A simple proposal for the publication of journal citation distributions

Vincent Larivière¹, Véronique Kiermer², Catriona J. MacCallum⁴, Marcia McNutt¹, Mark Patterson⁵, Bernd Pulverer⁶, Sowmya Swaminathan⁷, Stuart Taylor⁸, Stephen Curry⁹

¹Associate Professor of Information Science, École de bibliothéconomie et des sciences de l’information, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC. H3C 3J7, Canada; Observatoire des Sciences et des Technologies (OST), Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal, CP 8888, Succ. Centre-Ville, Montréal, QC. H3C 3P8, Canada
²Executive Editor, PLOS, 1160 Battery Street, San Francisco, CA 94111, USA
³Advocacy Director, PLOS, Carlyle House, Carlyle Road, Cambridge CB4 3DN, UK
⁴Editor-in-Chief, Science journals, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
⁵Executive Director, eLife, 24 Hills Road, Cambridge CB2 1JP, UK
⁶Chief Editor, The EMBO Journal, Meyerhofstrasse 1,69117 Heidelberg, Germany
⁷Head of Editorial Policy, Nature Research, Springer Nature, 225 Bush Street, Suite 1650, San Francisco 94104, USA
⁸Publishing Director, The Royal Society, 6-9 Carlton House Terrace, London SW1Y 5AG, UK
⁹Professor of Structural Biology, Department of Life Sciences, Imperial College, Exhibition Road, London, SW7 2AZ, UK

¹Present address: National Academy of Sciences, 2101 Constitution Avenue NW, Washington, DC 20418, USA
*Corresponding Author. Email: s.curry@imperial.ac.uk

Copyright: © 2016 The Authors. This is an open access article distributed under the terms of the CC-BY 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

Competing interests: The authors have declared that no competing interests exist.
Funding: The authors have no funding or support to report.

Abstract

Although the Journal Impact Factor (JIF) is widely acknowledged to be a poor indicator of the quality of individual papers, it is used routinely to evaluate research and researchers. Here, we present a simple method for generating the citation distributions that underlie JIFs. Application of this straightforward protocol reveals the full extent of the skew of distributions and variation in citations received by published papers that is characteristic of all scientific journals. Although there are differences among journals across the spectrum of JIFs, the citation distributions overlap extensively, demonstrating that the citation performance of individual papers cannot be inferred from the JIF. We propose that this methodology be adopted by all journals as a move to greater transparency, one that should help to refocus attention on individual pieces of work and counter the inappropriate usage of JIFs during the process of research assessment.

Introduction

The problem of over-reliance on the Journal Impact Factor (JIF)¹ for research and researcher assessment has grown markedly in the 40 years since it emerged in 1972, conceived originally as a tool for research management (16) and are often viewed as a convenient proxy for ‘quality’ by busy academics perennially faced with sifting papers that is inappropriate for many disciplines and takes no account of the underlying data; it is based on a narrow two-year time window that is inappropriate for many disciplines and takes no account of the large variation in citation levels across disciplines (10); it includes citations to ‘non-citable’ items and citations to primary research paper are conflated with citations to reviews - it is therefore open to gaming and subject to negotiation with Thomson Reuters (7, 11, 12); its relationship with citations received by individual papers is questionable and weakening (13). We welcome the efforts of others to highlight the perturbing effects of JIFs on research assessment (notably, the San Francisco Declaration on Research Assessment (DORA) (14), the Leiden Manifesto (15), the Metric Tide report (16)) and their calls for concrete steps to mitigate their influence. We also applaud public statements by funders around the world (e.g. Research Councils UK (17), the Wellcome Trust (18), the European Molecular Biology Organisation (EMBO) (19), the Australian Research Council (20), and the Canadian Institutes of Health Research (21)) that no account should be taken of JIFs in assessing grant applications. And we are encouraged by those journals that have cautioned against the misappropriation of JIFs in researcher assessment (7, 11, 22-25).

But at the same time we recognize that many academics and many institutions lack confidence in the ability of the members of funding, promotion or other research assessment panels to shed what has become for many a habit of mind. This is exacerbated by the fact that various indicators are increasingly part of the toolbox of research management (16) and are often viewed as a convenient proxy for ‘quality’ by busy academics perennially faced with sifting large numbers of grant applications or CVs.

To challenge the over-simplistic interpretation of JIFs, we present here a simple methodology for generating the citation distribution of

¹ The JIF is formally defined as the mean number of citations received in a given year by papers published in a journal over the two previous years.
² Although the JIF is presented as an arithmetic mean, the numerator is the total number of citations received by all documents published in the journal whereas the denominator is the subset of documents that Thomson Reuters classifies as ‘citable’ (i.e. ‘Articles’ and ‘Reviews’).
papers published in any journal. Consistent with previous analyses (9, 26), application of this method to a selection of journals covering a number of different scientific disciplines shows that their citation distributions are skewed such that most papers have fewer citations than indicated by the JIF and, crucially, that the spread of citations per paper typically spans two to three orders of magnitude resulting in a great deal of overlap in the distributions for different journals. Although these features of citation distributions are well known to bibliometricians and journal editors (7, 23, 26), they are not widely appreciated in the research community. It is the desire to broaden this awareness that motivated us, a group drawn from the research, bibliometrics and journals communities, to conduct the analysis reported here.

We believe that the wider publication of citation distributions provides a healthy check on the misuse of JIFs by focusing attention on their spread and variation, rather than on single numbers that conceal these universal features and assume for themselves unwarranted precision and significance. We propose that this methodology be adopted by all journals that publish their impact factor from less than 3 to more than 30. They represent journals of unmatched citations is higher, which suggests that citations to specific papers are underestimated by the Thomson Reuters matching key (Table 1). Thus, these distributions underestimate the numbers of citations per paper — and may overestimate the numbers of papers with zero citations. Given that these unmatched citations are likely to be evenly distributed across all papers, this effect should not affect the structure of the distributions.

Subscription Database Method: The use of a purchased database provides convenient access the bulk citation data, but the expense involved means the method described above is only likely to be a viable option for professional bibliometricians. To facilitate the generation of citation distributions by non-specialists, we developed step-by-step protocols that rely on access to essentially the same data via subscription to either the Web of Science™ (Thomson Reuters Inc.) or Scopus™ (Elsevier BV). The details of each protocol are presented in Appendices 1 and 2.

It should be noted that all the protocols we present here for generating distributions use only those citations that are unambiguously matched to specific papers. This is in contrast to the approach used by Thomson Reuters in calculating JIFs which includes citations to all document types as well as unmatched citations (see Table 1). Thus, while the cohort of articles can be matched to the JIF cohort (namely, citations received in 2015 to articles published in 2013 and 2014) the absolute values of the citations to individual articles and the total number of citations can vary substantially from that used in the JIF calculation.

Results

Using the Purchased Database Method described above, we generated frequency plots – or citation distributions – for 11 journals: eLife, EMBO Journal, Journal of Informetrics, Nature, Nature Communications, PLOS Biology, PLOS Genetics, PLOS ONE, Proceedings of the Royal Society B: Biology Sciences, Science and Scientific Reports (Figure 1). The journals selected are both multidisciplinary and subject-specific in scope, and range in impact factor from less than 3 to more than 30. They represent journals from seven publishers: eLife Sciences, Elsevier, EMBO Press, Springer Nature, the Public Library of Science (PLOS), The Royal Society and the American Association for the Advancement of Science (AAAS).

In an attempt to relate our analyses to the widely-available JIFs for 2015, the period over which the citations accumulated for our citations received in 2015 by document type published in 2013 and 2014

Table 1

<table>
<thead>
<tr>
<th>Journal</th>
<th>Article N.</th>
<th>Article %</th>
<th>Review N.</th>
<th>Review %</th>
<th>Correction N.</th>
<th>Correction %</th>
<th>Editorial-Material Other N.</th>
<th>Others %</th>
<th>Unmatched N.</th>
<th>Unmatched %</th>
<th>Total Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eLife</td>
<td>5,459</td>
<td>84.4%</td>
<td>10</td>
<td>0.2%</td>
<td>98</td>
<td>1.5%</td>
<td>902</td>
<td>13.9%</td>
<td>6,469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMBO J.</td>
<td>3,219</td>
<td>82.2%</td>
<td>472</td>
<td>12.1%</td>
<td>121</td>
<td>3.1%</td>
<td>4</td>
<td>0.1%</td>
<td>97</td>
<td>2.5%</td>
<td>3,915</td>
</tr>
<tr>
<td>J. Informetrics</td>
<td>387</td>
<td>92.6%</td>
<td>6</td>
<td>1.4%</td>
<td>1</td>
<td>0.2%</td>
<td>10</td>
<td>2.4%</td>
<td>14</td>
<td>3.3%</td>
<td>418</td>
</tr>
<tr>
<td>Nature</td>
<td>54,143</td>
<td>83.2%</td>
<td>3,554</td>
<td>5.5%</td>
<td>2,770</td>
<td>4.3%</td>
<td>1,681</td>
<td>2.6%</td>
<td>2,903</td>
<td>4.5%</td>
<td>65,098</td>
</tr>
<tr>
<td>Nature Comm.</td>
<td>43,957</td>
<td>88.5%</td>
<td>82</td>
<td>0.2%</td>
<td>15</td>
<td>0.0%</td>
<td>5</td>
<td>11.3%</td>
<td>5,609</td>
<td>9.4%</td>
<td>49,663</td>
</tr>
<tr>
<td>PLOS Biol.</td>
<td>2,927</td>
<td>87.0%</td>
<td>16</td>
<td>0.5%</td>
<td>201</td>
<td>6.0%</td>
<td>219</td>
<td>6.5%</td>
<td>3,363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLOS Genet.</td>
<td>9,964</td>
<td>91.6%</td>
<td>238</td>
<td>2.2%</td>
<td>46</td>
<td>0.4%</td>
<td>621</td>
<td>5.7%</td>
<td>10,872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLOS ONE</td>
<td>168,590</td>
<td>90.7%</td>
<td>2,753</td>
<td>1.5%</td>
<td>86</td>
<td>0.5%</td>
<td>14,378</td>
<td>7.7%</td>
<td>185,912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proc. R. Soc. B</td>
<td>4,462</td>
<td>76.3%</td>
<td>436</td>
<td>7.5%</td>
<td>4</td>
<td>0.1%</td>
<td>31</td>
<td>0.5%</td>
<td>916</td>
<td>15.7%</td>
<td>5,494</td>
</tr>
<tr>
<td>Science</td>
<td>43,665</td>
<td>75.6%</td>
<td>5,816</td>
<td>10.1%</td>
<td>4</td>
<td>0.0%</td>
<td>4,522</td>
<td>7.8%</td>
<td>1,011</td>
<td>1.8%</td>
<td>57,765</td>
</tr>
<tr>
<td>Sci. Rep.</td>
<td>29,668</td>
<td>86.2%</td>
<td>1</td>
<td>0.0%</td>
<td>11</td>
<td>0.0%</td>
<td>2</td>
<td>0.0%</td>
<td>4,750</td>
<td>13.8%</td>
<td>34,432</td>
</tr>
</tbody>
</table>

For example, the journal Proceedings of the Royal Society B – Biological Sciences appeared in the reference list as P R SOC B, P R SOC B IN PRESS, P R SOC BIOL SCI, P R SOC LONDON B, etc.

3 Since there are more journals and papers indexed in Scopus™, citation rates for individual articles are likely to be higher than those presented here if this database is used to generate distributions.

4 For more details on the protocols used to generate distributions.
Larivière et al. (2016) – Publication of Journal Citations

The citation distributions was chosen to match that of the 2015 Journal Impact Factors published by Thomson Reuters – namely, the number of citations accrued in 2015 from documents published in 2013-2014. However, to more effectively compare journal distributions, we opted to include only citable items as classified by Thomson Reuters, which includes standard research articles and review articles (27), because different journals publish different amounts of additional content such as editorials, news items, correspondence, and commentary. It should also be noted that the definition of research and review articles used by Thomson Reuters does not always match the labels given to different document types by journals. Table 1 provides a summary of the number and percentage of articles and citations accrued for each document type within each journal as classified by Thomson Reuters. The summary data used to generate the distributions are provided in Supplemental File 1.

While the distributions presented in Figure 1 were generated using purchased data (see Methods), we tested whether similar distributions could be produced following the step-by-step Subscription Based Method outlined in Appendix 1 which uses data accessed online via Web of Science™. As seen in the distributions calculated for the EMBO Journal (Figure 2), the broad features of the distributions from these different sources are essentially identical, with differences being due to updates made on the database between purchase of data and time of online access.

Fig 1. Citation distributions of 11 different science journals. Citations are to ‘citable documents’ as classified by Thomson Reuters, which include standard research articles and reviews. The distributions contain citations accumulated in 2015 to citable documents published in 2013 and 2014 in order to be comparable to the 2015 JIFs published by Thomson Reuters. To facilitate direct comparison, distributions are plotted with the same range of citations (0-100) in each plot; articles with more than 100 citations are shown as a single bar at the right of each plot.
For all journals, the shape of the distribution is highly skewed to the left, being dominated by papers with lower numbers of citations. Typically, 65-75% of the articles have fewer citations than indicated by the JIF (Table 2). The distributions are also characterized by long rightward tails; for the set of journals analyzed here, only 15-25% of the articles account for 50% of the citations as shown in the cumulative distributions plotted in Figure 3. The distributions are also broad, often spanning two or more orders of magnitude. The spread tends to be broader for journals with higher impact factors. Our results also show that journals with very high Impact Factors tend to have fewer articles with low numbers of citations. The journals with highest impact factors (Nature and Science) also tend to have more articles with very high levels of citation within the two-year time period used for JIF calculations (and our analyses). The most cited articles in Nature and Science are cited 905 times and 694 times respectively in 2015 (see Supplemental File 1). Highly cited articles also appear in journals with much lower impact factors; for example, the most-cited articles in PLOS ONE and Scientific Reports are cited 114 and 141 times in 2015, respectively. For all journals, the very highly cited articles represent a small percentage of the total number of articles and yet have a disproportionate influence on the impact factor because it is based on an arithmetic mean calculation that does not take proper account of the skew in the distribution.

Despite the variations in citation distributions between journals that are evident in Figure 1, there is substantial overlap in the citation distributions across all the journals (Figure 4a). The overlap becomes more apparent when the number of articles are converted to percentages (Figure 4b). This makes it clear that, even without taking into account the effect of the sizes of different disciplines on citation counts, papers with high and low numbers of citations appear in most, if not all, journals.

Table 2: Percentage of papers published in 2013-2014 with number of citations below the value of the 2015 JIF.

<table>
<thead>
<tr>
<th>Journal</th>
<th>JIF</th>
<th>% citable items below JIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>eLife</td>
<td>8.3</td>
<td>71.2%</td>
</tr>
<tr>
<td>EMBO J.</td>
<td>9.6</td>
<td>66.9%</td>
</tr>
<tr>
<td>J. Informetrics</td>
<td>2.4</td>
<td>68.4%</td>
</tr>
<tr>
<td>Nature</td>
<td>38.1</td>
<td>74.8%</td>
</tr>
<tr>
<td>Nature Comm.</td>
<td>11.3</td>
<td>74.1%</td>
</tr>
<tr>
<td>PLOS Biol.</td>
<td>8.7</td>
<td>66.8%</td>
</tr>
<tr>
<td>PLOS Genet.</td>
<td>6.7</td>
<td>65.3%</td>
</tr>
<tr>
<td>PLOS ONE</td>
<td>3.1</td>
<td>72.2%</td>
</tr>
<tr>
<td>Proc. R. Soc. B</td>
<td>4.8</td>
<td>65.7%</td>
</tr>
<tr>
<td>Science</td>
<td>34.7</td>
<td>75.5%</td>
</tr>
<tr>
<td>Sci. Rep.</td>
<td>5.2</td>
<td>73.2%</td>
</tr>
</tbody>
</table>

Discussion

The aim of this paper is to increase awareness of the journal citation distributions underlying JIFs by disseminating a simple protocol that allows them to be generated by anyone with access, via institutional or publisher subscription, to Web of Science™ or Scopus™ (Appendices 1 and 2). We have selected a group of journals for illustrative purposes and have made no attempt to be comprehensive. Our intention here is to encourage publishers, journal editors and academics to generate and publish journal citation distributions as a countermeasure to the tendency to rely unduly and inappropriately on JIFs in the assessment of research and researchers.

The proposed method is straightforward and robust. It generates citation distributions that have all the same features that have been identified in previous analyses (9, 26). The distributions reveal that...
for all journals, a substantial majority of papers have many fewer citations than indicated by the arithmetic mean calculation used to generate the JIF and that for many journals the spread of citations per paper varies by more than two orders of magnitude. Although JIFs do vary from journal to journal, the most important observation as far as research assessment is concerned, and one brought to the fore by this type of analysis, is that there is extensive overlap in the distributions for different journals. Thus for all journals there are large numbers of papers with few citations and relatively few papers with many citations.

This underscores the need to examine each paper on its own merits and serves as a caution against over-simplistic interpretations of the JIF. Users of JIFs should also appreciate other complicating factors, such as the inflationary effect on citations in journals with higher JIFs, which may be due to greater visibility and perceived prestige of such journals (28-30). This effect is illustrated by analysis of citations to a medical “white paper” that was published in eight different journals in 2007 and showed that the number of citations that each publication received correlated strongly ($R^2 = 0.91$) with the JIF of the host journal across a range of JIF values from 2 to 53 (31).

With one exception (J. Informetrics), our analyses cover a collection of journals that are generally broad in scope, encompassing several different disciplines across the sciences. It may be that the breadth of the distributions are less marked in journals of narrower scope, although their JIFs are just as prone to outlier effects and overlapping distributions of citations have been observed in more specialized journals (9, 32).

Despite the overlap, there are evident differences in the average citation performance of different journals, and we are not arguing that the JIF has no value in the comparison of journals (the significance of which has been analyzed by Royle (9)). Rather we hope that this analysis helps to expose the exaggerated value attributed to the JIF and strengthens the contention that it is an inappropriate indicator for the evaluation of research or researchers.

On a technical point, the many unmatched citations (i.e. citations not clearly linked to a specific article, Table 1) that were discovered in the data for eLife, Nature Communications, Proceedings of the Royal Society: Biology Sciences and Scientific Reports raises concerns about the general quality of the data provided by Thomson Reuters. Searches for citations to eLife papers, for example, have revealed that the data in the Web of Science™ are incomplete owing to technical problems that Thomson Reuters is currently working to resolve. We have not investigated whether similar problems affect journals outside the set used in our study and further work is warranted. However, the raw citation data used here are not publicly available but remain the property of Thomson Reuters. A logical step to facilitate scrutiny by independent researchers would therefore be for publishers to make the reference lists of their articles publicly available. Most publishers already provide these lists as part of the metadata they submit to the Crossref metadata database (33) and can easily permit Crossref to make them public, though relatively few have opted to do so. If all Publisher and Society members of Crossref (over 5,300 organisations) were to grant this permission, it would enable more open research into citations in particular and into scholarly communication in general (33).

The co-option of JIFs as a tool for assessing individual articles and their authors, a task for which they were never intended, is a deeply embedded problem within academia and one that has no easy solutions. We hope that by facilitating the generation and publication of journal citation distributions, the influence of the JIF in research assessment might be attenuated, and attention focused more readily onto the merits of individual papers – and onto the diverse other contributions that researchers make to research such as sharing data, code, and reagents (not to mention their broader contributions, such as peer review and mentoring students, to the mission of the academy).

To advance this agenda we therefore make the following recommendations:

- **We encourage journal editors and publishers that advertise or display JIFs to publish their own distributions using the above method, ideally alongside statements of support for the view that JIFs have little value in the assessment of individuals or individual pieces of work (see this example at the Royal Society). Large publishers should be able to do this through subscriptions to Web of Science™ or Scopus™; smaller publishers may be able to ask their academic editors to generate the distributions for their journals.**

- **We encourage publishers to make their citation lists open via Crossref, so that citation data can be scrutinized and analyzed openly.**

- **We encourage all researchers to get an ORCID_iD, a digital identifier that provides unambiguous links to
published papers and facilitates the consideration of a broader range of outputs in research assessment. These recommendations represent small but feasible steps that should improve research assessment. This in turn should enhance the confidence of researchers in judgements made about them and, possibly, the confidence of the public in the judgements of researchers. This message is supported by the adoption in many journals of article-level metrics and other indicators that can help to track the use of research paper within and beyond the academy. We recognize that drawing attention to citation distributions risks inadvertent promotion of JIFs. However, we hope that the broader message is clear: research assessment needs to focus on papers rather than journals, keeping in mind that downloads and citation counts cannot be considered as reliable proxies of the quality of an individual piece of research (16). We would always recommend that a research paper is best judged by reading it.

Acknowledgements
We are very grateful to Valda Vinson and Monica Bradford for critical reading of the manuscript.

Supplemental Files
Supplemental File 1: Microsoft Excel spreadsheet containing the summary data used to prepare the Figures and Tables for this paper. Also contains the Figures and Tables themselves.

Supplemental File 2: Microsoft PowerPoint file containing ready-to-use, high-resolution slides of the Figures and Tables from this paper.

Supplemental File 3: PDF version of Supp. File 2, containing ready-to-use, high-resolution slides of the Figures and Tables from this paper.

Author Contributions Statement
Vincent Larivière: methodology, formal analysis, investigation, writing – original draft preparation, visualization

Véronique Kiermer: writing – review and editing

Catriona MacCallum: writing – original draft preparation, review and editing

Marcia McNutt: writing – review and editing

Mark Patterson: writing – original draft preparation, review and editing

Bernd Pulverer: writing – review and editing

Sowmya Swaminathan: writing – review and editing

Stuart Taylor: methodology, formal analysis, investigation, writing – original draft preparation, visualization

Stephen Curry: conceptualization, investigation, writing – original draft preparation, review and editing

References
35. Lariviere et al. (2016) – Publication of Journal Citations

Larivière et al. (2016) – Publication of Journal Citations
Appendix 1 - Method for generating the journal citation distribution graph from the Web of Science™ (2014 Impact Factor set)

The example given below is for generating distributions over the two-year window (2012-2013) that is used in calculation of the 2014 Journal Impact Factor. For later years, such as for the distributions based on the 2015 JIF in the main article here, the two-year window should be adjusted accordingly.

1. In Web of Science, select Core Collection.
2. Select ‘Publication Name’ as the filter for the first field and then enter the journal name in the associated free text box. Select the ‘Add Another Field’ option and select ‘Year Published’ as the second filter and enter 2012-2013 in the text box. Click search. In the example shown, the journal *Biology Letters* has been selected.

3. That produces the requisite article set. Next, click *Create Citation Report*. (To match as closely as possible the distributions shown in the analyses in this paper, limit the search to ‘Articles’ and ‘Reviews’ using the buttons on the left hand side of the screen under ‘Document Types’). Note that, as in the screenshot below, if the journal does not publish reviews (as classified by Thomson Reuters), an option to tick ‘Reviews’ will not be available.
4. The citation report should look similar to this. Note the number of articles retrieved by the search at the top of the page (573 in example below).

5. Scroll to the bottom of the web-page and export the list to Excel.
6. When prompted, enter the number of articles retrieved by the search as the maximum number of records. Web of Science™ will only process 500 records at a time, so if you have more articles than that, you'll need to export several Excel files and then combine them.

7. Open the combined file in Excel.
8. Only the column for the citations received in 2014 is needed for the distribution, so scroll across and select that column.

9. Sort the column into descending order (omitting the ‘2014’ label at the top).
10. Note the maximum citation (x) count and create a new column containing 0 to X called “Citations”. In the example shown below, x = 28.

11. Enter the formula \(\text{COUNTIF}(A:A, D4) \) into the cell next to the 0 citations (where \(A \) is the column containing the citations, and \(D4 \) is the cell indicating zero citations – see below).
12. Copy and paste this formula into the remaining cells in the Citations column. This generates the data for the frequency distribution.

<table>
<thead>
<tr>
<th>Year</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>20</td>
</tr>
<tr>
<td>2015</td>
<td>15</td>
</tr>
<tr>
<td>2014</td>
<td>10</td>
</tr>
<tr>
<td>2013</td>
<td>7</td>
</tr>
<tr>
<td>2012</td>
<td>6</td>
</tr>
<tr>
<td>2011</td>
<td>8</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
</tr>
<tr>
<td>2008</td>
<td>12</td>
</tr>
<tr>
<td>2007</td>
<td>12</td>
</tr>
<tr>
<td>2006</td>
<td>14</td>
</tr>
<tr>
<td>2005</td>
<td>18</td>
</tr>
<tr>
<td>2004</td>
<td>21</td>
</tr>
<tr>
<td>2003</td>
<td>23</td>
</tr>
</tbody>
</table>

13. If you wish to determine the median, use Excel's `MEDIAN` function on column A (excluding the 2014 label).
14. Then make a bar chart with the “Citations” field as the x-axis and the frequency counts as the y-axis. If desired, add vertical lines to indicate the JIF and the Median.
Appendix 2 - Method for generating the journal citation distribution graph from Scopus™ (2014 Impact Factor set)

The example given below is for generating distributions over the two-year window (2012-2013) that is used in calculation of the 2014 Journal Impact Factor. For later years, the two-year window should be adjusted accordingly.

1. In Scopus™, search for the journal using the ‘Source Title’ field (or print ISSN or online ISSN) and select the date range 2012-2013. Journal editors should check the resulting hit-list against the journal’s own records as tests showed that the numbers of articles returned may differ depending on which field is used for the search. Users without access to internal records can check article counts via tables of contents.

2. “Select all” from the resulting hit-list. (To match as closely as possible the distributions shown in the analyses in this paper, limit the document types in the search to ‘Articles’ and ‘Reviews’ using the buttons on the left hand side of the screen.)
3. Click “view citation overview”.

4. The Citation Overview will look something like this:
5. Select the date range 2014 (to get only citations in 2014) and click “update”.

6. Then click “Export”.

Larivière et al. (2016) – Publication of Journal Citations
7. This will download a CSV (comma-separated values) file. Open it in Excel.
8. Scopus™ may contain duplicate records for the same paper that have both accumulated citations. To resolve this, sort the records on the title column (A-Z) to make it easy to identify duplicates. For each pair, delete one, but make sure to add its citation count (e.g. in the 2014 column) to the remaining one to produce the correct total.
9. After de-duplication of the data, select the column for the citations received in 2014; (the other columns can be deleted).
10. Sort the column into descending order – make sure to omit the row labels.

11. Note the maximum citation (x) count and create a new column containing 0 to X called “Citations”. In the example shown below, x = 28.
12. Enter the formula `=COUNTIF(A:A,D4)` into the cell next to the 0 citations (where A is the column containing the citations, and D4 is the cell with the zero citation count).

13. Copy and paste this formula into the remaining cells in the Citations column to generate the frequency distribution data.
14. If you wish to determine the median, use Excel's MEDIAN function on column A; be careful not to include the '2014' label.

15. Then make a bar chart with the “Citations” field as the x-axis. If desired, add a vertical line to denote the JIF and the Median.