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Abstract 

Background 

Genome-wide association studies (GWAS) are now routinely imputed for untyped SNPs based on various 

powerful statistical algorithms for imputation trained on reference datasets. The use of predicted allele 

count for imputed SNPs as the dosage variable is known to produce valid score test for genetic 

association.  

Methods 

In this paper, we investigate how to best handle imputed SNPs in various modern complex tests for 

genetic association incorporating gene-environment interactions. We focus on case-control association 

studies where inference in an underlying logistic regression model can be performed using alternative 

methods that rely on varying degree on an assumption of gene-environment independence in the 

underlying population.  As increasingly large scale GWAS are being performed through consortia effort 

where it is preferable to share only summary-level information across studies, we also describe simple 

mechanisms for implementing score-tests based on standard meta-analysis of “one-step” maximum-

likelihood estimates across studies.  

Results 

Applications of the methods in simulation studies and a dataset from genome-wide association study of 

lung cancer illustrate ability of the proposed methods to maintain type-I error rates for underlying 

testing procedures.  For analysis of imputed SNPs, similar to typed SNPs, retrospective methods can lead 

to considerable efficiency gain for modeling of gene-environment interactions under the assumption of 

gene-environment independence. 

Conclusions   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2016. ; https://doi.org/10.1101/062075doi: bioRxiv preprint 

https://doi.org/10.1101/062075
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Proposed methods allow valid analysis of imputed SNPs in case-control studies of gene-environment 

interaction using alternative strategies that had been earlier available only for genotyped SNPs.   

  

Key words:  one-step MLE, meta-analysis, prospective likelihood, empirical-Bayes, gene-

environment independence, retrospective likelihood 

 

 

 

 

 

 

 

Introduction 

Genome-wide association studies (GWAS) are now routinely imputed for untyped SNPs with 

powerful imputation algorithms [Howie et al., 2009; Browning and Browning, 2009; Li et al., 

2010; O’connel et al., 2016; Loh et al., 2016] up to various reference panels such as the Hapmap 

(The International HapMap Consortium, 2005) and the 1000 Genomes (The 1000 Genomes 

Project Consortium, 2010; The 1000 Genomes Project Consortium, 2012;  Sudmant, P. H. et al., 

2015).  Standard association tests for imputed SNPs are performed using the predicted allele 

count as the underlying dosage variable of the association model. Many earlier fine mapping 

studies based on the Hapmap panel have successfully used imputation for better 

characterization of common susceptibility SNPs within regions initially discovered through 
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typed SNPs. More recently, imputation based on the 1000 Genome reference panel in existing 

GWAS for several traits have led to the discovery of new susceptibility loci containing 

uncommon or rare susceptibility variants [Guerreiro et al., 2013; Wang et al., 2014; Horikoshi et 

al., 2015]. 

 The use of expected allele count for imputed SNPs as the dosage variable is known to produce 

valid score-test for genetic association [Marchini and Howie, 2010]. In this paper, we 

investigate how to best handle imputed SNPs in various modern complex tests for genetic 

association incorporating gene-environment interactions. In particular, we focus on case-

control association studies where inference in an underlying logistic regression model can be 

performed using various alternative methods that rely on varying degree on an assumption of 

gene-environment independence in the underlying population.  As increasingly large scale 

GWAS are being performed through consortia effort where it is preferable to share only 

summary-level information across studies, we also explore how these methods could be 

implemented in the context of meta-analysis. We study type-I error and power of alternative 

methods using extensive simulation studies.  An application of the methods is illustrated 

through a re-analysis of the National Cancer Institute GWAS of lung cancer that has been 

imputed by the 1000 Genome reference panel. 

 

Methods 

Options for Joint-Test of Association for Genotyped SNPs 

We assume the main goal of our study is to test the association of disease-status ( D ) with 

genotype status ( G ) of marker SNPs in the presence of a set of environmental risk factors ( X ) 
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that are known to be associated with the disease. We consider logistic regression to specify the 

disease-risk model in the form 

)*exp(1

)*exp(
),|1Pr(

XGXG

XGXG
XGD

gxxg

gxxg

βββα
βββα
++++

+++
==        (1) 

where an interaction term between G  and X  is incorporated to allow the effect of the genetic 

factor, as measured in the odds-ratio scale, to vary by the level of the environmental factors. 

Commonly, SNP genotypes ( G ) are coded as allele count assuming a linear-trend model for 

association with the underlying trait. More generally, genotype could be coded according to 

dominant, recessive or a two degree-of-freedom saturated model. A joint-test for genetic 

association under the above model corresponds to a global null hypothesis in the form 

0 and 0:0 == gxgH ββ . 

For genotyped SNPs, a multi degrees-of-freedom joint-test of association and interaction has 

been studied earlier [Kraft et al., 2007]. Typically, the analysis is performed based on standard 

prospective logistic regression analysis of case-control data.  

Alternatively the analysis can be performed based on a retrospective-likelihood [Chatterjee and 

Carroll, 2005] that allows enhancement of power by exploitation of an assumption of gene-

environment independence in the underlying population. Under gene-environment 

independence assumption, a case-only analysis can also be performed for inference on the 

logistic regression interaction parameter [Peigorsch et al., 1994], but it is not suitable for joint-

testing of genetic association and interaction. The use of gene-environment independence 

assumption, however, can lead to serious bias in both the joint- and interaction-tests when the 

underlying assumption of gene-environment independence is violated [Albert et al., 2001; 
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Mukherjee et al., 2008;  Mukherjee et al., 2012]. 

A third alternative for joint-testing of association and interaction is to use an empitical-Bayes 

type inferential procedure that allows data adaptive shrinkage between estimates obtained 

from the prospective and retrospective likelihoods to strike a balance between efficiency and 

bias incurred by gene-environment independence assumption. Extensive simulation studies 

have shown that methods that exploit gene-environment independence assumption, such as 

retrospective- or EB- method, have substantial potential to improve power for gene-

environment case-control studies compared to standrd prospective logistic regression 

[Mukherjee et al., 2008;  Mukherjee et al., 2012]. The risk of false positives due to gene-

environment correlation is generally low in many realistic situations and can be further 

minimized using the data adaptive EB or various types of two-stage procedures [Cornelis et al. , 

2012; Mukherjee et al., 2012]. 

 

Derivation of Score-Tests  

A major advantage of score-test, compared to Wald- or Likelihood-ratio test (LRT), is that it only 

requires imputation under the null model of no association and thus can easily incorporate 

expected dosage returned by popular imputation algorithms. Further for the analysis of less 

common and rare variants,  score-tests may have more robust properties than Wald test or LRT 

as the number of cases or/and controls can be sparse in variant genotype categories.  

Suppose that data consist of ),,( uuu GXD , nu 1,...,=  where uD , uX , and uG  , respectively, 

denote the disease status, environmental exposure, and SNP-genotype status for subject u . Let 

Z = (1 , X )  and W = (G ,G * X )  denote a partitioning of the design matrix associated with the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2016. ; https://doi.org/10.1101/062075doi: bioRxiv preprint 

https://doi.org/10.1101/062075
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

“nuisance” parameters, ),( xβαη = , and the parameters of interest, ),( gxg ββθ = , respectively, 

for the underlying logistic regression model.   

 

Prospective (PT) Method 

The standard prospective likelihood of case-control data is derived as 

LP = Pr(Du | Gu, Xu )
u=1

n0+n1

∏ . 

Under the prospective-likelihood, the score-function for θ  is given by 

Sθ
P = {WuDu − Eη (WuDu | Gu, Xu )}

u=1

n0+n1

∑ .  

Under the null hypothesis of no association,  

Sθ0

P = Zu{GuDu −GuEη
u=1

n0+n1

∑ (Du | Xu )}.               (2) 

The maximum likelihood estimator (MLE) of the nuisance parameters  under the null model 

can be estimated by fitting the null model 

)exp(1
)exp(

)|1Pr(
X
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x

x
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+== .                  (3) 

The multivariate score-test-statistic can be computed as  

)()()(
000

1 PP
S

TPp SVST θθ θ

−= , 

where P
SV

0θ
is the variance-covariance matrix for the score-vector accounting for uncertainty 

associated with estimation of the nuisance parameters. One can estimate P
SV

0θ
using the 

efficient information matrix in a model-based fashion or using the empirical variance-

η
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covariance matrix of the associated influence function to achieve robustness against mis-

specification of the null model. 

 

Retrospective (RT)  Method 

The retrospective likelihood for case-control data is given by 

LRR = Pr(Xu,Gu | Du )
u=1

n0+n1

∏ .  

It has been long known that inference for the parameters of interest under underlying logistic 

regression model is equivalent under the retrospective and prospective likelihoods for case-

control data when no assumption is made about joint distribution of the underlying risk-factors, 

i.e.  G  and X  in our example [Prentice and Pyke, 1979]. However, if an assumption of gene-

environment independence is invoked, then more efficient inference is possible under the 

retrospective likelihood. In particular, Chatterjee and Carroll [2005] have previously shown that 

under the assumption of gene-environment independence, but without any further restriction 

on the distribution of X , inference under retrospective likelihood can be made using a “profile-

likelihood” of the form 

LR
*
R = Pr*(Du,Gu | Xu, Ru =1)

u=1

n0+n1

∏  

 where the conditioning 1=R  is introduced to indicate the selection mechanisms of subjects 

into the sample under the case-control sampling scheme. Derivation of *
RL  requires 

specification of population genotype frequencies, either using two parameters under a general 

multinomial model or using a single parameter under the assumption of Hardy Weinberg 

Equilibrium (HWE). Thus, for the retrospective likelihood, we expand the nuisance parameter 
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vector as ),(* γηη =  so that the nuisance parameters include both parameters of the disease-

risk and genotype frequency models.  

The score-function for association parameters of interest for the retrospective likelihood can be  

derived as  

Sθ
R = {WuDu −

u=1

n0+n1

∑ E
η*
* (WuDu | Xu )},  

where Eη*

*
 denotes expectation with respect to the joint probability distribution of D  and  G  

given X  and R =1. 

Under the null, 

Sθ0

R = Zu{GuDu −
u=1

n0+n1

∑ Eγ (Gu )Eη (Du | Xu )},  

which differs from the corresponding score-vector (equation (2)) is derived under the 

prospective likelihood only in the way the expectation is derived in the second term. In 

particular, under the retrospective likelihood, the expectation term is evaluated under the 

assumption of gene-environment independence while the prospective likelihood does not 

require any such assumption. Under the null hypothesis, the parameters of the null model (3) 

can be estimated using standard prospective logistic analysis since the MLE under the 

retrospective- and prospective- likelihoods are the same as we allow the distrbution of non-

genetic risk-factors to be completely unspecified. Further, under null, MLE associated with 

genotype frequency model γ  can be obtained from the pooled sample of the cases and 

controls. The multivariate-score test can now be derived under the retrospective likelihood 

following the same-steps as that for described for the propsective likelihood (see 
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Supplementary Methods Section 1.2 for complete details).  

 

EB Procedure 

Implementation of the original EB procedures requires parameter estimates from the 

prospective- and retrospective-likelihood methods. The estimate itself cannot be directly 

derived from a likelihood and thus derivation of a score-test for this procedure is not 

straightforward. As an alternative, we propose a “score-type” test that could maintain some of 

the advatnages of the score-tests as described earlier and yet allow combining inference from 

the prospective- and retrospective-likelihoods in a data adaptive fashion to balance between 

bias and efficiency. We first note that any score-test can be written in the form of a Wald-like 

test-statistic 

T = (Sθ0
)T (VSθ0

)−1(Sθ0
) = (θ̂0 )T Vθ̂0

−1(θ̂0 )  

where θ̂0 = V
Sθ0

−1Sθ0
 can be viewed as a one-step MLE starting from the null parameter value θ0

=0. Thus, taking advantage of the above Wald-like representation of score-test, we propose an 

EB score-type test in the form 

T EB = (θ̂0
EB )T Vθ̂0

EB

−1 (θ̂0
EB )

 

where the corresponding EB estimates and associated variance-covariance matrix are obtained 

by combining the one-step MLE estimates derived from the prospective- and retrospective- 

likelihood (see Supplementary Methods Section 1.3) using formulae analogous to those 

described for the original EB procedure [Mukherjee and Chatterjee, 2008].  
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Derivation of  the PT, RT, and EB methods under a more general setting that allows accounting 

for additional covariates in the model is given in Supplementary Methods.  

 

Handling Imputed Genotype Data 

Once the forms of the score-tests are derived with observed genotyped data, handling  imputed 

genotype data for all the procedures is relatively straightforward as it simply involves replacing 

uG by uĜ , the expected value of genotype dosage taking into account predicted probabilities of 

different genotype values returned by the imputation algorithm. It is noteworthy how imputed 

genotype data are handled differentially in the prospective- and retrospective- score functions. 

Under the prospective-likelihood, the score-function for imputed genotype data takes the form 

)},|(ˆˆ{
10

1
1

uuu

nn

u
uuu

P XDEGDGZS ηθ −= ∑
+

=

 

where the imputed genotype-dosage variable contributes to both terms of the  left hand side of 

the equation. In contrast, under the retrospective-likelihood, the score function for imputed 

genotype data takes the form 

)}|()(ˆ{
10

1
1

uuu

nn

u
uuu

R XDEGEDGZS ηγθ −= ∑
+

=

 

 where the imputed genotype-dosage variable contributes only to the first term of the equation. 

The genotype frequency parameters, required in derivation of the retrospective-score function, 

can be estimated from imputed genotype data based on overall predicted genotype counts 

observed in the pooled sample of cases and controls. Derivations of efficient-information 

matrices and empirical variance-covariance matrices for the score-vectors follow the same 

steps as those for observed genotype data for each of the respective procedures. Finally, the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2016. ; https://doi.org/10.1101/062075doi: bioRxiv preprint 

https://doi.org/10.1101/062075
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

derivation of the one-step MLEs and score-type test using the EB procedure follows the same 

steps as those described for observed genotype data. 

 

Analysis of NCI GWAS of Lung Cancer 

We analyzed data from a GWAS of lung cancer generated at the National Cancer Institute. The 

dataset included 5713 cases and 5736 controls from four different study sites (Table 1). The 

samples were originally genotyped using a combination of Illumina GWAS platforms and were 

imputed using the 1000 Genomes Phase 2 reference panel using IMPUTE2 software [Howie et 

al., 2009]. The details of the studies can be found in several previous publications [Landi et 

al.,2009]. We evaluated the performance of the different methods in evaluating joint 

association of lung cancer with SNP-genotypes and genotype-by-smoking interactions.  We 

derived score test under a logistic regression model where SNP genotypes were coded 

assuming additive effects.  For modeling the effect of smoking status, recorded as current, 

former or never, we used two dummy variables.  The resulting joint tests for association and 

interaction had three degrees of freedom. We also examined the two degree-of-freedom score-

tests associated with only the interaction parameters of the model, but the underlying p-values 

were derived under the global null hypotheses of absence of both association and interactions. 

Figure 1 shows the quantile-quantile (Q-Q) plots for the interaction-only tests for the 

application of the PT, RT, and EB methods (left panel) and the joint- tests under the PT, RT, and 

EB methods together with the test for main effect of G  of the model without interaction (right 

panel), which were restricted to the analysis of  ~5.3 million SNPs such that MAF > 0.05, the 

imputation quality reported to have info measure  IA  ≥ 0.5, and the p-values from all the seven 
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tests are available.   As the patterns are generally similar for the model-based and empirical 

variance estimators, we only show results using the former method. In general, the Q-Q plot 

associated with the interaction-only tests aligns close to the diagonal line indicating that all the 

methods are maintaining type-I error well. The Q-Q plot neither shows any strong upward 

curvature near low p-values that could be indicative of the presence of many strong 

interactions in the data.  

In contrast, the Q-Q plot for the main-effect-only and joint tests of association and interaction 

clearly shows a strong upward curvature near the tail of the distribution. This pattern is largely 

driven by SNPs in the chromosome 15q25.1 region which are previously shown to be strongly 

associated with the risk of lung cancer (See Supplementary Figure S1 for plots after removal of 

this region). SNPs in this region, which contains multiple nicotine receptor genes, have been 

shown to be associated with both risk of lung cancer [Amos et al., 2008; Thorgeirsson et al., 

2008]  and smoking intensity [Thorgeirsson et al., 2008;Saccone et al.,2010]. However, no SNPs 

in this region has  been reported to be associated with smoking status even in studies with 

extremely large samples size (N>100K) [The Tobacco and Genetics Consortium, 2010].  Thus it is 

interesting that in this region (x-axis p-value < 10
-4

), the RT and EB method, both of which 

exploit an assumption of independence of genotype and smoking status, consistently produce 

lower p-values for the SNPs than those from the main-effect only test and the joint-test under 

the PT method. It appears that, in this data, although gene-environment interactions by 

themselves are not identifiable at a high significance level, proper accounting for these effects 

using efficient methods are enhancing the detection of underlying signals captured by the joint 

test.  
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We also evaluated the performance of different methods including SNPs with lower MAF 

(MAF=0.01-0.05). In this setting, we observe that the Q-Q plots for the methods that used 

sandwich variance-covariance estimators were highly inflated indicating systematic problem 

with type-I error rate control. The problem could be traced to small sample bias of the 

sandwich standard errors because of small number of non-smoking cases (N=355) who also 

carried variant genotype for rare SNPs in our study. When we combined non-smokers and 

former-smokers together to a single category, the bias went away (data not shown). 

 

Simulation Studies 

We generated data on a binary environmental exposure variable which is assumed to follow 

Bernoulli (0.5) and be independently distributed of G . We simulated SNP genotype ( G ) 

assuming HWE and minor allele frequency (MAF) value of 0.3 or 0.05. Given the values of G

and X , we generated the binary disease outcomes for individuals from the logistic regression 

model (1). We chose (1.5)log=xβ  or (2)log=xβ  to allow the association of X with D  to be 

either modest or strong, respectively. For evaluation of type-I error, we assumed no genetic 

association, i.e. both 0=gβ  and 0=gxβ . For evaluation of power, we set (1.2)log=gxβ  and

(1)log=gβ  or log(1.05).  In all simulations 0β  was set such that an overall disease rate in the 

underlying population is about 5%.  For evaluating type-I error and power, we simulated 

500,000 and 1,000 datasets, respectively, with each set consisting of 5,000 controls and 5,000 

cases.  

To evaluate validity and power of the methods when the SNP of interest may not be genotyped, 

we simulated haplotypes which consist of the SNP of interest and neighboring SNPs in linkage 
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disequilibrium (Table 2). In one setting (left panel), the variant of interest was common 

(MAF=0.3) and could be imputed with high accuracy ( 8.02 =R  ) based on genotypes of the 

neighboring SNPs (See Stram [2004] for R2
). In the other setting (right panel), the variant of 

interest was less common (MAF= 0.05) and could be predicted with moderate accuracy 

( 5.02 =R ) based on the genotype status of the neighboring SNPs. Assuming HWE in the 

general population, multi-locus genotypes of individuals were generated from simulted 

haplotypes. We analytically evaluated the conditional probability for genotype at the SNP of 

interest for each configuration of genotypes at the neighboring SNPs.  For simulating “imputed 

dosage” for the SNP of interest, we simulated the genotype data for the neigboring SNPs first 

and then assigned predicted genotype probabilities for the  SNP of interest using the known 

conditional probabilities. For analysis of each simulated data, we pretended that only the 

predicted probabilities, and not the actual genotypes, were available at the SNP of interest.  

 

We implemented each of the PT, RT, and EB score tests using either a model-based or an 

empirical variance-covariance estimator. However, in evaluation of the EB procedure, due to 

the lack of a model-based formula, the covariance between prospective and retrospective 

estimators was always evaluated based on empirical covariance of the underlying influenced 

functions. For each method, we evaluated the performance of both the joint- and interaction-

only tests. In general, simulation studies show that the proposed methods perform well in 

maintaining type-I error both at modertate (α = 0.05) and stringent (α = 0.0001) significance 

levels (Figure 2). In some scenarios, the RT method, when implemented with the sandwich 

variance estimator, showed a slight inflation over the nominal significance level. Across all the 
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scenarios, the EB method was conservative, a pattern that has been reported earlier for 

analysis of typed SNPs and has been traced to the use of a conservative variance estimator 

[Mukherjee et al., 2012]. Employing the PT, RT, and EB  methods on typed SNPs shows 

consistent results (Supplementary Figure S2).  

 

Simulation studies of power  (Table 3) suggest that relative performance of three different 

methods was similar for untyped SNPs as has been reported for typed SNPs in earlier studies 

[Mukherjee et al., 2012]. In particular, the RT method had the maximum power, the PT method 

has the minimum power and the EB procedure performed in between. All methods lost power 

to a similar degree for the analysis of untyped SNPs compared to the analysis of the same SNP 

had it been typed. The use of model-based versus sandwich variance estimators did not have 

much effect in power for any of the methods (Supplementary Table S1). 

 

Discussion 

In summary, we propose various types of score tests for genetic association and gene-

environment interactions for analysis of case-control studies.  Similar to standard tests for 

genetic association, in these methods, imputed genotype data for untyped SNP could be 

handled by simply substituting genotype values with predicted dosage that could be available 

from popular imputation software.   

 

The prospective and retrospective score-tests are derived directly from the underlying 

likelihoods for case-control studies. We derived the score-test for the EB procedure using 
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underlying one-step maximum-likelihood estimates of parameters obtained from the 

prospective- and retrospective-likelihoods. The one-step MLEs can also be used to perform 

multivariate meta-analysis of the parameters across studies and then derive various test-

statistics based on meta-analyzed parameter estimates and their variance-covariance matrices. 

In our implementation of all the methods in the R software package CGEN 

(https://www.bioconductor.org/packages/release/bioc/html/CGEN.html) we allow returning of 

the one-step MLEs to facilitate meta-analysis. 

 

Both analysis of simulated and real datasets suggest that the proposed methods can generally 

control type-I error rates, but small sample bias could arise in the presence of sparse genotype-

by-exposure cells, especially if sandwich variance estimators are used in some of these methods. 

Simulation studies of power show that the relative performances of the PT, RT, and EB 

procedure are quite similar for the analysis of untyped and typed SNPs. Although not studied 

directly, it can be anticipated that in the presence of gene-environment correlation in the 

population, the relative performance of these methods for their ability to control type-I error 

would also be similar as has been reported in earlier studies [Mukherjee et al., 2012]  for typed 

SNPs.  

 

Although all the methods are valid for both continuous and categorical exposures, our 

numerical studies only involve categorical exposures. Future studies are needed to investigate 

performance of the proposed methods in the presence of continuous exposure and model mis-

specification. It has been noted before that if the model for association of the disease with a 
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continuous exposure is mis-specified, then the test for genetic associations and interaction 

could be biased due to underestimation of variance of target parameters under the mis-

specified model [Tchetgen and Kraft, 2011]. We focus on test for genetic association and 

interactions using single genetic markers. Further studies are also merited how these methods 

could be extended for derivation of gene-level aggregate tests of genetic associations and 

interactions. 
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Table 1. Distribution of cases and controls by cohorts in NCI GWAS.  

 

GWAS, genome-wide association studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

           Cases            Controls 

cohort ATBC CPSII EAGLE PLCO All ATBC CPSII EAGLE PLCO All 

complete data 1732 695 1978 1814 5713 1270 674 1978 1814 5736 
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Table 2. Haplotypes and their frequencies used for conducting simulation studies in scenario 

where underlying causal SNP is untyped  and is assumed to be imputed based on neighboring 

genotyped SNPs . “U” and “T” indicate the untyped and typed SNP positions, respectively.  

 

MAF
*
=0.3, 8.02 =R # 

MAF*=0.05, 5.02 =R # 

UTTTT Frequency UTTTT Frequency 

10011 0.2530 00111 0.3800 

10101 0.0128 01110 0.2350 

10111 0.0342 01111 0.2900 

00101 0.2374 11001 0.0456 

00111 0.2233 11111 0.0044 

01110 0.2393 00001 0.0450 

MAF, minor allele frequency. 

*Minor allele frequency of the untyped causal SNP 

#  
Obtained by fitting multivariate regression of genotype at the causal SNP on the genotypes of the neghboring 

SNPs   
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Table 3.  Simulation results for power of the joint- and interaction-tests for different procedures 

under various scenarios. For MAF=0.3, power is shown for nominal significance levels of 0.0001 and 

0.001 for the joint- and interaction- tests, respectively. For MAF as 0.05, power is shown for the 

nominal significance level of 0.05 for both types of tests.  In all settings, power was evaluated under 

an interaction odds-ratio=1.2. Results are shown when causal SNP is typed (bottom panels) or 

imputed (top panels).  Variance is estimated based on information matrix.  

 

Untyped SNPs 

 

MAF βx  βg  PT-joint RT-joint EB-joint PT-int RT-int EB-int 

0.3 log(1.5) log(1) 0.419 0.713 0.518 0.243 0.574 0.406 

0.05 log(1.5) log(1) 0.342 0.498 0.404 0.231 0.389 0.309 

0.3 log(1.5) log(1.05) 0.822 0.948 0.873 0.233 0.565 0.415 

0.05 log(1.5) log(1.05) 0.558 0.692 0.603 0.220 0.411 0.302 

0.3 log(2) log(1) 0.446 0.744 0.568 0.234 0.498 0.376 

0.05 log(2) log(1) 0.366 0.517 0.430 0.223 0.356 0.307 

0.3 log(2) log(1.05) 0.818 0.952 0.871 0.212 0.483 0.367 

0.05 log(2) log(1.05) 0.599 0.733 0.643 0.230 0.392 0.312 

 

Typed SNPs 
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MAF βx  βg  PT-joint RT-joint EB-joint PT-int RT-int EB-int 

0.3 log(1.5) log(1) 0.604 0.874 0.724 0.349 0.728 0.559 

0.05 log(1.5) log(1) 0.443 0.613 0.521 0.271 0.491 0.4 

0.3 log(1.5) log(1.05) 0.943 0.987 0.954 0.335 0.724 0.551 

0.05 log(1.5) log(1.05) 0.694 0.804 0.709 0.286 0.495 0.360 

0.3 log(2) log(1) 0.647 0.887 0.731 0.321 0.645 0.499 

0.05 log(2) log(1) 0.469 0.645 0.54 0.286 0.443 0.373 

0.3 log(2) log(1.05) 0.942 0.992 0.955 0.333 0.662 0.531 

0.05 log(2) log(1.05) 0.707 0.83 0.744 0.284 0.466 0.379 

PT-joint , prospective joint test ; RT – joint, retrospective joint test ; EB-joint, empirical Bayes joint test; PT-int,  prospective 

interaction test; RT-int, retrospective interaction test; EB-int, empirical Bayes interaction test; SNP, single nucleotide 

polymorphism; MAF, minor allele frequency. 
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Figure 1. Quantile-quantile plots for the interaction-only, joint tests and tests for main effect of 

 in the analysis of National Cancer Institute Lung Cancer GWAS. Tests for associations are 

performed between risk of lung cancer and each of approximately 5.3 million common SNPs 

accounting for interactions with smoking status (never, former, and current) of the individuals. 

Each curve pertains to SNPs such that MAF > 0.05, the imputation quality reported to have info 

measure   ≥ 0.5, and the p-values from all the seven tests are available. GWAS, genome-wide 

association studies; SNP, single nucleotide polymorphism; MAF, minor allele frequency. 
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Figure 2. Simulation results for type-I error for different procedures for testing untyped SNPs. 

The nominal significance levels are 0.05 and 0.0001. (top panels) Joint test, (bottom panels) 

Interaction-only test. Red and orange pertain to information-based variance estimator and 

sandwich variance estimator, respectively. MAF, minor allele frequency.  
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