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ABSTRACT	

Long-read sequencing technologies have the potential to produce gold-standard de novo 

genome assemblies, but fully exploiting error-prone reads to resolve repeats remains a 

challenge. Aggressive approaches to repeat resolution often produce mis-assemblies, and 

conservative approaches lead to unnecessary fragmentation. We present HINGE, an assembler 

that seeks to achieve optimal repeat resolution by distinguishing repeats that can be resolved 

given the data from those that cannot. This is accomplished by adding "hinges" to reads for 

constructing an overlap graph where only unresolvable repeats are merged. As a result, HINGE 

combines the error resilience of overlap-based assemblers with repeat-resolution capabilities of 

de Bruijn graph assemblers. HINGE was evaluated on the long-read bacterial datasets from the 

NCTC project. HINGE produces more finished assemblies than Miniasm and the manual 

pipeline of NCTC based on the HGAP assembler and Circlator. HINGE also allows us to identify 

40 datasets where unresolvable repeats prevent the reliable construction of a unique finished 

assembly. In these cases, HINGE outputs a visually interpretable assembly graph that encodes 

all possible finished assemblies consistent with the reads, while other approaches such as the 

NCTC pipeline and FALCON either fragment the assembly or resolve the ambiguity arbitrarily.  
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INTRODUCTION	

While genome assembly has been a central task in computational biology for decades, only with 

the recent advent of long-read technologies has the goal of obtaining near-finished assemblies 

in an automated fashion become within reach. However, extracting the information present in 

long error-prone reads in order to reliably resolve repeats is still a challenge (Myers 2016a). 

Attempts to resolve repeats that are fundamentally unresolvable from the reads at hand – a 

practice that can be driven by the prospect of a higher N50 score – can lead to incorrect 

assemblies and ultimately impact downstream scientific analyses. On the other hand, a 

conservative approach that breaks the assembly at points of seeming ambiguity may fail to 

produce the longest contigs that can be constructed given the data. 

 

In this sense, an optimal assembler should be one capable of identifying and resolving all, an 

only those, repeat patterns that are resolvable given the available read data. Equivalently, this 

objective can be viewed as the construction of an assembly graph with the maximum level of 

repeat resolution that is possible given the data. If a finished assembly of the genome is 

possible, such a graph would consist of a single cycle (in the case of a single circular 

chromosome). Otherwise, the next-best objective would be the construction of a repeat graph 

(Pevzner and Tang 2001; Mulyukov and Pevzner 2002) where long repeats are collapsed into a 

single path. Such paths capture inherent ambiguities about the target genome that cannot be 

resolved given the data. Thus, constructing the maximally resolved assembly graph 

corresponds to minimizing the number of repeat-induced collapsed segments.  

 

As a prerequisite to this task, one must first understand which repeat patterns can be reliably 

resolved given the set of reads. Early studies of this fundamental problem appeared in the 
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context of sequencing by hybridization (Ukkonen 1992; Pevzner 1995), and were later extended 

to shotgun sequencing through the notion of bridging (Bresler et al. 2013). A repeat is said to be 

bridged if at least one read completely contains one of its copies (throughout the paper, we use 

the word copies to refer to the distinct occurrences of a repeat element). The notion of bridging 

allows us to define a maximally resolved assembly graph as the graph where only segments 

corresponding to unbridged repeats are collapsed, as discussed in Supplemental Figure S1. 

The de novo construction of such a graph yields the longest contigs that can be reliably 

constructed, and also describes the plausible arrangements of these contigs in the target 

genome.  

 

Assembly graphs have been a key component in assembly pipelines since the early days of 

sequencing projects (Myers et al. 2000). Approaches to assembly graph construction are 

customarily divided into two categories: de Bruijn graph-based approaches, and overlap-layout-

consensus (OLC) approaches. In the de Bruijn framework (Mulyukov and Pevzner 2002; 

Pevzner and Tang 2001), the set of all k-mers is extracted from the reads, and used to build a 

graph where two k -mers that appear consecutively in a read are connected by an edge. This 

construction has the desirable property that the resulting graph is essentially Eulerian, and 

repeats longer than k base pairs are naturally collapsed into a single path. Furthermore, the 

graph construction is typically followed by repeat resolution steps using reads that bridge 

repeats. This allows several de Bruijn graph-based assemblers to produce a maximally resolved 

assembly graph where only unbridged repeats remain collapsed (Butler et al. 2008; Mulyukov 

and Pevzner 2002; Peng et al. 2010; Pevzner and Tang 2001). 

 

In the context of third-generation long-read sequencing, however, standard de Bruijn graph 

approaches have not been as successful as they were in the case of short-read sequencing. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint 

https://doi.org/10.1101/062117


 

 

Due to the high error rates associated with third-generation platforms, a large number of 

spurious k-mers is created, disrupting the structure of the de Bruijn graph. Recently, the concept 

of solid k-mers was proposed as a way to construct an "approximate" de Bruijn graph on a 

restricted set of reliable k-mers (Lin et al. 2016). However, since overlapping reads only share a 

handful of solid k-mers, the resulting graph lacks the attractive features of de Bruijn graphs. In 

particular, the Eulerian structure is compromised and repeats are no longer properly collapsed 

into single paths. Overlap-based approaches, on the other hand, are more robust to read errors 

since they directly connect reads based on overlaps instead of first breaking them into k-mers. 

In fact, most available long-read assemblers (Chin et al. 2013, 2016; Berlin et al. 2015; Li 2016) 

are based on the so-called overlap-layout-consensus (OLC) pipeline. 

 

While de Bruijn graphs are Eulerian, overlap graphs are Hamiltonian; i.e., the underlying 

genome sequence corresponds to a cycle that traverses every node (read) in the graph. In 

addition to well-known computational challenges (Nagarajan and Pop 2009), the Hamiltonian 

paradigm does not yield a natural representation of repeat patterns, and the graph is typically 

riddled with unnecessary edges. In order to combat these issues, the string graph approach 

(Myers 1995, 2005) was proposed, originally for the Celera assembler (Myers 2016a; Myers et 

al. 2000), and later adopted by several assembly pipelines (Berlin et al. 2015; Chin et al. 2013, 

2016; Li 2016). Built via a transitive reduction procedure, the string graph is an overlap graph 

where the unique, non-repetitive parts of the genome correspond to simple, unbranched, paths. 

However, long repeats -- both bridged and unbridged -- may result in undesirable graph motifs. 

In practice, only heuristics are used to combat these motifs, and building a maximally resolved 

overlap graph is challenging.  
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RESULTS	

We propose HINGE as a way to build an assembly graph where only the segments 

corresponding to unbridged repeats are collapsed. This objective, which we refer to as 

maximally resolved assembly graph, is illustrated in Figure 1(a)-(e). As depicted in Figure 1(f), 

this goal is naturally achieved in a de Bruijn graph framework, but not within an overlap graph-

based framework due to the motifs created by long repeats. HINGE seeks to simultaneously 

attain the error resilience of overlap graph-based approaches and the appealing graph structure 

and optimal repeat resolution capability of de Bruijn graphs. Next we briefly outline the main 

algorithmic innovations that allow HINGE to achieve this goal, and present results on several 

datasets. 

 

 

ALGORITHMIC	CONTRIBUTIONS	

HINGE is an assembler that follows the Overlap-Layout-Consensus (OLC) paradigm. Its main 

algorithmic innovation lies in how it exploits the alignments obtained in the Overlap phase in 

order to identify resolvable repeats and construct the graph layout in a repeat-aware fashion. 

Next we describe the main ideas that go into the Layout step. We defer a description of the 

overlap and consensus steps to the METHODS section. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint 

https://doi.org/10.1101/062117


 

 

Repeat annotation and hinging reads: HINGE utilizes the alignment information obtained in 

the Overlap step in order to equip some of the reads with hinges. Hinges are placed at the 

beginning and end of unbridged repeats, and will ultimately lead to bifurcations on the graph, as 

illustrated in Figure 1(f). The first step towards hinging the reads, as illustrated in Figure 4(a), is 

to find sharp gradients in the number of alignments on a read and annotate them as beginning 

or end of repeats. Next, we identify reads that bridge a repeat by finding reads that have both an 

annotation for the beginning of a repeat and an annotation for the end of the same repeat. 
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Figure 2: The goal of HINGE is to produce a maximally resolved assembly graph, where repeats that are bridged by 
the reads are not collapsed, and repeats that are unbridged are collapsed in a natural way, similar to what is 
achieved with de Bruijn graphs. (a) If at least one of the two copies of a repeat is bridged (green segments), the 
maximally resolved assembly graph should separate the two copies. In (b-e), we illustrate an unbridged repeat, an 
unbridged inverted (i.e., reverse-complemented) repeat, an unbridged triple repeat, and a single-bridged triple repeat, 
and the assembly graph obtained by collapsing segments corresponding to unbridged repeats. Notice that in (b,e) the 
graph admits a single traversal and can be further resolved, while in (c,d) the graph admits two distinct traversals and 
cannot be further resolved (see Supplemental Figure S15). (f) The representation of a bridged and an unbridged 
repeat in the de Bruijn graph approach, in the standard string graph approach, and according to HINGE. The de 
Bruijn graph approach collapses the repeated segment, which allows a natural repeat resolution step if a bridging 
read is found. The representation in the string graph (if there is no read entirely contained in the repeat) is an 
hourglass-like motif. HINGE emulates the de Bruijn graph layout, but in an overlap graph framework. 
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Finally, we spread the information of which repeats are bridged to other reads through a 

procedure that we term the Contagion algorithm (see Methods and Figure 5). 

 

Hinge-aided greedy overlap graph construction: The Contagion algorithm allows HINGE to 

place exactly one in-hinge and one out-hinge on the reads that originated from unbridged 

occurrences of a repeat. HINGE can then create a sparse overlap graph by using a hinge-aided 

greedy graph construction. In essence, we pick a best predecessor and a best successor for 

each read, as in the classical greedy algorithm (Tarhio and Ukkonen 1988) or in the best-

overlap-graph approach (Miller et al. 2008a). However, since our reads are hinged, we also 

allow a read’s successor or predecessor to be the interior of another read, as long as the match 

starts on a hinge. When this occurs, a bifurcation is formed on the graph, corresponding to the 

beginning or the end of an unbridged repeat.  

 

As illustrated in Figure 1(f), this hinge-aided approach allows us to obtain the attractive 

properties of a de Bruijn graph layout, but within the OLC framework. A comparison with the 

traditional greedy approach is provided in Supplemental Figure S2. We point out that for higher 

fold repeats, where a subset of the copies may be unbridged, a more careful handling of hinges 

is required, and that is achieved using a new procedure that we call Poisoning, described in the 

METHODS section and in Figure 6. 

 

VALIDATION	OF	HINGE	ON	DATASETS	WITH	GROUND	TRUTH	

In Supplemental Figures S3, S4, S5, and S6, we present validation results on simulated 

datasets. We created sequences with specific patterns of repeats, and simulated long error-

prone reads, using the DAZZ-DB simulator. We then verified that, when run on these datasets, 

HINGE produces a maximally resolved assembly graph. In Supplemental Figure S7, we validate 
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the structural integrity of our assembly on an Oxford Nanopore R9 E. coli dataset. In 

Supplemental Figure S8, we validate the structural and sequence integrity of our assembly on a 

PacBio Saccharomyces cerevisiae dataset.  

 

In Supplemental Table S2, we present validation results on E. coli datasets produced by PacBio 

and Oxford Nanopore sequencers. In both of these cases, HINGE produces a single circular 

contig and there is no misassembly. We also compare our assembly with the assembly 

produced by the NCTC pipeline (HGAP followed by Circlator) on 10 randomly selected datasets. 

We verify that the assemblies agree and have high identity scores in all cases. 

 

EVALUATION	ON	THE	NCTC	DATABASE	

We evaluated HINGE on the 997 bacterial genomes of the NCTC 3000 database that were 

publicly available at the time of writing this manuscript (Wellcome Trust Sanger Institute 2016). 

The accession number for these datasets is provided in Supplemental Tables S1 and S3. Each 

of these datasets consists of PacBio SMRT long reads with coverage depths mainly in the 

range 30x to 80x. While the repeat complexity is relatively mild in bacterial genomes, we chose 

to evaluate HINGE on these datasets for two reasons: it allows us to carefully verify whether the 

HINGE assembly graphs satisfy our goal of maximal repeat resolution, and it allows us run 

experiments on a large number of datasets, thus avoiding overfitting. 

 

The current NCTC manual assembly pipeline uses the HGAP assembler (Chin et al. 2013) to 

produce a list of contigs, and Circlator (Hunt et al. 2015) to circularize contigs. The assembly 

graphs produced by HINGE with no parameter tuning for each of these datasets are available 

online (Kamath et al. 2016) and in Supplemental Table S4, along with the contig statistics of the 

NCTC pipeline results, and the assembly graph produced by Miniasm (Li 2016). We point out 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint 

https://doi.org/10.1101/062117


 

 

that other state-of-the-art assemblers, in particular FALCON (Chin et al. 2016), have runtime 

above one order of magnitude greater than HINGE (see Supplemental Figure S11), making a 

comparison on the entire NCTC database computationally prohibitive.  

 

 

Table 1: Finished assemblies on all available NCTC datasets and comparison with Miniasm: 
Given the output graph of HINGE we classify the assembly into four categories. A finished circular 
assembly corresponds to a case where all nodes (small plasmids excepted) lie on a single circle. A 
finished circular assembly with multiple traversals corresponds to a graph where all nodes can be 
visited by a circular path, but there is more than one such path. We point out that we classify such 
an output as finished because such a graph can be seen as simultaneously capturing a few (usually 
two) assemblies, all of which would be considered finished according to the previous rule. A finished 
assembly is said to lack circularization if a single non-circular path can traverse all nodes on the 
graph (small plasmids excepted). If the graph produced by HINGE does not fall into the previous 
three categories, we classify it as a mis-assembly/fragmented assembly. As reliable hinge 
placement requires a reasonable coverage depth, we also considered restricting our attention to the 
datasets with average coverage depth above 40. We note that Miniasm needs a circularization tool 
to circularize assemblies, and hence we report a Miniasm assembly as finished if it has only one 
contig longer than 200 kbp and fewer than ten contigs shorter than 200 kbp. The graph produced by 
HINGE and Miniasm for all these cases can be found at 
http://web.stanford.edu/~gkamath/NCTC/report.html and in Supplemental Table S4 along with the 
corresponding classification. As can be seen on this report, the rule for determining when a Miniasm 
assembly is finished is often quite lenient. 
  

	 Coverage	≥	40x	 All	coverages	

Number	of	NCTC	datasets	 816	 997	
HINGE	finished	circular	assembly	
(single	traversal)	 631	

691	
729	

690	
782	

822	HINGE	finished	assembly	
(lacking	circularization)	 60	 92	

HINGE	finished	circular	assembly	
(multiple	traversals)	 38	 40	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint 

https://doi.org/10.1101/062117


 

 

 

	 Coverage	≥	40x	 All	coverages	

Number	of	NCTC	datasets	 688	 834	

NCTC	manual	pipeline	
finished	assemblies	 517	 592	

Miniasm	finished	assembly	
(not	circularized)	 513	 592	

HINGE	finished	circular	assembly	
(single	traversal)	 531	

583	
583	

660	HINGE	finished	assembly	
(lacking	circularization)	 52	 77	

HINGE	finished	circular	assembly	
(multiple	traversals)	 33	 33	

 
 

Table 2: Finished assemblies on NCTC datasets where NCTC manual pipeline results are 
reported: In this table we restrict the datasets considered in Table 1 to only those for which 
NCTC reports a result for comparison. The finished assemblies for the NCTC manual pipeline 
correspond to the cases where they report one chromosomal contig or two chromosomal 
contigs (since species such as Vibrio fluvialis and Ochrobactrum anthropi are known to have 
two chromosomes). We point out that while a circularization tool (Circlator) is used in the NCTC 
pipeline, we do not have a circularization finishing step and only report the output of HINGE 
using default configurations. 
 

 

For 822 of the 997 available datasets, HINGE produced a finished non-fragmented assembly 

graph, with additional isolated small plasmids in many cases. In 40 of these datasets, HINGE 

identifies unresolvable repeats, and the final graph admits distinct traversals (See Table 1). In 

order to compare our results with those obtained by the NCTC manual pipeline, we restricted 

our attention to those datasets for which NCTC reports the results of their assembly. As shown 

in Table 2, even without a circularization tool, HINGE obtains significantly more finished 

assemblies than the NCTC pipeline.  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint 

https://doi.org/10.1101/062117


 

 

ANALYSIS	OF	HINGE	ASSEMBLY	GRAPHS	

Among the cases where HINGE produces an assembly graph with multiple traversals, we find 

many examples where the intuitive layout of the graph produced by HINGE resembles the 

idealized cases in Figure 1(a-e), and allows one to visually assess the unresolvable repeat 

pattern in the genome. Next, we analyze three such cases in depth, and compare the graph 

produced by HINGE with the contigs produced by the NCTC pipeline. We see that by focusing 

on obtaining a maximally resolved assembly graph rather than large contig N50 values, HINGE 

prevents several mis-assemblies the NCTC pipeline incurred. In Supplemental Figure S9, we 

present nine additional such cases. In Supplemental Figure S10, we present several cases 

where HINGE resolves all repeats, producing a finished circular assembly, while the NCTC 

pipeline instead fragments the assembly. In addition, in Supplemental Figures S12, S13, and 

S14 we provide the same comparisons but with FALCON (Chin et al. 2016) instead of the 

manual NCTC pipeline. 

 

In Figure 2(a), we examine NCTC11022 (Escherichia coli). In this example, the incorrect 

resolution of a 20 kbp unbridged repeat by the NCTC pipeline (see Supplemental Figure S16) 

causes the circular chromosomal contig to lose a 780 kb segment, returned as a separate 

contig. By first collapsing this repeat and then resolving it due to the existence of a unique 

traversal of the graph, HINGE produces a single large chromosomal contig of length 5.1 Mbp. 

The nodes in the HINGE graph are colored according to the position the corresponding reads 

align to in the NCTC pipeline contigs.  

  

On the NCTC9024 dataset (Escherichia coli) (Figure 2(b)), the NCTC pipeline returned two long 

contigs, one of 4.3 Mbp and one of 0.9 Mbp. The HINGE graph emphasizes the existence of a 

triple repeat which, upon further inspection (See Supplemental Figure S17), is seen to be of 
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length 20 kbp, unbridged, and with one inverted copy. Even though this repeat is unbridged, 

both the NCTC pipeline and FALCON resolve one of its copies, but in distinct ways. As we point 

out in Supplemental Figure S9, incorrect resolution of an inverted repeat can produce a false 

inversion of a long contig. In fact, the NCTC assembly and the FALCON assembly disagree on 

the orientation of the yellow-to-orange segment, and one of them must be creating an incorrect 

inversion of more than 1 Mbp (the orange-to-yellow segment). By collapsing the repeat, HINGE 

avoids a potential mis-assembly.  

 

In Figure 2(c), we consider NCTC9657 (Klebsiella pneumoniae). In this example, the NCTC 

pipeline returned seven unidentified contigs (three large ones), but HINGE returns a single large 

chromosomal connected component, and three small plasmids. In this case, HINGE produces a 

graph motif characteristic of an unbridged triple repeat, similar to Figure 1(d). As shown by a 

coverage analysis in Supplemental Figure S18(a), this is indeed a triple repeat and contig 1 of 

the NCTC pipeline incorrectly resolves it, creating a mis-assembly. In addition, we examine the 

plasmids produced by the NCTC pipeline in Figure 2(d), and note that two of them share an 

unbridged repeat (see also Supplemental Figure S18(b)). Therefore, there are two possible 

resolutions (two plasmids or a single, longer, plasmid), and HINGE keeps them merged on the 

graph to retain this unresolvable ambiguity. In Supplemental Figure S12, we verify that the 

performance of FALCON (Chin et al. 2016) on the examples in Figure 2 (a) and 2(c) is similar to 

that of the NCTC pipeline. 

 

As illustrated by these examples, HINGE seeks to construct a user-friendly, informative, overlap 

graph as its main output, as opposed to most OLC assemblers, which employ assembly graphs 

in their inner workings (Berlin et al. 2015; Chin et al. 2013, 2016) but focus on outputting a list of 

contigs. To the best of our knowledge, Miniasm (Li 2016) is the only other assembler to produce 
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a graph as the main assembly output. However, Miniasm is based on the string graph paradigm, 

which does not achieve the graph layout HINGE strives for as we empirically observe (Kamath 

et al. 2016).  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/062117doi: bioRxiv preprint 

https://doi.org/10.1101/062117


 

 

 

Figure 2: Analysis of HINGE graphs on selected datasets. By identifying unbridged repeats, 
collapsing them, and then performing resolutions based on uniquely traversable loops, HINGE 
prevents mis-assemblies and produces a user-friendly interpretable assembly graph. We color the 
graph nodes according to their corresponding position on the NCTC pipeline contigs. (a) On 
NCTC11022, HINGE identifies an unbridged repeat, which is later resolved. (b) On NCTC9024, 
HINGE identifies an unbridged triple repeat (with one inverted copy), which cannot be resolved due 
to the existence of three distinct traversals of the graph. (c) HINGE identifies an unbridged triple 
repeat. (d) HINGE identifies an unresolvable repeat shared by two small plasmids. 
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DISCUSSION	

With HINGE, we introduce a new approach to constructing assembly graphs in a repeat-aware 

fashion. While other state-of-the-art assemblers do attempt to identify bridging reads 

(sometimes referred to as spanning reads) and resolve the corresponding repeats, this is 

usually done as a post-processing step on the graph. HINGE, on the other hand, seeks to 

identify repeats and determine whether they should be collapsed on the graph prior to the actual 

construction. This way, HINGE avoids having to identify and correct graph motifs (such as the 

ones created by the string graph as shown in Figure 1(f)) in a post-processing phase, which can 

be difficult due to spurious and missing edges caused by the high error rates of long-read 

sequencing technologies and by chimeric reads. 

 

In order to reliably achieve this repeat-aware graph layout, several new conceptual ideas were 

introduced in HINGE. First, a repeat annotation step is responsible for identifying the beginning 

and end of repeats and which reads bridge some repeat. However, this type of local information 

is not sufficient for the construction of a maximally resolved assembly graph. Therefore, this 

information must be spread to other reads, which is accomplished with our Contagion algorithm.  

 

Once the bridging information is known globally, HINGE utilizes a hinge-aided greedy 

construction of the graph. This is also different from most state-of-the-art long-read assemblers, 

which rely on the string graph paradigm. Our approach bears similarities with the Best Overlap 

Graph approach in its goal of constructing a sparse overlap graph, but takes advantage of 

hinges as a way to achieve this goal with maximal repeat resolution. Finally, the sparse nature 

of the constructed graphs allows HINGE to identify loops that admit a single traversal and can 



 

 

thus be resolved. The conceptual contributions of HINGE are discussed in more detail in the 

METHODS section.  

 

As an OLC assembler, in order to produce high quality assemblies, HINGE relies on good 

Overlapping and Consensus modules. In its current implementation, HINGE was designed to 

work with the output of DALIGNER (Myers 2014), and the consensus is performed using a 

variant of the consensus module of FALCON (Chin et al. 2016) together with a straightforward 

majority-vote finishing step. These choices are not essential to the workings of our pipeline. 

Therefore, integrating HINGE with other overlapping tools such as MHAP or Minimap can be 

done if different levels of alignment sensitivity or memory usage are required. Similarly, different 

consensus and polishing modules such as Quiver (Chin et al. 2013) and Racon (Vaser et al. 

2016) can be used, according to the desired point in the accuracy-computation tradeoff. 

 

Through a novel approach to repeat resolution and graph representation, HINGE brings a fresh 

perspective to the assembly problem. By focusing on the construction of a maximally resolved 

assembly graph in a user-friendly fashion, HINGE is well aligned with the recent push for the 

standardization of graph references, as opposed to the traditional contig representation. The 

HINGE graph is a natural representation of a set of possible assemblies, and is amenable to 

further repeat resolution, which can be attempted using additional long-range information such 

as paired-end reads, Hi-C reads, or by leveraging biological insight. Finally, we point out that 

while the repeat complexity is relatively mild in the bacterial genomes we consider (as 

evidenced by the large number of finished assemblies), it is much more severe in higher 

organisms (Koren et al. 2013). This highlights the importance of the careful treatment to repeats 

carried out by HINGE and the value of the proposed method to genome assembly. 

 



 

 

One important aspect regarding the notion of maximal repeat resolution is that it assumes that 

long contiguous matches identified in the read alignment step must correspond either to the 

same segment on the genome or to repeats whose copies are similar enough that they should 

be merged in the graph. However, there may still be a small level of divergence between these 

copies that is below the sequencing error rates and cannot be detected by the aligner. In 

principle, this divergence may allow a final “phasing” or “unzipping” step, similar to what is used 

in FALCON-Unzip (Chin et al. 2016a), to resolve these repeats. Utilizing these small levels of 

divergence to phase or to score the different traversals of a repeat according to their likelihood  

is a future direction for improvement of the HINGE pipeline. 

 

 

METHODS	

The HINGE assembly pipeline is an OLC pipeline designed to assemble long reads. The overall 

workflow is depicted in Figure 3, and is explained in detail in this section. As the default 

parameters and auxiliary tools were selected to optimize the pipeline for PacBio reads, we focus 

the discussion on this setting.  

 

 

READ	DATABASE	AND	ALIGNMENT		

We use DAZZ_DB (Myers 2016b) to maintain a database of the PacBio reads. We use 

DALIGNER (Myers 2014) to obtain pairwise alignments between all reads. We point out that 

HINGE does not heavily rely on specifics of the DALIGNER output, and can be adapted to work 

with other aligners as well. 

 



 

 

 

 

 

Figure 4: HINGE pipeline: (a) The input to the HINGE pipeline is a set of long error-prone 
reads. (b) Chimeric reads are detected through their pile-o-grams, and are discarded. (c) The 
beginning/end of repeats are annotated on the reads. This is done by detecting a sharp 
increase/decrease in the number of alignments on a read. The repeat annotations are also 
identified as bridged or unbridged. (d) Maximal reads (i.e., reads that are not contained in other 
reads) are selected, and fed to the contagion algorithm, which is responsible for spreading the 
information about which repeats are bridged to all the reads, allowing us to place exactly one in-
hinge and one out-hinge on the reads that originated from unbridged occurrences of a repeat. 
(e) The set of maximal reads (some of which are no hinged) is the input to the hinge-aided 
greedy assembly. (f) After obtaining the read-overlap graph, we resolve repeats that admit only 
one traversal. (g) Finally, by mapping all the reads onto the resulting overlap graph, we use 
standard consensus methods to generate contigs. 
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NO	INITIAL	ERROR-CORRECTION	STEP	

Unlike most available long-read assembly pipelines, HINGE bypasses an initial error correction 

step. To the best of our knowledge, Miniasm (Li 2016) is the only other OLC assembler that 

dispenses with this step. Abruijn (Lin et al. 2016) also has no error-correction step, though it is 

not based on the OLC paradigm. The idea of error-correction-free assembly was also utilized in 

(Lien et al. 2016; Tørresen et al. 2016). The fact that long-read aligners like DALIGNER (Myers 

2014) can obtain pairwise alignments at error rates around 15% allows us to use this approach, 

and defer the error correction to the final consensus step.  

 

CHIMERIC	READ	FILTER	

Chimeric reads are the result of a sequencing error, and are usually made up of multiple 

segments that originate from different parts of the genome. If not properly handled, these reads 

create mis-assemblies, and different techniques have been put forward to detect chimera (Miller 

et al. 2008a; Li 2016). HINGE's chimera filter unit is the first place in the pipeline where the 

visualization provided by pile-o-grams (Supplemental Figures S19 and S20) is useful. We mark 

a read segment as chimeric if the set of reads aligned to it undergoes an abrupt change. On the 

pile-o-gram, as shown in Figure 4(b), one sees a clear discontinuity in the set of alignments 

(blue segments) of a read. We also mark a read segment as chimeric if the number of matches 

goes below a fixed threshold. For each read, we keep the longest segment without any chimeric 

segments. If this segment is shorter than a threshold, we discard the read completely. 

 

REPEAT	ANNOTATION	

One of the main distinctive features of HINGE is a pre-assembly step responsible for annotating 

the beginning and the end of repeats on the reads. These repeat annotations will later be used 



 

 

for placing hinges on the reads, which in turn will be instrumental in the graph layout step. The 

repeat annotation is done by detecting the start/end of a large number of matches on a read. On 

the pile-o-gram (Supplemental Figures S19 and S20), this visually corresponds to a large pile of 

matches starting/ending at the same point, as shown in Figure 3(c). We note that relying on 

coverage gradients rather than coverage itself makes HINGE immune to coverage fluctuations.  

 

We then verify whether the repeat annotation corresponds to a repeat that is bridged by that 

read. Intuitively, one could attempt to do this by identifying both a sharp increase and a sharp 

decrease in the number of matches on a read. However, as it turns out, such an approach can 

fail in the presence of more complex repeat patterns such a repeat within a longer repeat (see 

Supplemental Figure S19(e) for an illustration). Therefore, a more careful processing of the 

matches on a read is needed to identify the bridging condition. HINGE determines the bridging 

condition by checking whether most of the matches starting on a repeat annotation also end on 

a repeat annotation. If that is the case, the repeat is assumed to be bridged, and the annotation 

is flagged as such (red annotations in Figure 3(c)). Thus at the end of this step we have repeat 

annotations on all reads, and these annotations are labeled as bridged/unbridged according to 

the local information provided by the reads’ alignments. The next step, the Contagion algorithm, 

is applied to this set of annotated reads, after we filter out reads that are fully contained in other 

reads (keeping only maximal reads). 

 

THE	CONTAGION	ALGORITHM	

Notice that this local information about the bridging of repeats may be misleading. For example, 

the pile-o-gram of read u in Figure 4(a) may suggest that u lies partially on an unbridged repeat. 

However, that repeat might still be bridged by a different read, as in the case of read v in Figure 

4(a). Therefore,  HINGE proceeds to “spread” the local bridging information of each read to 



 

 

other reads using the Contagion algorithm. At a high level, this algorithm can be thought of as 

constructing a contagion graph (see Figure 4(b)) with nodes being the repeat annotations, and 

edges between repeat annotations that correspond to the beginning (or end) of the same repeat 

(possibly from different copies of the same repeat). Annotations corresponding to the 

beginning/end of the same repeat are identified based on alignments: if two reads have an 

annotation corresponding to the beginning (resp. end) of a repeat and have matching segments 

after (resp. before) the annotation, the two annotations are connected in the graph. The edge 

points in the direction of the read that extends the most into the repeat. Moreover, repeat 

ba
unbridged repeatbridged repeat

alignments 
on read u

read u
end of repeat 
annotation

read v
start of repeat

annotation

Figure 5: (a) Sharp changes in the number of alignments give rise to repeat annotations on each read. If 
a read is verified to bridge a repeated, as in the case of read v, the corresponding read annotations are 
marked as such (shown as red nodes). (b) The Contagion graph is formed by having all repeat 
annotations as nodes, and using edges to mark annotations that correspond to the beginning (or end) of 
the same repeat. As illustrated here for NCTC11022, connected components with no bridged repeat 
annotations will give rise to hinged reads, which leads to bifurcations on the graph. The repeats 
corresponding to other connected components stay resolved in the graph. 

 



 

 

annotations that have been identified as the beginning/end of a bridged repeat are marked as 

such (red nodes in Figure 4(b)). 

 

As illustrated in Figure 4(b), this graph has two connected components for each repeat (the 

yellow and pink components correspond to the beginning and end of an unbridged repeat). In 

this graph, repeat annotations corresponding to bridged repeats are thought of as “infected” 

(shown as red nodes) and can spread the “bridging condition” to the other repeat annotations in 

the same connected component. If a connected component does not contain any infected 

repeat annotation, it corresponds to the beginning/end of an unbridged repeat and will 

eventually lead to a bifurcation on the graph (see Hinge-Aided Greedy Layout), as shown in 

Figure 4(b).  

 

The Contagion algorithm processes the contagion graph to kill repeat annotations that will not 

be useful in the overlap graph construction. In particular, this infecting and killing process 

performs two tasks: (1) repeat annotations corresponding to bridged repeats should cause other 

annotations corresponding to the same repeat to also be marked as bridged and ultimately 

killed; (2) if two repeat annotations correspond to the beginning (or end) of the same repeat, the 

one extending the most into the repeat should be kept, while the other one should be killed. This 

global processing of the repeat annotations and bridging condition is important so that ultimately 

we only place one in-hinge and one out-hinge for each unbridged repeat (on the sink node of 

the corresponding connected component). 

 

In more detail, the contagion algorithm comprises three steps. In the first step, we remove all 

annotations whose connected component on the contagion graph is small. For instance, the 

gray-colored nodes in Figure 4(b) correspond to small connected components that are deleted. 



 

 

Typically, these small components are the result of imprecise placement of repeat annotation on 

reads, which then lead to them not matching other repeats annotations that correspond to the 

beginning/end of the same repeat. Hence, deleting these small components prevents us from 

creating multiple hinges corresponding to the beginning/end of the same repeat. 

 

In the next step, we look for pairs of repeat annotations connected by an edge in the contagion 

graph (i.e., corresponding to the beginning/end of the same repeat) and such that the 

corresponding reads have an overlap. (Notice that by an overlap, we mean a match between 

the suffix of a read and the prefix of another read. If the match instead occurs at the interior of at 

least one of the reads, we refer to it as an internal match.) For every such pair, we kill the 

annotation on the read that extends the least into the repeat. For an illustration of this step, 

consider the two unbridged repeats in Figure 5(a). The reads covering the start of each repeat 

(u1, u2, u3) have a start-repeat annotation at the start of the repeat. The reads covering the end 

of each repeat (v1, v2, v3) have an end-repeat annotation at the end of the repeat. As shown in 

Figure 5(b), the start-repeat annotation on u2 is killed by the start-repeat annotation on u1 

because u2 and u1 have and u2 extends more into the repeat. Similarly, the end-repeat 

annotation at v2 is killed due to the overlap with v1. At the end of this step, we have that exactly 

one read covering each copy of an unbridged repeat has a start-repeat annotation on it (and 

exactly one read has an end-repeat annotation on it for each copy of the repeat). In addition, we 

point out that when a read has its repeat annotation killed by an annotation from a bridged 

repeat, we mark this annotation as "poisoned". The reason for the term is that a poisoned read 

would be “deadly” for a standard greedy assembly algorithm, as it would lead to a mis-

assembly.  

 



 

 

The third step of the Contagion algorithm is similar to the second step but instead of looking for 

matching annotations whose reads have an overlap, we look for matching annotations whose 

reads have an internal match. For every such pair of annotations, we keep the one on the read 

that extends the most into the repeat, and kill the other one. As illustrated in Figure 5(c), this 

causes the start-repeat annotation on u3 to be killed by the start-repeat annotation on u1 and the 

end-repeat annotation on v1 to be killed by the end-repeat annotation on v3. At the end of this 

step, we have one in-hinge on u1 and one out-hinge on v3. We point out that in this step we only 

consider non-poisoned reads. 

 

Finally, all surviving annotations for the start of unbridged repeats are marked as in-hinges and 

the annotations for the end of unbridged repeats are marked as out-hinges. One can formally 

show that under the assumption that no significant alignment is missed in the initial Overlap 

step, the contagion algorithm will place exactly one in-hinge and one out-hinge among the reads 

that originated from the set of unbridged occurrences of a repeat, and no hinge on the reads 

from the bridged occurrences of a repeat. 

 

 



 

 

 

Figure 5: The Contagion Algorithm: (a) Two unbridged repeats are shown as orange 
segments. (b) The contagion algorithm first kills the start-repeat annotation at u2 (due to its 
overlap with u1) and the end-repeat annotation at v2 (due to its overlap with v1). (c) The 
contagion algorithm then kills the start-repeat annotation on u3 (due to its internal match with u1), 
and the end-repeat annotation on v1 (due to its internal match with v3). (d) Finally, an in-hinge is 
placed on u1 and an out-hinge is placed on v3. During the hinge-aided greedy assembly step, 
hinges allow u2 and u3 to choose the in-hinge at u1 as their successor. Similarly, v1 and v2 pick 
the match starting at the out-hinge on v3 as their predecessor match. 
 

 

 

HINGE-AIDED	GREEDY	ASSEMBLY	ALGORITHM	

A key distinction of HINGE’s approach to assembly lies in its graph layout step. Many OLC 

assemblers adopt the string graph paradigm (Myers 1995, 2005), which often produces 

assembly graphs that are unnecessarily dense. HINGE replaces the string graph algorithm with 

a variant of the greedy algorithm. This follows a recent line of work that found that variants of 

the greedy algorithm (such as the best-overlap-graph (BOG) algorithm (Miller et al. 2008b), “not-
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so-greedy” algorithm (Shomorony et al. 2016b) and the greedy merging algorithm (Shomorony 

et al. 2016a)) can produce a sparse overlap graph without mis-assemblies.  

 

Notice that at the end of the contagion algorithm, we only have one in-hinge and one out-hinge 

for each unbridged repeat. In the graph layout step, we employ a variation of the greedy 

algorithm that utilizes the hinge information. Each read picks its left extension to be its longest 

prefix match, and its right extension to be the longest suffix match. However, unlike in the 

classical greedy algorithm, we do not restrict our search to overlaps. In addition to (prefix-suffix) 

overlaps, we also consider internal matches. Hence a read is allowed to find its 

successor/predecessor match to be an internal segment of another read, as long as the match 

starts on a hinge. An illustration of how internal matches are helpful in producing the correct 

graph layout, and a comparison with the classical greedy algorithm is illustrated in Supplemental 

Figure S2. 

 

THE	ROLE	OF	POISONED	READS	

Another important aspect of the hinge-aided layout step is how the read poisoning information is 

used. As mentioned above, in the Contagion algorithm, whenever a read has its start/end repeat 

annotation killed by another overlapping read, we label it as poisoned. During the hinge-aided 

greedy algorithm, reads are prevented from picking a poisoned read as its 

predecessor/successor, guaranteeing that the two copies (or occurrences) of a bridged repeat 

remain separate.  

 

This process is illustrated in Figure 6. In the scenario shown in Figure 6(a), read u1 is initially 

given a start-repeat annotation. However, this start-repeat annotation is removed by the 

contagion algorithm, as the repeat is bridged by read w. In this case, we keep a poisoned 



 

 

annotation on read u1. When a read has a poisoned start-repeat annotation, it cannot be chosen 

as a predecessor of another read if the match starts after the start-repeat annotation. As shown 

in Figure 6(b), according to a non-hinge-aided greedy assembly algorithm, v2 would choose u1 

as its predecessor. However, as the match on u1 starts after the poisoned start-repeat 

annotation, we do not allow v2 to choose u1 as a predecessor. Instead we look for the next best 

option, which in this case is u2. This prevents a mis-assembly. The poisoning of end-repeat 

annotations works in an analogous way. 

 

 

Figure 6 The Poisoning Algorithm: Read poisoning is part of the process by which we prevent 
a bridged repeat from collapsing on the graph. (a) In this scenario, read u1 is initially given a 
start-repeat annotation, which is killed in the contagion algorithm, as the repeat is bridged by 
read w. In this case, we keep a poisoned annotation on read u1. (b) When v2 looks for its best 
predecessor, it skips u1 due to the poisoned repeat annotation, preventing a mis-assembly. 
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coming from unbridged copies of the repeat. As a result, the set of all unbridged occurrences of 

a repeats induces exactly one in-hinge and one out-hinge. On the other hand, all reads from the 

bridged copies are poisoned, and receive no hinge. 

 

REPEAT	RESOLUTION	

Another new ingredient introduced by HINGE is the use of global information to resolve repeats.  

Once constructed, the graph allows us to identify certain repeats that, although unbridged, can 

still be resolved based on the graph layout. As illustrated in Figure 3(a) and Supplemental 

Figure S15(a), when a repeat loop allows only one possible traversal, the loop can be 

untangled. We point out that the sparse and Eulerian-like nature of the graph produced by the 

hinge-aided greedy algorithm are important to allow this repeat resolution to be done in an 

automated fashion. We also point out that the loop resolution step is based on a parsimony 

principle, but it could be potentially incorrect if the loop corresponds to a plasmid, to a separate 

chromosome, or to the genome of a different species present in the sample. The parameter 

MAX_PLASMID_LENGTH sets the maximum length of a loop that should be considered a 

potential plasmid. HINGE will only resolve loops longer than MAX_PLASMID_LENGTH, and this 

behavior can be optionally turned off by setting MAX_PLASMID_LENGTH to a number longer 

than the genome length. 

 

HANDLING	READ	ORIENTATION	AND	DOUBLE-STRANDEDNESS	

Since the orientation of the reads is unknown, as it is typical in all assembly pipelines one must 

consider each read and its reverse complement. Hence for each read we in fact create two 

nodes in the graph, and the constructed graph is symmetric. At the end of the graph 

construction, for visualization purposes, we overlay each node and its reverse complement.  



 

 

 

CONSENSUS	

In order to generate consensus sequences for the resulting graph contigs, we first create a draft 

assembly by simply concatenating sections of the error-prone reads corresponding to 

unbranched paths on the graph. We then consider the alignment of all the original reads onto 

these draft contigs, and utilize a simple majority-based consensus to clean up these draft 

sequences. We reuse some code from FALCON (Chin et al. 2016) to perform this task. The 

result is output as a GFA file. We point out that the final contig sequences can be optionally run 

through Quiver (Chin et al. 2013) to further polish the assembly. 

 

GRAPH	VISUALIZATION	

All assembly graphs produced by HINGE were visualized using Gephi (Bastian et al. 2009).  

 

SOFTWARE	AVAILABILITY	

The HINGE assembler is available online at https://github.com/fxia22/HINGE and in the 

Supplemental Source Code. The analyses presented in Figure 2 can be reproduced in 

https://github.com/govinda-kamath/HINGE-analyses. 
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