indeed directly related to the frequency 6 

with which a site is accessible in individual cells. In agreement with this observation a large 7 

proportion of variability observed between cells was attributable to DHSs with low DNaseI 8 

accessibility in bulk samples (Figure2 – figure supplement 11). In principle, variation between 9 

cells could be due to differential GpC MTase enzyme activity. However, the genome-wide levels of 10 

GpC methylation reached comparable levels in all cells and the variability between cells was not 11 

equally distributed across all DHS (Fig. 2 d, Figure 2 –figure supplement 1) 12 

Measuring similarity of chromatin accessibility between cells was sufficient to group GM12878 and 13 

K562 cells based on their cell type of origin (Fig. 3 a). In this particular case, the separation is 14 

confounded with experimental batches. However, higher average GpC methylation in DHSs for the 15 

respective cell type compared to the DHSs of the other cell type indicated that scNOMe-seq can 16 

differentiate the two cell types (Supplemental Fig. 14). Similarly, endogenous CpG methylation at 17 

different genomic features (DHS, 10 kb windows, gene bodies) was sufficient to distinguish 18 

between the two cell types. This approach should be extendable to scNOMe-seq data from samples 19 

containing mixtures of cell types. 20 

scNOMe-seq measures chromatin accessibility at GpC di-nucleotides along the entire length of a 21 

sequencing read. Since most features that bind DNA are smaller than the length of 100 bp (200 bp 22 

within 200-50bp regions in the case of paired end reads), the regions covered by sequence-specific 23 

transcription factors and nucleosomes can be captured within a single fragment. This allows one to 24 

directly detect binding of TFs provided that their sequencing motif contains at least one GpC di-25 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2017. ; https://doi.org/10.1101/061739doi: bioRxiv preprint 

https://doi.org/10.1101/061739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

nucleotide. I demonstrated the feasibility of this approach using CTCF binding sites. Of note, most 1 

motifs within regions of CTCF ChIP-seq peaks were protected from GpC methylation (‘footprint’) 2 

(Fig. 5). In agreement with an inferred binding event as the cause for this protection, scores for 3 

CTCF motifs that were associated with a footprint were significantly higher than for motifs without 4 

a footprint. Depending on the motif specificity of a given TF and provided that their motifs contain 5 

a GpC dinucleotide, similar measurements should be feasible for many TFs and could be used to 6 

infer the activity of a range of transcription factors in single cells or to measure combinatorial 7 

binding of two or more TFs.  8 

Estimation of the average nucleosome phasing distances allows one to study chromatin compaction 9 

and complements the measurements of chromatin accessibility at regulatory regions and DNA 10 

methylation. The estimates from individual cells fit very well with measurements made from 11 

MNase-seq data in bulk samples(Valouev et al. 2011). It remains to be established whether the 12 

variation in phasing distances between individual cells is of biological or technical nature (Fig. 6 e).  13 

These proof-of-principle experiments have been performed using commercial kits for bisulfite 14 

conversion and library amplification, additional optimization or alternative amplification 15 

approaches (Smallwood et al. 2014)are likely to increase the yield substantially. Compared to other 16 

single cell methods, for example ATAC-seq, scNOMe-seq does not enrich for accessible chromatin 17 

regions and thus requires significantly more sequencing coverage. Ultimately, it should be possible 18 

to integrate the GpC MTase treatment into microfluidic workflows and combine this method with 19 

scRNA-seq, similar to recently published methods that combine scRNA-seq and methylome-20 

sequencing (Angermueller et al. 2016). This study was primarily designed to test the feasibility of 21 

NOMe-seq in single cells and only a small number of nuclei where sequenced for each cell line. As 22 

a consequence, this set up could not be used to study cell-to-cell variation in detail. scNOMe-seq 23 

will be particularly useful for studies that aim to simultaneously measure chromatin accessibility 24 

and DNA methylation. This approach will be especially powerful for the characterization of 25 
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chromatin organization in single cells from heterogeneous mixtures or complex tissues, for example 1 

to samples of brain tissues or primary cancer cells.  2 

Methods 3 

Cell culture, nuclei isolation, and GpC methylase treatment 4 

GM12878 and K562 cells were obtained from Coriell and ATCC, respectively. GM12878 were 5 

grown in RPMI medium 1640 (Gibco), supplemented with 2mM L-Glutamine (Gibco), and 6 

Penicilin and Streptavidin (Pen Strep, Gibco), and 15% fetal bovine serum (FBS, Gibco). K562 7 

were grown in RPMI medium 1640 of the same composition but with 10% FBS. Cells were grown 8 

at 37 C and in 5% CO2. NOMe-Seq procedure was performed based on protocols for CpG 9 

methyltransferase SSsi described in (Miranda et al. 2010) and the GpC methyltransferase from 10 

M.CviPI (Kelly et al. 2012), with some modification. Between 2x10^6 and 5x10^6 cells were 11 

harvested by centrifuging the cell suspension for 5 min at 500x g. Cells were washed once with 1x 12 

PBS, re-suspended in 1 ml lysis buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2) and 13 

incubated for 10 min on ice. IGEPAL CA-630 (Sigma) was added to a final concentration of 14 

0.025% and the cell suspension was transferred to a 2 ml Dounce homogenizer. Nuclei were 15 

released by 15 strokes with the pestle. Success of lysis was confirmed by inspection under a light 16 

microscope. Nuclei were collected by centrifuging the cell suspension for 5 min at 800x g at 4 C 17 

and washed twice with cold lysis buffer without detergent. One million nuclei were resupended in 18 

reaction buffer to yield a suspension with a final concentration of 1x GpC MTase buffer (NEB), 19 

0.32 mM S-Adenosylmethionine (SAM) (NEB), and 50 ul of GpC methyltransferase (4U/ul)) from 20 

M.CviPI (NEB). The final reaction volume was 150 ul. The suspension was carefully mixed before 21 

incubating for 8 min at 37 C after which another 25 ul of enzyme and 0.7 ul of 32 mM SAM were 22 

added for an additional 8 min incubation at 37C. To avoid disruption of nuclei incubation was 23 

stopped by adding 750 ul of 1x PBS and collecting the nuclei at 800 xg. Supernatant was removed 24 

and nuclei were re-suspended in 500ul 1x PBS containing Hoechst 33342 DNA dye (NucBlue Live 25 
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reagent, Hoechst). Nuclei were kept on ice until sorting. For preparation of bulk libraries in 1 

GM21878 cell, nuclei preparation and GpC MTase treatment was performed as described above. 2 

Nuclei were lysed immediately after incubation and DNA was isolated using Phenol/Chloroform 3 

purification.  4 

Nuclei isolation using Fluorescence activated cell sorting (FACS), lysis, and DNA bisulfite 5 

conversion 6 

Nuclei were sorted at the Flow Cytometry core at the University of Chicago on a BD FACSAria or 7 

BD FACSAria Fusio equipped with a 96-well-plate holder. To obtain individual and intact nuclei 8 

gates were set on forward and side scatter to exclude aggregates and debris. DAPI/PacBlue channel 9 

or Violet 450/500 channel were usedto excited the Hoechst 33342 DNA dye and to gate on cells 10 

with DNA content corresponding to cells in G1 phase of the cell cycle in order to maintain similar 11 

DNA content per cell and to remove potential heterogeneity attributable to cell cycle. Cells were 12 

sorted into individual wells pre-filled with 19 ul of 1x M-Digestion buffer (EZ DNA Methylation 13 

Direct Kit, Zymo Research) containing 1 mg/ml Proteinase K. Following collection, the plates were 14 

briefly spun to collect droplets that might formed during handling. Nuclei were lysed by incubating 15 

the samples at 50 C for 20 min in a PCR cycler. DNA was subjected to bisulfite conversion by 16 

adding 130 ul of freshly prepared CT Conversion reagent (EZ DNA Methylation Direct Kit, Zymo) 17 

to the lysed nuclei. Conversion was performed by denaturing the DNA at 98 C for 8 min followed 18 

by 3.5 hrs incubation at 65 C. DNA isolation was performed using the EZ DNA Methylation Direct 19 

Kit (Zymo Research) following the manufacturer’s instruction with the modification that the DNA 20 

was eluted in only 8 ul of elution buffer. 21 

Library preparation and sequencing 22 

Libraries were prepared using the Pico Methyl-seq Library prep Kit (Zymo Research) following the 23 

manufacturer’s instruction for low input samples. Specifically, the random primers were diluted 1:2 24 

before the initial pre-amplification step and the first amplification was extended to a total of 10 25 

amplification cycles. Libraries were amplified with barcoded primers allowing for multiplexing. 26 
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The sequences can be found in Supplemental Table 2, primers were ordered from IDT. The 1 

purification of amplified libraries was performed using Agencourt AMPureXP beads (Beckmann 2 

Coulter), using a 1:1 ratio of beads and libraries. Concentration and size distribution of the final 3 

libraries was assessed on an Bioanalyzer (Agilent). Libraries with average fragment size above 150 4 

bp were pooled and sequenced. Libraries were sequenced on Illumina HiSeq 2500 in rapid mode 5 

(K562 cells) and HiSeq4000 (GM12878 cells). 6 

Read processing and alignment 7 

Sequences were obtained using 100 bp paired-end mode. For processing and alignment each read 8 

from a read pair was treated independently as this slightly improved the mapping efficiency. Before 9 

alignment, read sequences in fastq format were assessed for quality using fastqc 10 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed to remove low 11 

quality bases and 6 bp were clipped from the 5 prime end of each read to avoid mismatches 12 

introduced by amplification. In the case of GM12878 cells 6 bp were clipped from either end of the 13 

read. Only reads that remained longer than 20 bp were kept for further analyses. These processing 14 

steps were performed using trim_galore version 0.4.0 15 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the following settings: 16 

trim_galore --quality 30 --phred33 --illumina --stringency 1 -e 0.1 --clip_R1 6 --gzip --length 20 --17 

output_dir outdir Sample.fastq.gz. The trimmed fastq files were aligned using the bisulfite aligner 18 

bismarck version 0.15.0 (Krueger et al. 2012) which calls bowtie2 (Langmead and Salzberg 2012) 19 

internally. Reads were aligned to the human genome (genome assembly hg38). Reads were aligned 20 

in single read mode using default settings. The amplification protocol used to generate the 21 

scNOMe-seq libraries yielded non-directional libraries and alignment was performed with the 22 

option —non_directional (bismark --fastq --prefix SamplePrefix --output_dir output_dir --23 

non_directional --phred33-quals --score_min L,0,-0.2 --bowtie2 genome_file trimmed.fastq.gz). 24 

Some libraries contained small amounts of DNA from C. elegans as spike-ins, however these were 25 

not used during the analysis. Duplicates were removed using samtools version 0.1.19 (Li et al. 26 
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2009) on sorted output files from bismark (samtools rmdup SamplePrefix.sorted.bam 1 

SampleAligned_rmdup.bam). 2 

Extraction of GpC and CpG methylation status 3 

Coverage and methylation status of all cytosines was extracted using 4 

bismark_methylation_extractor (Krueger et al. 2012) (bismark_methylation_extractor -s --ignore 6 5 

--output outdir --cytosine_report --CX --genome_folder path_to_genome_data 6 

SampleAligned_rmdup.bam). The resulting coverage files were used to extract the methylation 7 

status of cytosines specifically in GpC and CpG di-nucleotides using the coverage2cytosine script 8 

which is part of Bismark (Krueger et al. 2012). The resulting coverage files contained cytosines in 9 

GCG context which are ambiguous given that they represent a cytosine both in GpC and CpG di-10 

nucleotides. Coordinates of these ambiguous positions were identified using oligoMatch (Kent et al. 11 

2002) and these positions were removed from the coverage files. The number of unconverted 12 

cytosines (estimated based on apparent methylation rates in non-GpC and non-CpG context) was 13 

low in all libraries (<1%). However, it was noted that unconverted cytosines were not randomly 14 

distributed but associated with entirely unconverted reads. Regions covered by a read with more 15 

than 3 unconverted cytosines in non-CpG and non-GpC context were removed from further analysis 16 

as well. The genotype was not taken into account as its effect on calling the methylation status 17 

incorrectly was deemed negligible for the analyses performed here. 18 

Analysis of GpC and CpG methylation at genomic features in single cells 19 

ScNOMe-seq data were compared to a number of genomic features in GM12878 and K562 cells 20 

collected by Encode (ENCODE Project ConsortiumThe ENCODE Project Consortium 2012) which 21 

were downloaded through the UCSC data repository (Karolchik et al. 2014). These datasets are 22 

listed in Supplemental Table 3. While the scNOMe-seq data were aligned against human genome 23 

assembly hg38, some of the datasets were only available on genome assembly hg19 and the 24 

coordinates of these datasets were lifted from hg19 to hg38 using liftOver (Kent et al. 2002) 25 
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(default re-mapping ratio 1). Nucleosome positions based on MNase-seq data in GM12878 were 1 

determined with DANPOS version 2.2.2 (Chen et al. 2013) using default settings. Resulting 2 

intervals were lifted to hg38. After removing summit locations with occupancy values above 300, 3 

the top 5% (713361) of nucleosome positions based on their summit occupancy value were used. 4 

GpC and CpG methylation density across intervals encompassing DNase hypersensitivity sites 5 

(DHSs), transcription factor binding sites (TFBS), and well positioned nucleosomes was calculated 6 

across the 2 kb regions centered on the middle of these regions using the scoreMatrixBin function in 7 

the genomation package (Akalin et al. 2015) in R (R Core Team 2015). Data were aggregated in 5 8 

bp bins for each region and across all regions covered in a single cell. The average methylation 9 

level in pre-defined intervals (DHSs, TFBS) was determined by computing the average GpC or 10 

CpG methylation for each interval together with the number of GpC/CpGs covered in this interval 11 

using the map function in bedtools (Quinlan and Hall 2010). If no other cut-offs were given, DHSs 12 

were considered ‘covered’ and used in analyses when at least 4 GpCs occurring within the 13 

predefined interval were covered by sequencing data in an individual cell. Because the frequency of 14 

CpG di-nucleotides is significantly lower, only 2 CpGs were required in order for a DHSs to be 15 

considered covered for analyses that focused on endogenous DNA methylation. To count the 16 

number of cytosines within the primary sequence of a given DHSs only cytosines on the forward 17 

strand were counted. While each GpC dinucleotide can be measured on both strands and would 18 

therefore yield a count of two cytosines the data are sparse and each location will get at most a 19 

single read. This approach should therefore give a more conservative estimate of the possible GpC 20 

coverage. For analyses that used the scores of the peak regions, the peak scores reported the datasets 21 

from bulk samples were used (ENCODE Project ConsortiumThe ENCODE Project Consortium 22 

2012). 23 

For analyses that were centered on transcription factor binding motifs the PWMs were obtained 24 

from the JASPAR database (2014) (Tan) for the TFs CTCF (MA0139), EBF1 (MA0154), and 25 

PU.1(MA0080). Genome-wide scanning for locations of sequence matches to the PWMs was 26 
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performed using matchPWM in the Biotstring package (Pages et al. 2016) in R with a threshold of 1 

75% based on the human genome assembly hg38. 2 

All plots were prepared using ggplot2 (Wickham 2009), with the exception of heatmaps displaying 3 

the average methylation density around genomic features in individual cells which were prepared 4 

using heatmap.2 in gplots (Warnes et al. 2016). 5 

Comparison of chromatin accessibility between cells 6 

Similarity in accessible chromatin between cells was calculated based on Jaccard similarity. Jaccard 7 

similarity index (eq. 1) was calculated between pairs of samples by first obtaining the intersection 8 

of DHSs covered in both samples of a pair with more than 4 GpCs. Each feature was annotated as 9 

open or closed, depending on the methylation status (>= 40% methylation) and only pairs in which 10 

at least one of the members was open were considered for this comparison. 11 

!"#(%, ') = (*∩,)
(*∪,)      (1) 12 

The similarity between samples from GM12878 and K562 cells was calculated based on the union 13 

set of DHSs from both cell lines. The similarity indexes of all pairwise comparisons were used to 14 

compute the distances between each cell. The resulting clustered data were displayed as a heat map. 15 

CTCF footprints in single cells 16 

CTCF footprints were measured by comparing the GpC methylation level in each motif to the 17 

methylation level in the 50bp flanking regions immediately upstream and downstream of the motif. 18 

Overlapping motifs were merged into a single interval before determining the coordinates for 19 

flanking regions. To ensure sufficient GpC coverage for each interval the resulting three adjacent 20 

intervals for each locus were required to contain at least one covered GpC each, and 4 covered 21 

GpCs in total. This analysis only included regions that were accessible based on the methylation 22 

status of the flanking regions (at least 50%). A CTCF footprint ’score' was determined by simply 23 

subtracting the average GpC methylation of the flanking regions from the GpC methylation of the 24 

motif.  25 
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 scNOMe-seq data were displayed in the UCSC genome browser (Kent et al. 2002) by converting 1 

the GpC methylation coverage file into a bed file and using the methylation value as score. To 2 

facilitated the visualization of the data in the context of previous Encode data the methylation files 3 

were lifted to hg19. The tracks shown together with scNOMe-seq data are Open Chromatin by 4 

DNaseI HS from ENCODE/OpenChrom (Duke University) for DNaseI hypersensitivity, 5 

Nucleosome Signal from ENCODE/Stanford/BYU, and CTCF ChIP-seq signal from Broad Histone 6 

Modification by ChIP-seq from ENCODE/Broad Institute. All data are from GM12878 cells.  7 

Estimation of nucleosome phasing 8 

Nucleosome phasing estimates were obtained by first calculating the correlation coefficients for the 9 

methylation status of pairs of GpCs ad different offset distances. These values were computed using 10 

a custom python script. Essentially, pairs of sequenced cytosines in GpC di-nucleotides were 11 

collected for each offset distance from 3bp to 400bp cytosine. At each offset distance the correlation 12 

of the methylation status was calculated across all pairs. Correlation coefficients were plotted 13 

against the offset distances revealing periodic changes in the correlation coefficient. The 14 

smoothened data were used to estimate the phasing distances by obtaining the offset distance 15 

corresponding to the local maximum found between 100 bp and 300 bp. To determine phase lengths 16 

of nucleosomes in different chromatin contexts the GpC coverage files were filtered for positions 17 

falling into categories defined by chromHMM (ENCODE Project ConsortiumThe ENCODE 18 

Project Consortium 2012; Ernst et al. 2011) before obtaining the correlation coefficients. 19 

Data access 20 

Raw data and methylation coverage files are available at GEO (https://www.ncbi.nlm.nih.gov/geo/) 21 

under the accession number GSE83882. Reviewers might use this link: 22 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=glotcwqqjbqlvef&acc=GSE83882 23 
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Figure Legends 

Figure 1: scNOMe-seq detected DNase hypersensitive sites in single cells. a) Schematic of GpC 

methyltransferase-based mapping of chromatin accessibility and simultaneous detection of 

endogenous DNA methylation. b) Schematic of scNOMe-seq procedure introduced in this study.  

 

Figure 2: scNOMe-seq data reveal how accessibility in single cells underlies observed DNaseI 

hypersensitivity in a population of cells. a) Average GpC methylation level (blue) and CpG 

methylation level (orange) at DHSs in GM12878 cells. Regions are centered on the middle of 

DNase-seq peak locations. Shown is the average methylation across a 2 kb window of 12 

GM12878 cells. b) Heatmap displaying the average GpC methylation level across the same regions 

as in a). Each row corresponds to an individual GM12878 cell. Cells were grouped by similarity. 

c) Proportion of DHSs covered by scNOMe-seq sequencing reads in each cell. The proportion 

displayed corresponds to the fraction of DHSs covered by at least 1 or 4 GpCs in a given cell. Only 

DHSs with at least 1 GpC (red) or 4 GpCs (cyan) within their primary sequence were taken in 

consideration. Error bars represent standard deviation. d) Average GpC methylation at DHSs 

grouped into quartiles based on associated DNase-seq peak scores from lowest to highest scores. 

‘Shuffled’ represents methylation data in genomic regions obtained by random placements of DHS 

peak intervals. Data shown are from GM12878 cells. e) Fraction of accessible sites in individual 

GM12878 cells (red) and K562 cells (cyan). Shown are the means and standard deviation based 

on all cells. f) Scatter plot showing relationship between GpC methylation levels and DHS peaks 

score for each covered DHS. Plot shows data from all individual GM12878 cells. Red trend line 

is shown to visualize the relationship between GpC methylation and endogenous CpG methylation. 

g) Scatter plot showing relationship between CpG methylation levels and DHS peaks score for 

each covered DHS. Plot shows data from all individual GM12878 cells. Red trend line is shown 

to visualize the relationship between CpG methylation and peak scores. h) Plot illustrates the 

relationship between endogenous CpG methylation and GpC methylation at DHS loci. Plot shows 

combined data from all GM12878 cells. Correlation was calculated based on Pearson correlation 

(r = -0.13) i) Average CpG methylation at DHS loci grouped based on GpC scores within single 

cells. Each dot represents the average CpG methylation level for a single cell. 
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Figure 3: Single cell NOMe-seq reveals chromatin features closely linked to gene expression.  

a) Average GpC methylation level at TSS in GM12878 cells. Regions are centered on the TSS 

locations. Shown is the average methylation across a 2 kb window of 12 GM12878 cells. b) Same 

as in a) but displaying the endogenous CpG methylation level. C) Average endogenous CpG 

methylation at gene loci in individual GM12878 cells. Shown is the average methylation across 

gene bodies (represented as meta genes) and 50 kb regions upstream and downstream of each gene. 

Each line represents the aggregated CpG methylation data for a single GM12878 cell (TES: 

transcription end site). d) Boxplot displays average CpG methylation in gene bodies. Genes were 

grouped into quartiles based on their transcript levels in bulk. Dots represent the average CpG 

methylation value for individual cells. e) Boxplot displays average GpC methylation in promoter 

regions (-500 bp to +150 bp). Genes were grouped into quartiles based on their transcript levels in 

bulk. f) Similar to e) but displayed are the levels of endogenous CpG methylation. 

 

Figure 4: single cell GpC and CpG methylation signal is sufficient to group GM12878 and 

K562 cells according to their origin a) Heatmap shows similarity scores (pair-wise Jaccard 

distances) for accessibility between all GM12878 and K562 cells measured on the union set of 

DHSs from GM12878 and K562 cells. Cells were grouped based on unsupervised hierarchical 

clustering. b) Average GpC methylation at the DHSs from GM12878 cells and K562 cells, 

respectively, was calculated for all individual GM12878 and K562 cells. The resulting two values 

for GpC methylation are displayed for each cell. GM12878 and K562 are separable based on these 

data. GM12878 and K562 cells showed different levels of genome-wide GpC methylation. 

Consequently, the average methylation levels at K562 DHSs for both cell types are similar. 

However, for cells from either cell type the methylation levels are higher in the DHSs of the cell 

type of origin than in the DHSs of the other cell type. c) Heatmap shows correlation coefficients 

between all GM12878 and K562 cells for pair-wise comparison of CpG methylation levels. 

Genome was divided into 10 kb bins and only bins with sufficient coverage in both cells were used 

for a given pair (>= 20 covered CpGs). Cells were grouped based on unsupervised hierarchical 

clustering. 
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Figure 5: scNOMe-seq detected characteristic accessibility patterns at CTCF transcription 

factor binding sites and measured CTCF footprints at individual loci a) Average GpC 

methylation level (blue) and CpG methylation level (orange) at CTCF binding sites in GM12878 

cells. Regions are centered on motif locations. Shown is the average methylation across a 2 kb 

window of the pool of 12 GM12878 cells. b) Heatmap displaying the average GpC methylation 

across CTCF binding sites. Each row corresponds to an individual GM12878 cell and rows are 

grouped by similarity. c) Schematic outline the measurement of CTCF footprints in accessible 

regions. M denotes CTCF binding motifs within CTCF ChIP-seq regions and U and D indicate 50 

bp upstream and downstream flanking regions. footprint score was determined by subtracting the 

average GpC methylation in the flanking regions from the GpC methylation at the motif. d) 

Heatmap displays GpC methylation in accessible regions found in a representative GM12878 cell 

(GM_1). Each row represents a single CTCF motif instance within a CTCF ChIP-seq region. 

Average methylation values for the motif and the 50 bp upstream and downstream regions are 

shown separately. Regions are sorted based on the footprint score. Displayed are only regions that 

had sufficient GpC coverage and that were considered accessible based on the methylation status 

of the flanking regions. e) Heatmap reporting the CTCF motif scores for the motif regions in d). 

Regions are sorted in the same order as in d). f) Average number of accessible regions at CTCF 

motifs and the average number of those with a detectable footprint per individual GM12878 cell. 

Error bars reflect standard deviation. g) Average CTCF motif scores in regions with and without 

CTCF footprint for all 12 GM12878 cells. Each line connects the two data points from an 

individual cell h) Combined display of scNOMe-seq data from this study and DNase 

hypersensitivity data, nucleosome occupancy, and CTCF ChIP-seq data from ENCODE. Upper 

panel shows a ~10 kb region containing a CTCF binding site. DNaseI hypersensitivity data and 

nucleosome density show characteristic distribution around CTCF binding sites in GM12878 cells. 

Lower panel shows the GpC methylation data of 5 individual cells that had sequencing coverage 

in this region, 4 of the cells provide GpC data covering the CTCF motif located in the region. 

scNOMe-seq data tracks show methylation status of individual GpCs. Each row corresponds to 

data from a single cell. These data indicate that binding of CTCF is detected in all 4 cells. Data are 

displayed as tracks in the UCSC genome browser (http://genome.ucsc.edu). 

Figure 6: Nucleosome phasing in single cells. a) Average GpC methylation level and b) CpG 

methylation level at well-positioned nucleosomes in GM12878 cells. Regions are centered on 
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midpoints of top 5% of positioned nucleosomes. Shown is the average methylation across a 2 kb 

window of the pool of 12 GM12878 cells. c), d) Correlation coefficients for the comparison in 

methylation status between GpCs separated by different offset distances for GM12878 (c) and 

K562 (d) cells. Each line represents a single cell. Data are smoothened for better visualization. e) 

Distribution of estimated phase lengths for GM12878 and K562 cells. f) Nucleosome phasing in 

GM12878 in genomic regions associated with different chromatin states defined by chromHMM 

(ENCODE). Boxplot represents the distribution of estimated phase lengths from all 12 GM12878 

cells and overlaid points indicate values of each individual cells. 
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