

HINGE:	Long-Read	Assembly	Achieves	Optimal	Repeat	Resolution	

Govinda M. Kamath1,*, Ilan Shomorony2,*, Fei Xia1,*, Thomas A. Courtade2,†, and

David N. Tse1,2†

1 Stanford University, Stanford, CA - USA

2 University of California, Berkeley, CA - USA

* Contributed equally and listed in alphabetical order

† Corresponding authors: courtade@eecs.berkeley.edu, dntse@stanford.edu

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117
https://doi.org/10.1101/062117

ABSTRACT	

Long-read sequencing technologies have the potential to produce gold-standard de novo

genome assemblies, but fully exploiting error-prone reads to resolve repeats remains a

challenge. Aggressive approaches to repeat resolution often produce mis-assemblies, and

conservative approaches lead to unnecessary fragmentation. We present HINGE, an assembler

that seeks to achieve optimal repeat resolution by distinguishing repeats that can be resolved

given the data from those that cannot. This is accomplished by adding "hinges" to reads for

constructing an overlap graph where only unresolvable repeats are merged. As a result, HINGE

combines the error resilience of overlap-based assemblers with repeat-resolution capabilities of

de Bruijn graph assemblers. HINGE was evaluated on the long-read bacterial datasets from the

NCTC project. HINGE produces more finished assemblies than Miniasm and the manual

pipeline of NCTC based on the HGAP assembler and Circlator. HINGE also allows us to identify

40 datasets where unresolvable repeats prevent the reliable construction of a unique finished

assembly. In these cases, HINGE outputs a visually interpretable assembly graph that encodes

all possible finished assemblies consistent with the reads, while other approaches such as the

NCTC pipeline and FALCON either fragment the assembly or resolve the ambiguity arbitrarily.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

INTRODUCTION	

While genome assembly has been a central task in computational biology for decades, only with

the recent advent of long-read technologies has the goal of obtaining near-finished assemblies

in an automated fashion become within reach. However, extracting the information present in

long error-prone reads in order to reliably resolve repeats is still a challenge (Myers 2016a).

Attempts to resolve repeats that are fundamentally unresolvable from the reads at hand – a

practice that can be driven by the prospect of a higher N50 score – can lead to incorrect

assemblies and ultimately impact downstream scientific analyses. On the other hand, a

conservative approach that breaks the assembly at points of seeming ambiguity may fail to

produce the longest contigs that can be constructed given the data.

In this sense, an optimal assembler should be one capable of identifying and resolving all, an

only those, repeat patterns that are resolvable given the available read data. Equivalently, this

objective can be viewed as the construction of an assembly graph with the maximum level of

repeat resolution that is possible given the data. If a finished assembly of the genome is

possible, such a graph would consist of a single cycle (in the case of a single circular

chromosome). Otherwise, the next-best objective would be the construction of a repeat graph

(Pevzner and Tang 2001; Mulyukov and Pevzner 2002) where long repeats are collapsed into a

single path. Such paths capture inherent ambiguities about the target genome that cannot be

resolved given the data. Thus, constructing the maximally resolved assembly graph

corresponds to minimizing the number of repeat-induced collapsed segments.

As a prerequisite to this task, one must first understand which repeat patterns can be reliably

resolved given the set of reads. Early studies of this fundamental problem appeared in the

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

context of sequencing by hybridization (Ukkonen 1992; Pevzner 1995), and were later extended

to shotgun sequencing through the notion of bridging (Bresler et al. 2013). A repeat is said to be

bridged if at least one read completely contains one of its copies (throughout the paper, we use

the word copies to refer to the distinct occurrences of a repeat element). The notion of bridging

allows us to define a maximally resolved assembly graph as the graph where only segments

corresponding to unbridged repeats are collapsed, as discussed in Supplemental Figure S1.

The de novo construction of such a graph yields the longest contigs that can be reliably

constructed, and also describes the plausible arrangements of these contigs in the target

genome.

Assembly graphs have been a key component in assembly pipelines since the early days of

sequencing projects (Myers et al. 2000). Approaches to assembly graph construction are

customarily divided into two categories: de Bruijn graph-based approaches, and overlap-layout-

consensus (OLC) approaches. In the de Bruijn framework (Mulyukov and Pevzner 2002;

Pevzner and Tang 2001), the set of all k-mers is extracted from the reads, and used to build a

graph where two k -mers that appear consecutively in a read are connected by an edge. This

construction has the desirable property that the resulting graph is essentially Eulerian, and

repeats longer than k base pairs are naturally collapsed into a single path. Furthermore, the

graph construction is typically followed by repeat resolution steps using reads that bridge

repeats. This allows several de Bruijn graph-based assemblers to produce a maximally resolved

assembly graph where only unbridged repeats remain collapsed (Butler et al. 2008; Mulyukov

and Pevzner 2002; Peng et al. 2010; Pevzner and Tang 2001).

In the context of third-generation long-read sequencing, however, standard de Bruijn graph

approaches have not been as successful as they were in the case of short-read sequencing.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

Due to the high error rates associated with third-generation platforms, a large number of

spurious k-mers is created, disrupting the structure of the de Bruijn graph. Recently, the concept

of solid k-mers was proposed as a way to construct an "approximate" de Bruijn graph on a

restricted set of reliable k-mers (Lin et al. 2016). However, since overlapping reads only share a

handful of solid k-mers, the resulting graph lacks the attractive features of de Bruijn graphs. In

particular, the Eulerian structure is compromised and repeats are no longer properly collapsed

into single paths. Overlap-based approaches, on the other hand, are more robust to read errors

since they directly connect reads based on overlaps instead of first breaking them into k-mers.

In fact, most available long-read assemblers (Chin et al. 2013, 2016; Berlin et al. 2015; Li 2016)

are based on the so-called overlap-layout-consensus (OLC) pipeline.

While de Bruijn graphs are Eulerian, overlap graphs are Hamiltonian; i.e., the underlying

genome sequence corresponds to a cycle that traverses every node (read) in the graph. In

addition to well-known computational challenges (Nagarajan and Pop 2009), the Hamiltonian

paradigm does not yield a natural representation of repeat patterns, and the graph is typically

riddled with unnecessary edges. In order to combat these issues, the string graph approach

(Myers 1995, 2005) was proposed, originally for the Celera assembler (Myers 2016a; Myers et

al. 2000), and later adopted by several assembly pipelines (Berlin et al. 2015; Chin et al. 2013,

2016; Li 2016). Built via a transitive reduction procedure, the string graph is an overlap graph

where the unique, non-repetitive parts of the genome correspond to simple, unbranched, paths.

However, long repeats -- both bridged and unbridged -- may result in undesirable graph motifs.

In practice, only heuristics are used to combat these motifs, and building a maximally resolved

overlap graph is challenging.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

RESULTS	

We propose HINGE as a way to build an assembly graph where only the segments

corresponding to unbridged repeats are collapsed. This objective, which we refer to as

maximally resolved assembly graph, is illustrated in Figure 1(a)-(e). As depicted in Figure 1(f),

this goal is naturally achieved in a de Bruijn graph framework, but not within an overlap graph-

based framework due to the motifs created by long repeats. HINGE seeks to simultaneously

attain the error resilience of overlap graph-based approaches and the appealing graph structure

and optimal repeat resolution capability of de Bruijn graphs. Next we briefly outline the main

algorithmic innovations that allow HINGE to achieve this goal, and present results on several

datasets.

ALGORITHMIC	CONTRIBUTIONS	

HINGE is an assembler that follows the Overlap-Layout-Consensus (OLC) paradigm. Its main

algorithmic innovation lies in how it exploits the alignments obtained in the Overlap phase in

order to identify resolvable repeats and construct the graph layout in a repeat-aware fashion.

Next we describe the main ideas that go into the Layout step. We defer a description of the

overlap and consensus steps to the METHODS section.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

Repeat annotation and hinging reads: HINGE utilizes the alignment information obtained in

the Overlap step in order to equip some of the reads with hinges. Hinges are placed at the

beginning and end of unbridged repeats, and will ultimately lead to bifurcations on the graph, as

illustrated in Figure 1(f). The first step towards hinging the reads, as illustrated in Figure 4(a), is

to find sharp gradients in the number of alignments on a read and annotate them as beginning

or end of repeats. Next, we identify reads that bridge a repeat by finding reads that have both an

annotation for the beginning of a repeat and an annotation for the end of the same repeat.

unbridged repeat

unbridged inverted repeat

unbridged triple repeat

unbridged repeat bridged repeat

string graph

u1 v1 u2 v2
u1

v1
z1 v2

u2

u1 v1

u2 v2

u1

u2

v1

v2

u2 v1
0 0

u1 v1

u2 v2

z1

u1 v1

u2 v2

z1

a f

b

c

u1

u2

v1

v2

u1

u2

v1

v2

z1

HINGE

bridged repeat

d

de Bruijn graph
+

repeat resolution

z1

single-bridged triple repeat
e

Figure 2: The goal of HINGE is to produce a maximally resolved assembly graph, where repeats that are bridged by
the reads are not collapsed, and repeats that are unbridged are collapsed in a natural way, similar to what is
achieved with de Bruijn graphs. (a) If at least one of the two copies of a repeat is bridged (green segments), the
maximally resolved assembly graph should separate the two copies. In (b-e), we illustrate an unbridged repeat, an
unbridged inverted (i.e., reverse-complemented) repeat, an unbridged triple repeat, and a single-bridged triple repeat,
and the assembly graph obtained by collapsing segments corresponding to unbridged repeats. Notice that in (b,e) the
graph admits a single traversal and can be further resolved, while in (c,d) the graph admits two distinct traversals and
cannot be further resolved (see Supplemental Figure S15). (f) The representation of a bridged and an unbridged
repeat in the de Bruijn graph approach, in the standard string graph approach, and according to HINGE. The de
Bruijn graph approach collapses the repeated segment, which allows a natural repeat resolution step if a bridging
read is found. The representation in the string graph (if there is no read entirely contained in the repeat) is an
hourglass-like motif. HINGE emulates the de Bruijn graph layout, but in an overlap graph framework.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

Finally, we spread the information of which repeats are bridged to other reads through a

procedure that we term the Contagion algorithm (see Methods and Figure 5).

Hinge-aided greedy overlap graph construction: The Contagion algorithm allows HINGE to

place exactly one in-hinge and one out-hinge on the reads that originated from unbridged

occurrences of a repeat. HINGE can then create a sparse overlap graph by using a hinge-aided

greedy graph construction. In essence, we pick a best predecessor and a best successor for

each read, as in the classical greedy algorithm (Tarhio and Ukkonen 1988) or in the best-

overlap-graph approach (Miller et al. 2008a). However, since our reads are hinged, we also

allow a read’s successor or predecessor to be the interior of another read, as long as the match

starts on a hinge. When this occurs, a bifurcation is formed on the graph, corresponding to the

beginning or the end of an unbridged repeat.

As illustrated in Figure 1(f), this hinge-aided approach allows us to obtain the attractive

properties of a de Bruijn graph layout, but within the OLC framework. A comparison with the

traditional greedy approach is provided in Supplemental Figure S2. We point out that for higher

fold repeats, where a subset of the copies may be unbridged, a more careful handling of hinges

is required, and that is achieved using a new procedure that we call Poisoning, described in the

METHODS section and in Figure 6.

VALIDATION	OF	HINGE	ON	DATASETS	WITH	GROUND	TRUTH	

In Supplemental Figures S3, S4, S5, and S6, we present validation results on simulated

datasets. We created sequences with specific patterns of repeats, and simulated long error-

prone reads, using the DAZZ-DB simulator. We then verified that, when run on these datasets,

HINGE produces a maximally resolved assembly graph. In Supplemental Figure S7, we validate

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

the structural integrity of our assembly on an Oxford Nanopore R9 E. coli dataset. In

Supplemental Figure S8, we validate the structural and sequence integrity of our assembly on a

PacBio Saccharomyces cerevisiae dataset.

In Supplemental Table S2, we present validation results on E. coli datasets produced by PacBio

and Oxford Nanopore sequencers. In both of these cases, HINGE produces a single circular

contig and there is no misassembly. We also compare our assembly with the assembly

produced by the NCTC pipeline (HGAP followed by Circlator) on 10 randomly selected datasets.

We verify that the assemblies agree and have high identity scores in all cases.

EVALUATION	ON	THE	NCTC	DATABASE	

We evaluated HINGE on the 997 bacterial genomes of the NCTC 3000 database that were

publicly available at the time of writing this manuscript (Wellcome Trust Sanger Institute 2016).

The accession number for these datasets is provided in Supplemental Tables S1 and S3. Each

of these datasets consists of PacBio SMRT long reads with coverage depths mainly in the

range 30x to 80x. While the repeat complexity is relatively mild in bacterial genomes, we chose

to evaluate HINGE on these datasets for two reasons: it allows us to carefully verify whether the

HINGE assembly graphs satisfy our goal of maximal repeat resolution, and it allows us run

experiments on a large number of datasets, thus avoiding overfitting.

The current NCTC manual assembly pipeline uses the HGAP assembler (Chin et al. 2013) to

produce a list of contigs, and Circlator (Hunt et al. 2015) to circularize contigs. The assembly

graphs produced by HINGE with no parameter tuning for each of these datasets are available

online (Kamath et al. 2016) and in Supplemental Table S4, along with the contig statistics of the

NCTC pipeline results, and the assembly graph produced by Miniasm (Li 2016). We point out

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

that other state-of-the-art assemblers, in particular FALCON (Chin et al. 2016), have runtime

above one order of magnitude greater than HINGE (see Supplemental Figure S11), making a

comparison on the entire NCTC database computationally prohibitive.

Table 1: Finished assemblies on all available NCTC datasets and comparison with Miniasm:
Given the output graph of HINGE we classify the assembly into four categories. A finished circular
assembly corresponds to a case where all nodes (small plasmids excepted) lie on a single circle. A
finished circular assembly with multiple traversals corresponds to a graph where all nodes can be
visited by a circular path, but there is more than one such path. We point out that we classify such
an output as finished because such a graph can be seen as simultaneously capturing a few (usually
two) assemblies, all of which would be considered finished according to the previous rule. A finished
assembly is said to lack circularization if a single non-circular path can traverse all nodes on the
graph (small plasmids excepted). If the graph produced by HINGE does not fall into the previous
three categories, we classify it as a mis-assembly/fragmented assembly. As reliable hinge
placement requires a reasonable coverage depth, we also considered restricting our attention to the
datasets with average coverage depth above 40. We note that Miniasm needs a circularization tool
to circularize assemblies, and hence we report a Miniasm assembly as finished if it has only one
contig longer than 200 kbp and fewer than ten contigs shorter than 200 kbp. The graph produced by
HINGE and Miniasm for all these cases can be found at
http://web.stanford.edu/~gkamath/NCTC/report.html and in Supplemental Table S4 along with the
corresponding classification. As can be seen on this report, the rule for determining when a Miniasm
assembly is finished is often quite lenient.

	 Coverage	≥	40x	 All	coverages	

Number	of	NCTC	datasets	 816	 997	
HINGE	finished	circular	assembly	
(single	traversal)	 631	

691	
729	

690	
782	

822	HINGE	finished	assembly	
(lacking	circularization)	 60	 92	

HINGE	finished	circular	assembly	
(multiple	traversals)	 38	 40	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

	 Coverage	≥	40x	 All	coverages	

Number	of	NCTC	datasets	 688	 834	

NCTC	manual	pipeline	
finished	assemblies	 517	 592	

Miniasm	finished	assembly	
(not	circularized)	 513	 592	

HINGE	finished	circular	assembly	
(single	traversal)	 531	

583	
583	

660	HINGE	finished	assembly	
(lacking	circularization)	 52	 77	

HINGE	finished	circular	assembly	
(multiple	traversals)	 33	 33	

Table 2: Finished assemblies on NCTC datasets where NCTC manual pipeline results are
reported: In this table we restrict the datasets considered in Table 1 to only those for which
NCTC reports a result for comparison. The finished assemblies for the NCTC manual pipeline
correspond to the cases where they report one chromosomal contig or two chromosomal
contigs (since species such as Vibrio fluvialis and Ochrobactrum anthropi are known to have
two chromosomes). We point out that while a circularization tool (Circlator) is used in the NCTC
pipeline, we do not have a circularization finishing step and only report the output of HINGE
using default configurations.

For 822 of the 997 available datasets, HINGE produced a finished non-fragmented assembly

graph, with additional isolated small plasmids in many cases. In 40 of these datasets, HINGE

identifies unresolvable repeats, and the final graph admits distinct traversals (See Table 1). In

order to compare our results with those obtained by the NCTC manual pipeline, we restricted

our attention to those datasets for which NCTC reports the results of their assembly. As shown

in Table 2, even without a circularization tool, HINGE obtains significantly more finished

assemblies than the NCTC pipeline.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

ANALYSIS	OF	HINGE	ASSEMBLY	GRAPHS	

Among the cases where HINGE produces an assembly graph with multiple traversals, we find

many examples where the intuitive layout of the graph produced by HINGE resembles the

idealized cases in Figure 1(a-e), and allows one to visually assess the unresolvable repeat

pattern in the genome. Next, we analyze three such cases in depth, and compare the graph

produced by HINGE with the contigs produced by the NCTC pipeline. We see that by focusing

on obtaining a maximally resolved assembly graph rather than large contig N50 values, HINGE

prevents several mis-assemblies the NCTC pipeline incurred. In Supplemental Figure S9, we

present nine additional such cases. In Supplemental Figure S10, we present several cases

where HINGE resolves all repeats, producing a finished circular assembly, while the NCTC

pipeline instead fragments the assembly. In addition, in Supplemental Figures S12, S13, and

S14 we provide the same comparisons but with FALCON (Chin et al. 2016) instead of the

manual NCTC pipeline.

In Figure 2(a), we examine NCTC11022 (Escherichia coli). In this example, the incorrect

resolution of a 20 kbp unbridged repeat by the NCTC pipeline (see Supplemental Figure S16)

causes the circular chromosomal contig to lose a 780 kb segment, returned as a separate

contig. By first collapsing this repeat and then resolving it due to the existence of a unique

traversal of the graph, HINGE produces a single large chromosomal contig of length 5.1 Mbp.

The nodes in the HINGE graph are colored according to the position the corresponding reads

align to in the NCTC pipeline contigs.

On the NCTC9024 dataset (Escherichia coli) (Figure 2(b)), the NCTC pipeline returned two long

contigs, one of 4.3 Mbp and one of 0.9 Mbp. The HINGE graph emphasizes the existence of a

triple repeat which, upon further inspection (See Supplemental Figure S17), is seen to be of

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

length 20 kbp, unbridged, and with one inverted copy. Even though this repeat is unbridged,

both the NCTC pipeline and FALCON resolve one of its copies, but in distinct ways. As we point

out in Supplemental Figure S9, incorrect resolution of an inverted repeat can produce a false

inversion of a long contig. In fact, the NCTC assembly and the FALCON assembly disagree on

the orientation of the yellow-to-orange segment, and one of them must be creating an incorrect

inversion of more than 1 Mbp (the orange-to-yellow segment). By collapsing the repeat, HINGE

avoids a potential mis-assembly.

In Figure 2(c), we consider NCTC9657 (Klebsiella pneumoniae). In this example, the NCTC

pipeline returned seven unidentified contigs (three large ones), but HINGE returns a single large

chromosomal connected component, and three small plasmids. In this case, HINGE produces a

graph motif characteristic of an unbridged triple repeat, similar to Figure 1(d). As shown by a

coverage analysis in Supplemental Figure S18(a), this is indeed a triple repeat and contig 1 of

the NCTC pipeline incorrectly resolves it, creating a mis-assembly. In addition, we examine the

plasmids produced by the NCTC pipeline in Figure 2(d), and note that two of them share an

unbridged repeat (see also Supplemental Figure S18(b)). Therefore, there are two possible

resolutions (two plasmids or a single, longer, plasmid), and HINGE keeps them merged on the

graph to retain this unresolvable ambiguity. In Supplemental Figure S12, we verify that the

performance of FALCON (Chin et al. 2016) on the examples in Figure 2 (a) and 2(c) is similar to

that of the NCTC pipeline.

As illustrated by these examples, HINGE seeks to construct a user-friendly, informative, overlap

graph as its main output, as opposed to most OLC assemblers, which employ assembly graphs

in their inner workings (Berlin et al. 2015; Chin et al. 2013, 2016) but focus on outputting a list of

contigs. To the best of our knowledge, Miniasm (Li 2016) is the only other assembler to produce

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

a graph as the main assembly output. However, Miniasm is based on the string graph paradigm,

which does not achieve the graph layout HINGE strives for as we empirically observe (Kamath

et al. 2016).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint

https://doi.org/10.1101/062117

Figure 2: Analysis of HINGE graphs on selected datasets. By identifying unbridged repeats,
collapsing them, and then performing resolutions based on uniquely traversable loops, HINGE
prevents mis-assemblies and produces a user-friendly interpretable assembly graph. We color the
graph nodes according to their corresponding position on the NCTC pipeline contigs. (a) On
NCTC11022, HINGE identifies an unbridged repeat, which is later resolved. (b) On NCTC9024,
HINGE identifies an unbridged triple repeat (with one inverted copy), which cannot be resolved due
to the existence of three distinct traversals of the graph. (c) HINGE identifies an unbridged triple
repeat. (d) HINGE identifies an unresolvable repeat shared by two small plasmids.

d NCTC9657�plasmid

circular
contig 1 170 kbp

circular
contig 2

70 kbp

(one plasmid) (two plasmids)

a�����NCTC11022�(E. coli) b NCTC9024�(E. coli)

c NCTC9657�(K. pneumoniae)

triple repeat
(25 kbp)

contig 1

contig 2

contig 3

3 Mbp

1 Mbp

0.7 Mbp

non-inverted
repeat

NCTC�pipeline HINGE�

NCTC�pipeline HINGE�

HINGE�NCTC�pipeline

unresolvable repeat:

780 kbp

circular
contig 1

circular
contig 2

NCTC�pipeline

4.3 Mbp

HINGE�

non-inverted
repeat (20 kb)

only one possible traversal

contig 1

contig 2 0.9 Mbp

4.3 Mbp

contig 1

contig 2

contig 3

0.7 Mbp

FALCON

3.5 Mbp

0.9 Mbp

DISCUSSION	

With HINGE, we introduce a new approach to constructing assembly graphs in a repeat-aware

fashion. While other state-of-the-art assemblers do attempt to identify bridging reads

(sometimes referred to as spanning reads) and resolve the corresponding repeats, this is

usually done as a post-processing step on the graph. HINGE, on the other hand, seeks to

identify repeats and determine whether they should be collapsed on the graph prior to the actual

construction. This way, HINGE avoids having to identify and correct graph motifs (such as the

ones created by the string graph as shown in Figure 1(f)) in a post-processing phase, which can

be difficult due to spurious and missing edges caused by the high error rates of long-read

sequencing technologies and by chimeric reads.

In order to reliably achieve this repeat-aware graph layout, several new conceptual ideas were

introduced in HINGE. First, a repeat annotation step is responsible for identifying the beginning

and end of repeats and which reads bridge some repeat. However, this type of local information

is not sufficient for the construction of a maximally resolved assembly graph. Therefore, this

information must be spread to other reads, which is accomplished with our Contagion algorithm.

Once the bridging information is known globally, HINGE utilizes a hinge-aided greedy

construction of the graph. This is also different from most state-of-the-art long-read assemblers,

which rely on the string graph paradigm. Our approach bears similarities with the Best Overlap

Graph approach in its goal of constructing a sparse overlap graph, but takes advantage of

hinges as a way to achieve this goal with maximal repeat resolution. Finally, the sparse nature

of the constructed graphs allows HINGE to identify loops that admit a single traversal and can

thus be resolved. The conceptual contributions of HINGE are discussed in more detail in the

METHODS section.

As an OLC assembler, in order to produce high quality assemblies, HINGE relies on good

Overlapping and Consensus modules. In its current implementation, HINGE was designed to

work with the output of DALIGNER (Myers 2014), and the consensus is performed using a

variant of the consensus module of FALCON (Chin et al. 2016) together with a straightforward

majority-vote finishing step. These choices are not essential to the workings of our pipeline.

Therefore, integrating HINGE with other overlapping tools such as MHAP or Minimap can be

done if different levels of alignment sensitivity or memory usage are required. Similarly, different

consensus and polishing modules such as Quiver (Chin et al. 2013) and Racon (Vaser et al.

2016) can be used, according to the desired point in the accuracy-computation tradeoff.

Through a novel approach to repeat resolution and graph representation, HINGE brings a fresh

perspective to the assembly problem. By focusing on the construction of a maximally resolved

assembly graph in a user-friendly fashion, HINGE is well aligned with the recent push for the

standardization of graph references, as opposed to the traditional contig representation. The

HINGE graph is a natural representation of a set of possible assemblies, and is amenable to

further repeat resolution, which can be attempted using additional long-range information such

as paired-end reads, Hi-C reads, or by leveraging biological insight. Finally, we point out that

while the repeat complexity is relatively mild in the bacterial genomes we consider (as

evidenced by the large number of finished assemblies), it is much more severe in higher

organisms (Koren et al. 2013). This highlights the importance of the careful treatment to repeats

carried out by HINGE and the value of the proposed method to genome assembly.

One important aspect regarding the notion of maximal repeat resolution is that it assumes that

long contiguous matches identified in the read alignment step must correspond either to the

same segment on the genome or to repeats whose copies are similar enough that they should

be merged in the graph. However, there may still be a small level of divergence between these

copies that is below the sequencing error rates and cannot be detected by the aligner. In

principle, this divergence may allow a final “phasing” or “unzipping” step, similar to what is used

in FALCON-Unzip (Chin et al. 2016a), to resolve these repeats. Utilizing these small levels of

divergence to phase or to score the different traversals of a repeat according to their likelihood

is a future direction for improvement of the HINGE pipeline.

METHODS	

The HINGE assembly pipeline is an OLC pipeline designed to assemble long reads. The overall

workflow is depicted in Figure 3, and is explained in detail in this section. As the default

parameters and auxiliary tools were selected to optimize the pipeline for PacBio reads, we focus

the discussion on this setting.

READ	DATABASE	AND	ALIGNMENT		

We use DAZZ_DB (Myers 2016b) to maintain a database of the PacBio reads. We use

DALIGNER (Myers 2014) to obtain pairwise alignments between all reads. We point out that

HINGE does not heavily rely on specifics of the DALIGNER output, and can be adapted to work

with other aligners as well.

Figure 4: HINGE pipeline: (a) The input to the HINGE pipeline is a set of long error-prone
reads. (b) Chimeric reads are detected through their pile-o-grams, and are discarded. (c) The
beginning/end of repeats are annotated on the reads. This is done by detecting a sharp
increase/decrease in the number of alignments on a read. The repeat annotations are also
identified as bridged or unbridged. (d) Maximal reads (i.e., reads that are not contained in other
reads) are selected, and fed to the contagion algorithm, which is responsible for spreading the
information about which repeats are bridged to all the reads, allowing us to place exactly one in-
hinge and one out-hinge on the reads that originated from unbridged occurrences of a repeat.
(e) The set of maximal reads (some of which are no hinged) is the input to the hinge-aided
greedy assembly. (f) After obtaining the read-overlap graph, we resolve repeats that admit only
one traversal. (g) Finally, by mapping all the reads onto the resulting overlap graph, we use
standard consensus methods to generate contigs.

reads

chimeric readregular read

read filtering

hinge-aided
greedy assembly

alignment
and consensus

all reads

loop resolution
on graph

… CTAGGTAC …

a b

e

f g

d hinge placement

in-hingeout-hinge

unbridged repeat
annotation

bridged repeat
annotation

c� repeat annotationcontagion
algorithm

maximal reads

✔️
✖️

NO	INITIAL	ERROR-CORRECTION	STEP	

Unlike most available long-read assembly pipelines, HINGE bypasses an initial error correction

step. To the best of our knowledge, Miniasm (Li 2016) is the only other OLC assembler that

dispenses with this step. Abruijn (Lin et al. 2016) also has no error-correction step, though it is

not based on the OLC paradigm. The idea of error-correction-free assembly was also utilized in

(Lien et al. 2016; Tørresen et al. 2016). The fact that long-read aligners like DALIGNER (Myers

2014) can obtain pairwise alignments at error rates around 15% allows us to use this approach,

and defer the error correction to the final consensus step.

CHIMERIC	READ	FILTER	

Chimeric reads are the result of a sequencing error, and are usually made up of multiple

segments that originate from different parts of the genome. If not properly handled, these reads

create mis-assemblies, and different techniques have been put forward to detect chimera (Miller

et al. 2008a; Li 2016). HINGE's chimera filter unit is the first place in the pipeline where the

visualization provided by pile-o-grams (Supplemental Figures S19 and S20) is useful. We mark

a read segment as chimeric if the set of reads aligned to it undergoes an abrupt change. On the

pile-o-gram, as shown in Figure 4(b), one sees a clear discontinuity in the set of alignments

(blue segments) of a read. We also mark a read segment as chimeric if the number of matches

goes below a fixed threshold. For each read, we keep the longest segment without any chimeric

segments. If this segment is shorter than a threshold, we discard the read completely.

REPEAT	ANNOTATION	

One of the main distinctive features of HINGE is a pre-assembly step responsible for annotating

the beginning and the end of repeats on the reads. These repeat annotations will later be used

for placing hinges on the reads, which in turn will be instrumental in the graph layout step. The

repeat annotation is done by detecting the start/end of a large number of matches on a read. On

the pile-o-gram (Supplemental Figures S19 and S20), this visually corresponds to a large pile of

matches starting/ending at the same point, as shown in Figure 3(c). We note that relying on

coverage gradients rather than coverage itself makes HINGE immune to coverage fluctuations.

We then verify whether the repeat annotation corresponds to a repeat that is bridged by that

read. Intuitively, one could attempt to do this by identifying both a sharp increase and a sharp

decrease in the number of matches on a read. However, as it turns out, such an approach can

fail in the presence of more complex repeat patterns such a repeat within a longer repeat (see

Supplemental Figure S19(e) for an illustration). Therefore, a more careful processing of the

matches on a read is needed to identify the bridging condition. HINGE determines the bridging

condition by checking whether most of the matches starting on a repeat annotation also end on

a repeat annotation. If that is the case, the repeat is assumed to be bridged, and the annotation

is flagged as such (red annotations in Figure 3(c)). Thus at the end of this step we have repeat

annotations on all reads, and these annotations are labeled as bridged/unbridged according to

the local information provided by the reads’ alignments. The next step, the Contagion algorithm,

is applied to this set of annotated reads, after we filter out reads that are fully contained in other

reads (keeping only maximal reads).

THE	CONTAGION	ALGORITHM	

Notice that this local information about the bridging of repeats may be misleading. For example,

the pile-o-gram of read u in Figure 4(a) may suggest that u lies partially on an unbridged repeat.

However, that repeat might still be bridged by a different read, as in the case of read v in Figure

4(a). Therefore, HINGE proceeds to “spread” the local bridging information of each read to

other reads using the Contagion algorithm. At a high level, this algorithm can be thought of as

constructing a contagion graph (see Figure 4(b)) with nodes being the repeat annotations, and

edges between repeat annotations that correspond to the beginning (or end) of the same repeat

(possibly from different copies of the same repeat). Annotations corresponding to the

beginning/end of the same repeat are identified based on alignments: if two reads have an

annotation corresponding to the beginning (resp. end) of a repeat and have matching segments

after (resp. before) the annotation, the two annotations are connected in the graph. The edge

points in the direction of the read that extends the most into the repeat. Moreover, repeat

ba
unbridged repeatbridged repeat

alignments
on read u

read u
end of repeat
annotation

read v
start of repeat

annotation

Figure 5: (a) Sharp changes in the number of alignments give rise to repeat annotations on each read. If
a read is verified to bridge a repeated, as in the case of read v, the corresponding read annotations are
marked as such (shown as red nodes). (b) The Contagion graph is formed by having all repeat
annotations as nodes, and using edges to mark annotations that correspond to the beginning (or end) of
the same repeat. As illustrated here for NCTC11022, connected components with no bridged repeat
annotations will give rise to hinged reads, which leads to bifurcations on the graph. The repeats
corresponding to other connected components stay resolved in the graph.

annotations that have been identified as the beginning/end of a bridged repeat are marked as

such (red nodes in Figure 4(b)).

As illustrated in Figure 4(b), this graph has two connected components for each repeat (the

yellow and pink components correspond to the beginning and end of an unbridged repeat). In

this graph, repeat annotations corresponding to bridged repeats are thought of as “infected”

(shown as red nodes) and can spread the “bridging condition” to the other repeat annotations in

the same connected component. If a connected component does not contain any infected

repeat annotation, it corresponds to the beginning/end of an unbridged repeat and will

eventually lead to a bifurcation on the graph (see Hinge-Aided Greedy Layout), as shown in

Figure 4(b).

The Contagion algorithm processes the contagion graph to kill repeat annotations that will not

be useful in the overlap graph construction. In particular, this infecting and killing process

performs two tasks: (1) repeat annotations corresponding to bridged repeats should cause other

annotations corresponding to the same repeat to also be marked as bridged and ultimately

killed; (2) if two repeat annotations correspond to the beginning (or end) of the same repeat, the

one extending the most into the repeat should be kept, while the other one should be killed. This

global processing of the repeat annotations and bridging condition is important so that ultimately

we only place one in-hinge and one out-hinge for each unbridged repeat (on the sink node of

the corresponding connected component).

In more detail, the contagion algorithm comprises three steps. In the first step, we remove all

annotations whose connected component on the contagion graph is small. For instance, the

gray-colored nodes in Figure 4(b) correspond to small connected components that are deleted.

Typically, these small components are the result of imprecise placement of repeat annotation on

reads, which then lead to them not matching other repeats annotations that correspond to the

beginning/end of the same repeat. Hence, deleting these small components prevents us from

creating multiple hinges corresponding to the beginning/end of the same repeat.

In the next step, we look for pairs of repeat annotations connected by an edge in the contagion

graph (i.e., corresponding to the beginning/end of the same repeat) and such that the

corresponding reads have an overlap. (Notice that by an overlap, we mean a match between

the suffix of a read and the prefix of another read. If the match instead occurs at the interior of at

least one of the reads, we refer to it as an internal match.) For every such pair, we kill the

annotation on the read that extends the least into the repeat. For an illustration of this step,

consider the two unbridged repeats in Figure 5(a). The reads covering the start of each repeat

(u1, u2, u3) have a start-repeat annotation at the start of the repeat. The reads covering the end

of each repeat (v1, v2, v3) have an end-repeat annotation at the end of the repeat. As shown in

Figure 5(b), the start-repeat annotation on u2 is killed by the start-repeat annotation on u1

because u2 and u1 have and u2 extends more into the repeat. Similarly, the end-repeat

annotation at v2 is killed due to the overlap with v1. At the end of this step, we have that exactly

one read covering each copy of an unbridged repeat has a start-repeat annotation on it (and

exactly one read has an end-repeat annotation on it for each copy of the repeat). In addition, we

point out that when a read has its repeat annotation killed by an annotation from a bridged

repeat, we mark this annotation as "poisoned". The reason for the term is that a poisoned read

would be “deadly” for a standard greedy assembly algorithm, as it would lead to a mis-

assembly.

The third step of the Contagion algorithm is similar to the second step but instead of looking for

matching annotations whose reads have an overlap, we look for matching annotations whose

reads have an internal match. For every such pair of annotations, we keep the one on the read

that extends the most into the repeat, and kill the other one. As illustrated in Figure 5(c), this

causes the start-repeat annotation on u3 to be killed by the start-repeat annotation on u1 and the

end-repeat annotation on v1 to be killed by the end-repeat annotation on v3. At the end of this

step, we have one in-hinge on u1 and one out-hinge on v3. We point out that in this step we only

consider non-poisoned reads.

Finally, all surviving annotations for the start of unbridged repeats are marked as in-hinges and

the annotations for the end of unbridged repeats are marked as out-hinges. One can formally

show that under the assumption that no significant alignment is missed in the initial Overlap

step, the contagion algorithm will place exactly one in-hinge and one out-hinge among the reads

that originated from the set of unbridged occurrences of a repeat, and no hinge on the reads

from the bridged occurrences of a repeat.

Figure 5: The Contagion Algorithm: (a) Two unbridged repeats are shown as orange
segments. (b) The contagion algorithm first kills the start-repeat annotation at u2 (due to its
overlap with u1) and the end-repeat annotation at v2 (due to its overlap with v1). (c) The
contagion algorithm then kills the start-repeat annotation on u3 (due to its internal match with u1),
and the end-repeat annotation on v1 (due to its internal match with v3). (d) Finally, an in-hinge is
placed on u1 and an out-hinge is placed on v3. During the hinge-aided greedy assembly step,
hinges allow u2 and u3 to choose the in-hinge at u1 as their successor. Similarly, v1 and v2 pick
the match starting at the out-hinge on v3 as their predecessor match.

HINGE-AIDED	GREEDY	ASSEMBLY	ALGORITHM	

A key distinction of HINGE’s approach to assembly lies in its graph layout step. Many OLC

assemblers adopt the string graph paradigm (Myers 1995, 2005), which often produces

assembly graphs that are unnecessarily dense. HINGE replaces the string graph algorithm with

a variant of the greedy algorithm. This follows a recent line of work that found that variants of

the greedy algorithm (such as the best-overlap-graph (BOG) algorithm (Miller et al. 2008b), “not-

u2

a

b

c

d
u1

u3

v3

v2

v3

v3
v2

v1

u2
u1

u3

u1u2

u1u2

u1u2

v1 v2

v1 v2

v1 v2

u3

u3

u3

v3

v3

v3

so-greedy” algorithm (Shomorony et al. 2016b) and the greedy merging algorithm (Shomorony

et al. 2016a)) can produce a sparse overlap graph without mis-assemblies.

Notice that at the end of the contagion algorithm, we only have one in-hinge and one out-hinge

for each unbridged repeat. In the graph layout step, we employ a variation of the greedy

algorithm that utilizes the hinge information. Each read picks its left extension to be its longest

prefix match, and its right extension to be the longest suffix match. However, unlike in the

classical greedy algorithm, we do not restrict our search to overlaps. In addition to (prefix-suffix)

overlaps, we also consider internal matches. Hence a read is allowed to find its

successor/predecessor match to be an internal segment of another read, as long as the match

starts on a hinge. An illustration of how internal matches are helpful in producing the correct

graph layout, and a comparison with the classical greedy algorithm is illustrated in Supplemental

Figure S2.

THE	ROLE	OF	POISONED	READS	

Another important aspect of the hinge-aided layout step is how the read poisoning information is

used. As mentioned above, in the Contagion algorithm, whenever a read has its start/end repeat

annotation killed by another overlapping read, we label it as poisoned. During the hinge-aided

greedy algorithm, reads are prevented from picking a poisoned read as its

predecessor/successor, guaranteeing that the two copies (or occurrences) of a bridged repeat

remain separate.

This process is illustrated in Figure 6. In the scenario shown in Figure 6(a), read u1 is initially

given a start-repeat annotation. However, this start-repeat annotation is removed by the

contagion algorithm, as the repeat is bridged by read w. In this case, we keep a poisoned

annotation on read u1. When a read has a poisoned start-repeat annotation, it cannot be chosen

as a predecessor of another read if the match starts after the start-repeat annotation. As shown

in Figure 6(b), according to a non-hinge-aided greedy assembly algorithm, v2 would choose u1

as its predecessor. However, as the match on u1 starts after the poisoned start-repeat

annotation, we do not allow v2 to choose u1 as a predecessor. Instead we look for the next best

option, which in this case is u2. This prevents a mis-assembly. The poisoning of end-repeat

annotations works in an analogous way.

Figure 6 The Poisoning Algorithm: Read poisoning is part of the process by which we prevent
a bridged repeat from collapsing on the graph. (a) In this scenario, read u1 is initially given a
start-repeat annotation, which is killed in the contagion algorithm, as the repeat is bridged by
read w. In this case, we keep a poisoned annotation on read u1. (b) When v2 looks for its best
predecessor, it skips u1 due to the poisoned repeat annotation, preventing a mis-assembly.

In addition, we point out that the concept of poisoning is what allows the proper collapsing of the

unbridged copies of repeats with three or more copies. Notice that during the third stage of the

Contagion algorithm, we only consider non-poisoned reads. Therefore, we only deal with reads

�

!" !#
$#

!"
!#

$#

$#!#

!"

a

b

c

coming from unbridged copies of the repeat. As a result, the set of all unbridged occurrences of

a repeats induces exactly one in-hinge and one out-hinge. On the other hand, all reads from the

bridged copies are poisoned, and receive no hinge.

REPEAT	RESOLUTION	

Another new ingredient introduced by HINGE is the use of global information to resolve repeats.

Once constructed, the graph allows us to identify certain repeats that, although unbridged, can

still be resolved based on the graph layout. As illustrated in Figure 3(a) and Supplemental

Figure S15(a), when a repeat loop allows only one possible traversal, the loop can be

untangled. We point out that the sparse and Eulerian-like nature of the graph produced by the

hinge-aided greedy algorithm are important to allow this repeat resolution to be done in an

automated fashion. We also point out that the loop resolution step is based on a parsimony

principle, but it could be potentially incorrect if the loop corresponds to a plasmid, to a separate

chromosome, or to the genome of a different species present in the sample. The parameter

MAX_PLASMID_LENGTH sets the maximum length of a loop that should be considered a

potential plasmid. HINGE will only resolve loops longer than MAX_PLASMID_LENGTH, and this

behavior can be optionally turned off by setting MAX_PLASMID_LENGTH to a number longer

than the genome length.

HANDLING	READ	ORIENTATION	AND	DOUBLE-STRANDEDNESS	

Since the orientation of the reads is unknown, as it is typical in all assembly pipelines one must

consider each read and its reverse complement. Hence for each read we in fact create two

nodes in the graph, and the constructed graph is symmetric. At the end of the graph

construction, for visualization purposes, we overlay each node and its reverse complement.

CONSENSUS	

In order to generate consensus sequences for the resulting graph contigs, we first create a draft

assembly by simply concatenating sections of the error-prone reads corresponding to

unbranched paths on the graph. We then consider the alignment of all the original reads onto

these draft contigs, and utilize a simple majority-based consensus to clean up these draft

sequences. We reuse some code from FALCON (Chin et al. 2016) to perform this task. The

result is output as a GFA file. We point out that the final contig sequences can be optionally run

through Quiver (Chin et al. 2013) to further polish the assembly.

GRAPH	VISUALIZATION	

All assembly graphs produced by HINGE were visualized using Gephi (Bastian et al. 2009).

SOFTWARE	AVAILABILITY	

The HINGE assembler is available online at https://github.com/fxia22/HINGE and in the

Supplemental Source Code. The analyses presented in Figure 2 can be reproduced in

https://github.com/govinda-kamath/HINGE-analyses.

ACKNOWLEDGEMENTS	

The authors would like to thank Shoudan Liang and Jason Chin of Pacific Biosciences for useful

discussions, and Lior Pachter of UC Berkeley for helpful comments and suggestions during the

preparation of this manuscript. The authors are grateful to Nick Grayson and Julian Parkhill of

The Wellcome Trust Sanger Institute for feedback and help with interpreting the results on the

NCTC datasets. GMK would also like to thank John Lamping of Human Longevity Inc., chatting

with whom drove him to take a data-driven approach to this project. Finally, GMK, IS, and FX

would like to thank Gene Myers for presentations and work that were an inspiration to them, and

for several tools that made this work possible.

AUTHOR	CONTRIBUTIONS	

GMK and IS designed the algorithm. FX implemented a testbed to test and experiment with

assembly algorithms. GMK, IS, and FX implemented the HINGE algorithm, ran it on the dataset,

visualized and interpreted the results. TAC and DNT supervised the project. All authors wrote

the paper.

DISCLOSURE	DECLARATION	

The authors declare no conflict of interest or competing financial interests.

REFERENCES	

Bastian M, Heymann S, Jacomy M. 2009. Gephi: an open source software for exploring and

manipulating networks. http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015a. Assembling large

genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol

33: 623–630.

Bresler G, Bresler M, Tse D. 2013. Optimal assembly for high throughput shotgun sequencing.

BMC Bioinformatics 14 Suppl 5: S18.

Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum C, Jaffe

DB. 2008. ALLPATHS: de novo assembly of whole-genome shotgun microreads.

Genome Res 18: 810–820.

Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A,

Huddleston J, Eichler EE, et al. 2013a. Nonhybrid, finished microbial genome

assemblies from long-read SMRT sequencing data. Nat Methods 10: 563–569.

Chin C-S, Chen-Shan C, Paul P, Sedlazeck FJ, Maria N, Concepcion GT, Alicia C, Christopher

D, Ronan O ’malley, Rosa F-B, et al. 2016a. Phased Diploid Genome Assembly with

Single Molecule Real-Time Sequencing. http://dx.doi.org/10.1101/056887.

Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator: automated

circularization of genome assemblies using long sequencing reads. Genome Biol 16:

294.

Kamath GM, Shomorony I, Xia F, Courtade TA, Tse DNC. 2016. HINGE on NCTC 3000.

https://web.stanford.edu/~gkamath/NCTC/report.html (Accessed June 26, 2016).

Koren S, Harhay GP, Smith TPL, Bono JL, Harhay DM, Mcvey SD, Radune D, Bergman NH,

Phillippy AM. 2013. Reducing assembly complexity of microbial genomes with single-

molecule sequencing. Genome Biol 14: R101.

Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley

DR, Zimin A. 2016. The Atlantic salmon genome provides insights into rediploidization.

Nature.

Li H. 2016a. Minimap and miniasm: fast mapping and de novo assembly for noisy long

sequences. Bioinformatics. http://dx.doi.org/10.1093/bioinformatics/btw152.

Lin Y, Yu L, Jeffrey Y, Mikhail K, Shen MW, Pevzner PA. 2016. Assembly of Long Error-Prone

Reads Using de Bruijn Graphs. http://dx.doi.org/10.1101/048413.

Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C,

Sutton G. 2008a. Aggressive assembly of pyrosequencing reads with mates.

Bioinformatics 24: 2818–2824.

Mulyukov Z, Pevzner PA. 2002. EULER-PCR: finishing experiments for repeat resolution. Pac

Symp Biocomput 199–210.

Myers EW. 2016a. A History of DNA Sequence Assembly. Inf Technol 58: 126–132.

Myers EW. 2014a. Efficient Local Alignment Discovery amongst Noisy Long Reads. Lect Notes

Comput Sci 52–67.

Myers EW. 2005. The fragment assembly string graph. Bioinformatics 21 Suppl 2: ii79–85.

Myers EW. 2016b. thegenemyers/DAZZ_DB. https://github.com/thegenemyers/DAZZ_DB

(Accessed July 1, 2016).

Myers EW. 1995. Toward simplifying and accurately formulating fragment assembly. J Comput

Biol 2: 275–290.

Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM

and R Knut HJ, Remington KA, others. 2000. A Whole-Genome Assembly of Drosophila.

Science 287: 2196–2204.

Nagarajan N, Pop M. 2009. Parametric complexity of sequence assembly: theory and

applications to next generation sequencing. J Comput Biol 16: 897–908.

Peng Y, Yu P, Leung HCM, Yiu SM, Chin FYL. 2010. IDBA – A Practical Iterative de Bruijn

Graph De Novo Assembler. Lect Notes Comput Sci 426–440.

Pevzner PA. 1995. DNA physical mapping and alternating Eulerian cycles in colored graphs.

Algorithmica 13: 77–105.

Pevzner PA, Tang H. 2001. Fragment assembly with double-barreled data. Bioinformatics 17

Suppl 1: S225–33.

Shomorony I, Kamath GM, Xia F, Courtade TA, Tse DNC. 2016a. Partial DNA Assembly: A

Rate-Distortion Perspective. http://arxiv.org/abs/1605.01941.

Shomorony I, Kim SH, Courtade TA, Tse DNC. 2016b. Information-optimal genome assembly

via sparse read-overlap graphs. Bioinformatics 32: i494–i502.

Tarhio J, Ukkonen E. 1988. A greedy approximation algorithm for constructing shortest common

superstrings. Theor Comput Sci 57: 131–145.

Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, Walenz BP, Knight J, Ekholm

JM, Peluso P. 2016. An improved genome assembly uncovers prolific tandem repeats in

Atlantic cod. bioRxiv 060921.

Ukkonen E. 1992. Approximate string-matching with q-grams and maximal matches. Theor

Comput Sci 92: 191–211.

Vaser R, Sovic I, Nagarajan N, Sikic M. 2016. Fast and accurate de novo genome assembly

from long uncorrected reads. bioRxiv 068122.

Wellcome Trust Sanger Institute. 2016. Public Health England reference collections.

http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/ (Accessed June 25, 2016).

