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One-sentence summary 

A phenotyping platform that generates 3D plant reconstructions was developed and applied to identify 

genetic loci regulating shoot architecture in the agriculturally important crop sorghum. 
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Abstract 

Dissecting the genetic basis of complex traits is aided by frequent and non-destructive measurements. 

Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from 

an imaged scene. A depth camera was used to acquire images of Sorghum bicolor, an important grain, 

forage, and bioenergy crop, at multiple developmental timepoints from a greenhouse-grown recombinant 

inbred line population. A semi-automated software pipeline was developed and used to generate 

segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant 

reconstructions identified quantitative trait loci (QTL) for standard measures of shoot architecture such as 

shoot height, leaf angle and leaf length, and for novel composite traits such as shoot compactness. The 

phenotypic variability associated with some of the QTL displayed differences in temporal prevalence; for 

example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic 

regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot 

height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as 

shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth 

imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally 

important plants like sorghum to study the genetic basis of complex traits. 

 

Introduction 

The rate limiting step for crop improvement and for dissecting the genetic bases of agriculturally 

important traits has shifted from genotyping to phenotyping, creating what is referred to as the 

phenotyping bottleneck (Houle et al., 2010; Furbank and Tester, 2011). Alleviating the phenotyping 

bottleneck for agriculturally important plants will help the world meet the increasing food and energy 

demands of the growing global population (Somerville et al., 2010; Alexandratos and Bruinsma, 2012; 

Cobb et al., 2013). Approaches to alleviate the plant phenotyping bottleneck fall into two broad 

categories: approaches that increase the number of individuals that can be grown and evaluated (Fahlgren 

et al., 2015), and approaches that predict performance in silico to prioritize individuals to grow and 

evaluate (Hammer et al., 2010; Technow et al., 2015).  Both of these approaches will be instrumental for 

increasing the rate of crop improvement, and both approaches are facilitated by advances in image-based 

phenotyping; multiple plant measurements can be rapidly acquired from images, and data from image-

based phenotyping approaches can also inform performance prediction (Spalding and Miller, 2013; Pound 
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et al., 2014). As such, the development of image-based phenotyping platforms for agriculturally important 

plant species is a high priority for plant biology and crop improvement (Minervini et al., 2015). 

The diversity of crop species and the variety of traits of interest have resulted in the development of a 

number of different platforms for plant phenotyping (Cobb et al., 2013; Li et al., 2014). Commercial 

platforms, including the Scanalyzer series from Lemnatec (http://www.lemnatec.com/products/; accessed 

February 2016) and the Traitmill platform from CropDesign (http://www.cropdesign.com/general.php; 

accessed February 2016), have gained adoption in the research community and have promoted the 

development of additional software (beyond that which the respective companies provide) to analyze the 

images produced by the platform (Reuzeau, 2007; Hartmann et al., 2011; Fahlgren et al., 2015). A variety 

of non-commercial platforms and methods developed by the research community also exist and have been 

demonstrated to perform well (White et al., 2012; Fiorani and Schurr, 2013; Sirault et al., 2013; Pound et 

al., 2014). Several platforms have been deployed at sufficiently large scale to examine genomic loci 

underlying complex traits in crop plants such as barley (Honsdorf et al., 2014), pepper (van der Heijden et 

al., 2012), maize (Liu et al., 2011), rice (Campbell et al., 2015), and wheat (Rasheed et al., 2014). These 

successful applications of image-based phenotyping to understand the genetic bases of complex crop 

traits represent only a small fraction of the imaging modalities and crop species available for study. 

Sorghum is the fifth most produced cereal crop in the world and is a promising bioenergy feedstock 

(Mullet et al., 2014). Recent work has demonstrated that optimization of plant canopy architecture has the 

potential to improve sorghum productivity (Ort et al., 2015; Truong et al., 2015). As such, we sought to 

develop an image-based platform to examine the genetic bases of shoot architecture traits in sorghum. 

While commercial products like the Scanalyzer and Traitmill systems are capable of exerting fine control 

and extensive automation for above-ground architecture measurements, these and other current systems 

did not meet our specifications for phenotyping in terms of either cost of entry, portability, output, 

throughput, or potential applicability in field phenotyping scenarios (Biskup et al., 2007; Sirault et al., 

2013; Pound et al., 2014). Thus, we sought to develop an economical (i.e. less than 1,000 USD) image 

acquisition and processing pipeline capable of non-destructively assaying sorghum canopy architecture in 

a portable and semi-automated fashion. 

Previous work has demonstrated the potential of commercial-grade depth sensors in measuring plant 

architecture (Chene et al., 2012; Azzari et al., 2013; Paulus et al., 2014). Therefore we used the time-of-

flight depth sensor onboard a Microsoft Kinect for Windows v2 to capture depth images from multiple 

perspectives of individual sorghum plants, and these images were processed to construct three-

dimensional (3D) representations of the imaged plants. In this manner, three replicates of 99 lines from a 

sorghum biparental recombinant inbred line (RIL) population were imaged at multiple timepoints during 
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one month of development, and the images were converted to point clouds, registered, meshed, and 

segmented to generate 3D reconstructions of the imaged plants. Measurements from the segmented 

meshes and genotypes for the RIL population were used to identify quantitative trait loci (QTL) 

underlying shoot architecture traits. We report QTL for shoot architecture traits such as shoot height, leaf 

angle, and leaf length, and we demonstrate that the relative contributions to phenotypic variability of the 

QTL change with respect to time. We also discuss our image analysis procedures and make our code 

available as part of the growing body of low-cost, open-source, image-based plant phenotyping solutions.  

 

Materials and Methods 

Plants, greenhouse conditions, manual measurements, and image acquisition 

98 recombinant inbred lines (RILs) from the BTx623 x IS3620C recombinant inbred mapping population 

and the two parents (Burow et al., 2011) were planted in triplicate with five seeds per pot in C600 pots of 

Sunshine MVP soil (BWI Companies, Inc., Texas, U.S.A.) in a College Station greenhouse on 2015-07-

07. Plants were thinned to one plant per pot after germination. Plants were fertilized with Osmocote 

Classic (13-13-13; Everris International B.V., The Netherlands) and watered on demand. Tillers and 

senesced leaves were regularly removed. Each of the three replicates of the 100 RILs was grown on a 

separate greenhouse table, and differences in shoot morphology were visibly apparent in the population 

throughout development (Figures S1 and S2). Seeds for one of the RILs failed to germinate (RIL 3), 

leaving three replicates of 99 plants for which images were acquired. Plants were imaged at 27, 34, 39, 

and 44 days after planting (DAP). 15 of the plants were imaged at 62 DAP, harvested, and manually 

measured to compare the performance of the platform relative to standard measurement techniques. 

Manual measurements of leaf angle were made with a protractor, and shoot height, shoot cylinder height, 

leaf length, and leaf width were measured using a measuring tape. Additionally, leaf length, leaf width, 

and leaf area were measured using a LI-COR LI-3100C Area Meter (LI-COR, Nebraska, USA). 

Image acquisition was performed using a Microsoft Kinect for Windows v2 sensor (Microsoft 

Corporation, Washington, USA) and the Kinect for Windows SDK (v2.0). 12 RGB and 12 depth image 

frames were acquired at approximately 3 second intervals and the images were saved to disk on a laptop 

while the Kinect for Windows v2 sensor was positioned on a tripod in front of an Arqspin 12-inch 

motorized turntable that rotated the imaged plant (Arqspin, Virginia, USA; Figure S3). Plants were 

manually transported to and from the greenhouse to the nearby imaging station. Images were transferred 

from the laptop to a workstation for subsequent processing.  
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Processing images to acquire plant measurements 

Procedures for processing images to acquire plant measurements and alternative methods that were 

explored are explained in File S1. Here, brief descriptions of procedures used for the reported analysis are 

outlined. For each plant, the point cloud contained in each depth image was automatically cleaned and 

registered to generate a single 3D point cloud using available open source libraries and algorithms, 

including OpenCV (http://opencv.org; accessed February 2016) and PCL (Fischler and Bolles, 1981; Besl 

and McKay, 1992; Rabbani et al., 2006; Rusu et al., 2008; Rusu and Cousins, 2011; Buch et al., 2013). 

This point cloud was manually inspected, acquisition and/or registration errors were manually corrected 

using MeshLab (Cignoni et al., 2008), and the cleaned point cloud was meshed to generate a set of 

polygons representing the surface of the plant using available open source software (Bernardini et al., 

1999; Corsini et al., 2012; Kazhdan and Hoppe, 2013). The plant mesh was then segmented into a shoot 

cylinder (composed of the stem and leaf sheaths), individual leaves, and an inflorescence (when present; 

Figure S8). The shoot cylinder and inflorescence were manually labeled. Following this, individual leaves 

were segmented using an automated procedure we developed that uses supervoxel adjacency and 

geodesic paths across the adjacency graph to identify leaf tips and grow leaf regions (Dijkstra, 1959; 

Surazhsky et al., 2005; Papon et al., 2013). 

Multiple measurements were automatically obtained from each mesh, both at the level of the whole plant 

(i.e. segmentation-independent, composite traits) and at the organ level (i.e. segmentation-dependent, 

organ-level traits). The traits measured are described in Table 1. Descriptions of how these traits were 

measured from the plant mesh are provided in File S1, and graphical depictions of selected measurements 

are shown in Figures S4 and S5. Additional implementation details can be found with the code base (see 

Code and Data Availability). 
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Measurement Description of measured trait 
C

o
m

p
o

si
te

 

shoot height 
vertical distance from the lowest shoot point to the highest 

shoot point, including leaves and the inflorescence 

shoot surface area surface area of the entire shoot 

shoot center of mass 
vertical distance from the lowest shoot point to the shoot's 

center of mass 

shoot compactness 
surface area of a smallest convex polyhedron that contains 

the entire shoot (i.e. convex hull surface area) 

O
rg

a
n

-l
ev

el
 shoot cylinder height 

vertical distance from the lowest shoot cylinder point to the 

highest shoot cylinder point 

leaf length length of a leaf 

leaf surface area surface area of a leaf 

leaf width width of a leaf 

leaf angle angle at which a leaf emerges from the shoot cylinder 

Table 1: Summary of the subset of traits automatically measured from the plant mesh used for the 

reported QTL analyses. Additional descriptions of the methods used to obtain the measurements are 

described in File S1. 

 

QTL mapping and comparison with prior QTL studies from literature 

Genotypes for the BTx623 x IS3620C RIL population were previously generated using Digital 

Genotyping, a restriction enzyme-based, reduced-representation sequencing assay (Morishige et al., 

2013). Genotypes were called using the naïve pipeline of the RIG workflow with the GATK, and the 

genetic map was constructed as previously described with marker orderings relative to version 3 assembly 

of the sorghum reference genome, Sbi3 (DOE-JGI http://phytozome.jgi.doe.gov; accessed February 

2016); this resulted in a genetic map with 10,787 markers (McKenna et al., 2010; Goodstein et al., 2012; 

Truong et al., 2014; McCormick et al., 2015). Both single- and multiple-QTL mapping were performed 

with R/qtl (Broman et al., 2003). For single-QTL mapping (i.e. testing a single-QTL model), the complete 

marker set of 10,787 markers was used. Measurements of a trait for each of the three replicates of a RIL 

were averaged; average trait values were normalized using empirical normal quantile transformation prior 

to QTL mapping so that the same permutation threshold would apply to all phenotype by timepoint 

combinations (Peng et al., 2007). A genome-wide scan under a single-QTL model for each phenotype by 

timepoint combination was performed (Figures S6 and S7). If any of the reported phenotype by timepoint 

combinations had a marker with a LOD greater than 3.28 (the 95% threshold obtained from 25,000 

permutations), its LOD-2 interval (the coordinates of the flanking markers where the LODhad dropped by 

2 units below the peak value) was retained. The markers’ positions (centimorgans, cM) with the largest 

LOD within each LOD-2 interval for each phenotype by timepoint combination were retained to initialize 

multiple-QTL mapping. 
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For multiple-QTL mapping, a subset of 1,209 markers was obtained by enforcing a minimum marker 

distance of 0.8 cM; significant, peak-LOD markers from single-QTL mapping intervals were added back 

to the set if they were dropped, resulting in 1,224 markers used for multiple-QTL mapping. The genetic 

coordinates of the markers with the largest LOD for each LOD-2 interval from single-QTL mapping of 

each phenotype by timepoint combination was used to seed model selection for multiple-QTL mapping as 

implemented in R/qtl (Manichaikul et al., 2009). Main effect, heavy chain, and light chain penalties (3.20, 

4.38, and 1.94, respectively) for model selection were obtained as 95% thresholds from 25,000 

permutations of the appropriate statistics. The multiple-QTL models with the largest penalized LOD for 

each phenotype by timepoint combination are reported (Tables 2, S1, and S2; Figures S6 and S7). For a 

given phenotype, the maximum LOD across all timepoints characterized the MLOD of the phenotype 

(Kwak et al., 2014). A longitudinal QTL model for each phenotype that contained QTL at the MLOD 

coordinates was used to generate the chromosome-wide LOD profile scans (Figures 4 and 6). 

To compare QTL found in the current study with existing QTL in the literature, the physical coordinates 

relative to the sorghum version 1 reference assembly, Sbi1, for QTL in the BTx623 x IS3620C population 

were obtained; Mace and Jordan (2011) determined these physical coordinates using a consensus map and 

QTL identified by Hart et al. (2001) and Feltus et al. (2006). The coordinates of Dwarf2 and Dwarf3 were 

obtained from Morris et al. (2013) and Multani et al. (2003). The corresponding location of the markers in 

Sbi3 were obtained using Biopieces for sequence extraction and BLAST via a local instance of 

Sequenceserver (Hansen et al.; Altschul et al., 1997; Paterson et al., 2009; Priyam et al., 2015). Physical 

locations relative to Sbi3 were used as the QTL intervals for comparison with the present study. 

 

Code and data availability 

The C++, Bash, and Python code written for image acquisition and processing, the R code written for 

QTL mapping, the genotype and phenotype data, and the full multiple-QTL models for each phenotype 

by timepoint combination can be found on GitHub at 

https://github.com/MulletLab/SorghumReconstructionAndPhenotyping. For each imaged plant, its depth 

images, a single RGB image, and the segmented mesh can be found at the DRYAD data repository 

(http://datadryad.org; DOI to be determined). 
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Results 

 

3D sorghum reconstructions from depth images 

To efficiently make plant architecture measurements, a portable, economical, semi-automated image 

acquisition and processing pipeline was developed. Image acquisition was performed using a laptop, a 

tripod supporting a time-of-flight depth camera, and a turntable (Figure S3). Plants were manually 

transported between a greenhouse and the nearby imaging station, and, for each plant, a series of 12 depth 

and 12 RGB images were acquired as the plant made a 360 degree rotation on the turntable. Following 

acquisition, images were transferred to a workstation and processed (Figure 1). 

 

 

Figure 1:  Processing of image data to segmented meshes. (A) Point clouds are sampled from multiple 

perspectives around the plant. (B) The point clouds are registered to the same frame and combined. (C) 

The combined cloud is meshed to generate a set of polygons approximating the surface of the plant. (D) 

The mesh is segmented into a shoot cylinder, leaves, and an inflorescence (if one exists; Figure S8), and 

phenotypes are automatically measured. 

 

Most of the processing steps use generally applicable procedures available in open source libraries and 

software, including registration, cleaning, and meshing of the point clouds (Cignoni et al., 2008; Rusu and 

Cousins, 2011; Buch et al., 2013; Kazhdan and Hoppe, 2013). General solutions for segmentation of 

features like leaves and stems from plants, however, remain less developed, especially for 3D plant 

representations (Paproki et al., 2012; Paulus et al., 2013; Xia et al., 2015). Because of this, we developed 

a segmentation procedure for our particular application to partition the plant mesh into component parts. 

The final result of the semi-automated processing pipeline was a plant mesh segmented into a shoot 

cylinder, an infloresence (when present, Figure S8), and individual leaves with each individual leaf 

assigned a relative order of emergence (Figure 1). 
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297 plants representing triplicate plantings of 99 plants (97 RILs and the two parental lines) from the 

BTx623 x IS3620C sorghum mapping population were grown in a greenhouse environment (Burow et al., 

2011). Because image-based phenotyping is non-destructive, the same plant can be sampled at multiple 

timepoints to enable change over time to be monitored. All 297 plants were imaged at four timepoints 

over a 17 day interval starting 27 days after planting (DAP). The four timepoints, consisting of more than 

14,000 depth images and representing nearly 1,200 individual plants, were processed to segmented 

meshes. As such, an individual plant was represented by a timecourse of four segmented meshes, and a 

RIL was represented by three sets (i.e. 3 biological replicates) of an individual plant (Figure 2). A series 

of measurements from each mesh were then automatically acquired (Table 1 and Figure S4).  

 

 

Figure 2: Plant growth over time. (A) Segmented meshes for replicate 3 of RIL 175 are depicted at 4 

different days after planting (DAP) timepoints. Leaf colors represent individual segmented leaves; leaf 

colors have been manually assigned to enable tracking of the same leaf between meshes (Figure S9 

depicts how color is assigned automatically by the platform). The shoot cylinder is colored cyan. Meshes 

are depicted at the same relative scale. (B) The corresponding RGB images that were co-acquired with the 

depth images; RGB images are not to scale. 

 

To compare the measurements obtained from the image acquisition and processing platform with standard 

physical measurements of plant morphometric traits, 15 plants (with 140 leaves) from the experiment 
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were imaged, and then leaf and stem measurements were obtained from harvested plants 62 days after 

planting.  Shoot height, shoot cylinder height, leaf angle, leaf width, leaf length, and leaf area were 

compared. Leaf width and leaf length were measured using both a measuring tape and with a LI-COR LI-

3100C Area Meter (LI-COR, Nebraska, USA), and leaf area was measured using only the LI-COR 

instrument. Comparisons between the measurements indicated that the image-based measurements 

performed at least as well as the LI-COR leaf scanning instrument for leaf width and leaf length relative 

to hand measurements with a measuring tape (Figure 3). The root-mean-square difference (RMSD) 

between manual measurements and image-based measurements for leaf length and leaf width were 7.94 

cm and 1.84 cm, respectively; this indicated marginally better performance than the RMSDs between 

manual measurements and the LI-COR instrument for leaf length and leaf width, which were 9.41 cm and 

1.94 cm, respectively. Leaf area measurements made with the depth imaging platform and with the LI-

COR instrument were well correlated (Pearson product-moment correlation coefficient, ρ, of 0.92), 

though the image-based platform reported, on average, larger values of leaf area than the LI-COR 

instrument with a mean difference (MD) of 52.45 cm2. Leaf angle was measured with an RMSD of 9º and 

a ρ of 0.95 relative to hand measurements, and shoot cylinder height was measured with an RMSD of 7 

cm and a ρ of 0.99. Measurements of shoot height showed the lowest correlation (ρ = 0.63 and RMSD = 

11 cm) due to three outlier points; these outlier points likely represent errors in manual measurement due 

to the inherent difficulty in identifying the true maximum height point of the shoot in an unbiased way 

during manual measurement. We also note two leaf measurement outliers in both leaf length and leaf area 

that occurred because the image-based platform failed to fully reconstruct two of the leaves that were in 

the same vertical plane as the sensor. Ultimately, image-based measurements were well correlated with 

manual measurements and the coefficient of variation of the RMSD, CV(RMSD), for the measurements 

ranged from 0.07 to 0.30 (within the same range as measurements made using standard instrumentation). 

As such, measurements made with the phenotyping platform have utility for applications such as 

quantitative trait locus (QTL) mapping. 
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Figure 3: Comparison of image-based measurements with measurements made using standard 

methods. Axes represent measurements made via one of three methods: image-based measurements 

made from plant meshes, manual measurements made with a measuring tape or protractor, and 

measurements with a LI-COR LI-3100C Area Meter. Plots with an axis representing image-based 

measurements are colored blue; plots without an axis representing image-based measurements are colored 

orange. Leaf area measurements made with the platform include abaxial and adaxial leaf surfaces, so the 

image-based area measurements were divided by two for comparison with LI-COR measurements of area. 

MD: mean difference between measurements; RMSD: root-mean-square difference between 

measurements; CV(RMSD): coefficient of variation of the RMSD given the range of data on the bottom 

axis; ρ: Pearson’s product-moment correlation coefficient; n: number of samples from which the 

differences and coefficients were calculated.  

 

Genetic bases of imaged traits 

To determine if the platform could be used to identify genetic loci regulating shoot architecture, 

measurements obtained from the plant meshes were associated with genetic data from the RIL population. 
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Genotypes for members of the BTx623 x IS3620C RIL population were previously obtained and 

available to construct a genetic map for mapping quantitative trait loci (QTL) for the image-based 

phenotypes across multiple developmental timepoints (Morishige et al., 2013; Truong et al., 2014; 

McCormick et al., 2015). Measurements obtained from plant meshes were grouped into two categories: 

organ-level measurements and composite measurements. Organ-level measurements are segmentation-

dependent and measure organ-level plant architecture, such as leaf length and shoot cylinder height; 

composite measurements are segmentation-independent and measure overall shoot architecture such as 

shoot height and shoot compactness (Table 1, Figure S3 and Figure S4). 

QTL mapping of organ-level traits identified seven unique genomic intervals with significant 

contributions to phenotypic variability (Figure 3, Figure S5, and Table S1). A genome-wide scan under a 

single-QTL model was used to examine the following phenotypes across the four timepoints: the average 

value of leaves 3, 4, and 5 for leaf length, width, surface area, and inclination angle, and shoot cylinder 

height. Significant QTL identified from a genome-wide scan under a single-QTL model were used as an 

initial model for stepwise model traversal to identify the most likely penalized multiple-QTL model 

(Manichaikul et al., 2009); the overlapping LOD-2 intervals of these multiple-QTL models define unique 

intervals on chromosomes 3, 4, 6, 7, and 10 (Table S1). 

 

 

Figure 4: LOD profiles for organ-level traits. For each phenotype, LOD profiles are based on 

chromosome-wide scans of chromosomes with QTL based on the most likely multiple-QTL models found 

by model selection (Figure S6). Each row represents a different trait, and within each trait are four nested 

rows that each represents a different timepoint (days after planting; DAP). Each group of columns 
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represents a chromosome, and each column represents a marker at its genetic position. Cells are colored 

by marker LOD for the phenotype at the particular timepoint. 

 

A major source of variation in shoot architecture in the BTx623 x IS3620C RIL population is Dwarf3 

(Dw3), a sorghum dwarfing gene on chromosome 7 at 59.8 Mbp.  The parents of the imaged RIL 

population, BTx623 and IS3620C, are fixed for non-functional and functional forms, respectively, of the 

Dw3 gene which encodes an auxin efflux protein that has pleiotropic effects on stem elongation and 

additional architecture traits like leaf angle (Multani et al., 2003; Truong et al., 2015). A significant 

association between Dw3 and shoot cylinder height is not observed until the second timepoint (34 DAP) 

while different alleles of Dw3 introduce significant variability in leaf angle by the earliest timepoint (27 

DAP). This is likely because Dw3 impacts height by impacting stem elongation, and the stem has not yet 

begun to elongate substantially by the earliest timepoint; as such, the non-functional dw3 allele caused 

smaller leaf angles prior to any significant effect on stem elongation (Multani et al., 2003; Truong et al., 

2015). Similar to Dw3, the effects of Dwarf2 (Dw2), a sorghum dwarfing gene on chromosome 6 near 42 

Mbp (but not yet cloned), are significantly associated with shoot cylinder height after the first timepoint 

(DAP 34, 39, and 44); unlike Dw3, Dw2 is not significantly associated with any other pleiotropic effects 

on leaf morphology. However, an interval distinct from Dw2 is observed on chromosome 6 near 51 Mbp 

for leaf width. 

A large interval on chromosome 10 was significantly associated with variability in leaf length and surface 

area, as well as shoot cylinder height. While the LOD-2 intervals for these traits overlapped when 

comparing all phenotype by timepoint combinations, the LOD-2 interval for leaf surface area at DAP 39 

was distinct from any shoot cylinder height intervals. Additionally, the significant association of the 

interval with shoot cylinder height is lost after DAP 34, while the association is maintained with leaf traits 

throughout the timecourse, suggesting that multiple QTL that regulate shoot architecture are present on 

chromosome 10 (Table S1). 

An interval on chromosome 4 was associated with multiple leaf traits, including length, width, and 

surface area, measured as the average value of leaf numbers 3, 4, and 5 when counting green leaves 

starting from the bottom of the plant at the time of acquisition. Further analysis showed that plants with 

BTx623 alleles of an indel marker at the leaf length maximum LOD (MLOD) coordinate (chromosome 4, 

62.45 Mbp) had a leaf length of 50.1 cm when averaged across the four timepoints. This was 5.6 cm 

larger than plants with IS3620C alleles, which had a leaf length of 44.5 cm when averaged across the four 

timepoints. Additionally, the platform captured changes in leaf length over time; plants with BTx623 

alleles increased from an average length of 44.2 cm to an average length of 54.8 cm over the 17 days 
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whereas plants with IS3260C alleles had leaves that increased from an average length of 40.1 cm to an 

average length of 47.5 cm (Figure 4). 

 

 

Figure 5: Organ-level measurement of average leaf length over time. (A, B) Meshes displaying 

development over time for a plant bearing BTx623 alleles (A; RIL 257) and a plant bearing IS3620C 

alleles (B; RIL 306) of an indel marker on chromosome 4 that had the MLOD for leaf length. (C) Change 

in average leaf length over time.  Each thin line in the plot represents the average leaf length of a RIL 

(n=3) colored by its genotype. Leaf length was calculated as the average of the third, fourth, and fifth 

leaves counting from the bottom, corresponding to the light green, dark green, and blue leaves in panels A 

and B. The two thick lines represent a linear fit for each genotype and 95% confidence intervals. 

 

Because segmentation-dependent traits represent organ-level traits that are often manually measured, 

QTL identified via the image-based platform for organ-level traits were compared with QTL identified 
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previously for similar traits in the BTx623 x IS3620C population and previous reports on the sorghum 

dwarfing loci Dw2 and Dw3 (Hart et al., 2001; Feltus et al., 2006; Brown et al., 2008; Mace and Jordan, 

2011; Morris et al., 2013; Higgins et al., 2014). Most of organ-level QTL intervals found in the present 

study overlap with comparable or related traits from previous field studies (Table 2). Of note, some of the 

intervals, like chromosome 6 near 51 Mbp and chromosome 4 near 62 Mbp, may have multiple genes that 

each affect different traits or genes with pleiotropic effects since these intervals were associated with 

diverse leaf morphology traits across the studies. Additionally, the genes involved could be 

environmentally responsive since related but different traits were associated for the intervals when 

comparing the greenhouse-based and field-based studies (e.g., leaf length in the present study vs. leaf 

pitch, but not leaf length, in the previous study where leaf pitch measures the length of the leaf from the 

leaf base to the apex of the naturally-curved leaf). Overall, there was extensive overlap between the QTL 

intervals identified in previous work and those identified using the imaging platform, suggesting that 

these genomic loci exert phenotypic effects across multiple studies and environments. 
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Chr Origin 

Interval 

begin 

(Mbp) 

Max 

MLOD 

coordinate 

(Mbp) 

Interval 

end 

(Mbp) 

Related traits with 

overlapping intervals 

Prior locus 

names 

4 

Image-

based 
57.48 62.45 63.40 

leaf length*, leaf 

surface area, leaf width QLcv.txs-D2; 

QLpt.txs-D 

Literature 61.86 - 65.07 leaf curve, leaf pitch 

6 

Image-

based 
40.10 42.77 44.83 shoot cylinder height* 

Dw2 

Literature 39.72 - 42.64 pre-flag leaf height 

Image-

based 
48.45 50.97 55.08 leaf width* 

QLcv.txs-I 

Literature 53.73 - 56.52 leaf curve 

7 

Image-

based 
59.51 59.65 59.99 

leaf angle*, shoot 

cylinder height 
Dw3 

Literature 59.821905 - 59.829910 
leaf angle, culm height, 

culm uniformity 

10 

Image-

based 

1.23 2.00 8.21 
leaf length*, leaf 

surface area 
QLcv.txs-G; 

QLpt.txs-G; 

QLln.txs-G; 

QHtu.txs.G; 

QHGT_meta1.10 

5.27 7.46 52.24 shoot cylinder height* 

Literature 

1.11 - 5.76 leaf curve, leaf pitch 

6.40 - 13.05 

leaf length, culm 

height, culm 

uniformity 

Table 2. Comparison of QTL intervals identified using image-based phenotyping with previously 

reported QTL intervals in the literature. Most QTL intervals identified with the platform overlapped 

with QTL or causal genes previously previously reported for related phenotypes (Hart et al., 2001; Feltus 

et al., 2006; Mace and Jordan, 2011; Morris et al., 2013; Higgins et al., 2014). Dw3 has been previously 

cloned (Multani et al., 2003). For image-based QTL intervals, the encompassing physical coordinates of 

the indicated phenotypes across all timepoints were retained as the beginning and end of the interval. The 

LOD-2 interval and peak coordinate for the phenotype with the maximum MLOD is reported, and the 

phenotype name is indicated by *. Table S1 contains all identified organ-level QTL. Leaf pitch and leaf 

curve are both measures of Euclidean distance from the leaf base to the apex of the curved leaf blade, and 

the leaf base to the leaf tip, respectively (Feltus et al., 2006). 

 

In addition to capturing components of plant architecture like leaf morphology, the image-based 

measurements also capture overall architecture traits that integrate component traits. These composite 

measurements are difficult or impossible to measure by hand and integrate how component traits interact 
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to influence overall plant architecture and ultimately how a plant canopy intercepts solar radiation. One 

specific example of such a measurement is shoot compactness, measured as the surface area of the convex 

hull ofa plant mesh. Shoot compactness is influenced by factors like the leaf angle, the height and 

planarity of a plant (Figure S4). Accordingly, a strong association between Dw3 and shoot compactness is 

present at all timepoints due to the consistent effects of Dw3 on leaf angle and later effects of Dw3 on 

stem growth (Figure 5). As such, composite traits represent measures of overall plant architecture and 

integrate the interrelationships between component phenotypes. Additional composite traits examined 

were shoot surface area, shoot center of mass, and shoot height as described in Table 1. 

 

 

Figure 6: LOD profiles for composite traits. For each phenotype, LOD profiles are based on 

chromosome-wide scans of chromosomes with QTL based on the most likely multiple-QTL models found 

by model selection (Figure S7). Each row represents a different trait, and within each trait are four nested 

rows that each represents a different timepoint (days after planting; DAP). Each group of columns 

represents a chromosome, and each column represents a marker at its genetic position. Cells are colored 

by marker LOD for the phenotype at the particular timepoint. 

 

QTL mapping of the selected composite traits identified four genomic intervals with significant 

contributions to phenotypic variability (Figure 6, Figure S7, and Table S2). Since composite traits are 

expected to be driven by phenotypic variation in their component traits (and thus correlated) the 

composite trait QTL are discussed in the context of organ-level QTL with shared intervals. All of the 

composite traits were significantly associated with a large interval on chromosome 10 at early stages of 

development (DAP 27 and 35). Consistent with the observation of non-overlapping QTL intervals for 
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organ-level traits of leaf morphology and shoot cylinder height on chromosome 10, at least two QTL are 

likely present in the interval; canopy compactness is a trait influenced by both leaf morphology and shoot 

height, and distinct LOD peaks were observed, one at 6 Mbp and one at 52 Mbp (Table S2).  

Interestingly, one interval unique to the composite trait measurements was identified on chromosome 3 

near 66 Mbp for shoot height, indicating that there are additional component traits driving variability in 

overall architecture that remain to be resolved and explained by organ-level traits. Alternatively, the 

impact of the QTL on individual, organ-level traits is relatively small, and only the combined effect 

across multiple individual traits provide sufficient power for detection. As such, these composite traits 

represent a useful approach for detecting novel genetic loci. 

Due to the effect of Dw3 on shoot cylinder height and leaf angle, a strong association is present for plant 

height, and shoot compactness at the Dw3 locus; likewise, Dw2 is associated with shoot height. To further 

quantify the influence of Dw3, the shoot height of individuals bearing different alleles of an indel marker 

near Dw3 were compared. Plants that have the dominant, functional Dw3 allele increase in height from, 

on average, 60.2 cm to 112.6 cm over the 17 day imaging interval, and plants with non-functional dw3 

alleles increase in average height from 56.8 cm to 93.2 cm (Figure 7). Fitting the data to a linear model, 

Dw3 plants grew vertically at a rate of 3.1 cm per day whereas dw3 plants grew at a rate of 2.2 cm per day 

between 27 days and 44 days after planting. Non-destructive, image-based phenotyping combined with 

high-throughput genotyping has great potential for parametrizing plant functional-structural modeling and 

performance prediction with genotype-specific rates of growth. 
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Figure 7: Composite measurement of shoot height over time.  (A, B) Meshes displaying development 

over time for a plant bearing IS3620C alleles (A; RIL 175) and BTx623 alleles (B; RIL 19) of an indel 

marker closely linked with the Dw3 gene, an auxin transporter that regulates plant height. (C) Change in 

plant height over time. Each thin line in the plot represents the average height of a RIL (n=3) colored by 

its genotype at the Dw3 locus. Shoot height was measured as the vertical distance from the lowest shoot 

point to the highest shoot point, including leaves and the inflorescence (Table 1). The two thick lines 

represent a linear fit for each genotype at Dw3 and 95% confidence intervals.  

 

Discussion 

A time-of-flight depth camera was used to image sorghum plants from a RIL population, and we 

developed an image processing pipeline to reconstruct 3D sorghum plants and make automated 

measurements from the reconstructions. Measurements made in this manner are sufficiently rapid and 

accurate to enable the identification of multiple genetic loci regulating shoot architecture. As such, we 
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demonstrate that depth imaging represents a useful approach for high-throughput phenotyping of crop 

plant architecture for the genetic dissection of complex traits.  

While the platform successfully identified QTL regulating sorghum architecture (Figures 4 and 6), a 

number of improvements will be necessary prior to its applicability in even larger scale studies. First, the 

acquisition process will need to be improved. Registration artifacts were a recurring problem introduced 

by non-rigid transformations of plant leaves caused by leaf shaking on the turntable, the registration 

methods used, and sensor noise in acquisition. Multiple potential solutions for these are available, 

including the use of a registration algorithm capable of handling non-rigid transformations (Zheng et al., 

2010; Bucksch and Khoshelham, 2013; Brophy et al., 2015), the use of multiple sensors, the use of real 

time mesh construction procedures like the Kinect Fusion to average sensor data and rapidly reconstruct 

the plant (Izadi et al., 2011), or the use of a model-based approach to fit a geometric plant model to the 

acquired points (Quan et al., 2006; Ma et al., 2008). Second, the segmentation procedure will need to be 

improved to better distinguish leaves that are in contact with one another, to better automatically identify 

the shoot cylinder of the plant, and to potentially make it applicable to other grass or plant species. 

General algorithms that can accurately segment plant organs for images or meshes from multiple species 

will be of value and will need to scale to complex field scenes involving multiple plants and heavy 

occlusion. Mapping additional data types, such as visible, infrared, or hyperspectral, onto the point clouds 

will also be of value for both controlled-environment and field applications. 

A major benefit of image-based phenotyping is its non-destructive nature because insight into the 

temporal onset of genetic regulation is valuable in dissecting its mechanistic basis. Markers tightly linked 

with Dw3, a gene encoding an auxin transporter, are associated with leaf inclination angle, plant 

compactness, and canopy length prior to their association with shoot height and shoot cylinder height, 

suggesting that changes in auxin transport caused by different Dw3 alleles are introducing variability in 

leaf development and overall shoot compactness prior to large effects on stem elongation (Figures 4, 6, 

and 7). Additionally, variation in the shoot cylinder height at the earliest timepoint is most associated with 

an interval on chromosome 10 (Figure 4). This QTL is the primary driver of variability in shoot height 

and shoot cylinder height until the variability in stem growth introduced by alleles of Dw2 and Dw3 

increases, and it may be related to the timing of a developmental transition (Figures 4 and 6). It is likely 

that multiple QTL are present on chromosome 10 given that distinct LOD peaks at 2 Mbp, 7 Mbp, and 52 

Mbp were observed; additional experimentation will be necessary to resolve the contributions and 

temporal prevalence of specific QTL in the interval. 

Many of the QTL identified via image-based phenotyping overlapped with QTL for comparable traits 

discovered in prior field experiments (Table 2). These shared QTL represent good candidates for 
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continued investigation as they display robust phenotypic effects across multiple experiments and 

conditions. Notably, despite sharing overlapping intervals, the associated traits sometimes differed. For 

example, the present study identified significant associations between leaf length, width, and surface area 

with an interval on chromosome 4; a similar interval was identified in previous work for leaf curve and 

leaf pitch, but was not significantly associated with leaf length in the previous study (Table 2). While all 

of these traits are aspects of leaf morphology and share relationships, additional experimentation will be 

necessary to determine whether these represent one QTL with pleiotropic effects (as is observed with 

Dw3), one QTL with different environmental responses, different QTL with overlapping intervals, or 

some combination of these possibilities. 

 

Conclusions 

Depth imaging and subsequent processing enabled the rapid acquisition of multiple shoot architecture 

phenotypes from a sorghum QTL mapping population, and genetic loci contributing to variation in shoot 

architecture were identified. Depth cameras represent a practical tool for rapidly measuring plant 

morphology, and their applications to plant phenotyping alongside other imaging modalities will be 

useful for both controlled-environment and field phenotyping scenarios. Integrated platforms that merge 

image-based phenotyping approaches, genetics, and performance modeling will enable rapid 

improvements in understanding plant biology and will promote the selection and engineering of plants for 

superior performance in target applications. 
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Table legends 

Table 1: Summary of the subset of traits automatically measured from the plant mesh used for the 

reported QTL analyses. Additional descriptions of the methods used to obtain the measurements are 

described in File S1. 

 

Table 2. Comparison of QTL intervals identified using image-based phenotyping with previously 

reported QTL intervals in the literature. Most QTL intervals identified with the platform overlapped 

with QTL or causal genes previously previously reported for related phenotypes (Hart et al., 2001; Feltus 

et al., 2006; Mace and Jordan, 2011; Morris et al., 2013; Higgins et al., 2014). Dw3 has been previously 

cloned (Multani et al., 2003). For image-based QTL intervals, the encompassing physical coordinates of 

the indicated phenotypes across all timepoints were retained as the beginning and end of the interval. The 

LOD-2 interval and peak coordinate for the phenotype with the maximum MLOD is reported, and the 

phenotype name is indicated by *. Table S1 contains all identified organ-level QTL. Leaf pitch and leaf 

curve are both measures of Euclidean distance from the leaf base to the apex of the curved leaf blade, and 

the leaf base to the leaf tip, respectively (Feltus et al., 2006). 
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Figure legends 

Figure 1:  Processing of image data to segmented meshes. (A) Point clouds are sampled from multiple 

perspectives around the plant. (B) The point clouds are registered to the same frame and combined. (C) 

The combined cloud is meshed to generate a set of polygons approximating the surface of the plant. (D) 

The mesh is segmented into a shoot cylinder, leaves, and an inflorescence (if one exists; Figure S8), and 

phenotypes are automatically measured. 

 

Figure 2: Plant growth over time. (A) Segmented meshes for replicate 3 of RIL 175 are depicted at 4 

different days after planting (DAP) timepoints. Leaf colors represent individual segmented leaves; leaf 

colors have been manually assigned to enable tracking of the same leaf between meshes (Figure S9 

depicts how color is assigned automatically by the platform). The shoot cylinder is colored cyan. Meshes 

are depicted at the same relative scale. (B) The corresponding RGB images that were co-acquired with the 

depth images; RGB images are not to scale. 

 

Figure 3: Comparison of image-based measurements with measurements made using standard 

methods. Axes represent measurements made via one of three methods: image-based measurements 

made from plant meshes, manual measurements made with a measuring tape or protractor, and 

measurements with a LI-COR LI-3100C Area Meter. Plots with an axis representing image-based 

measurements are colored blue; plots without an axis representing image-based measurements are colored 

orange. Leaf area measurements made with the platform include abaxial and adaxial leaf surfaces, so the 

image-based area measurements were divided by two for comparison with LI-COR measurements of area. 

MD: mean difference between measurements; RMSD: root-mean-square difference between 

measurements; CV(RMSD): coefficient of variation of the RMSD given the range of data on the bottom 

axis; ρ: Pearson’s product-moment correlation coefficient; n: number of samples from which the 

differences and coefficients were calculated.  

 

Figure 4: LOD profiles for organ-level traits. For each phenotype, LOD profiles are based on 

chromosome-wide scans of chromosomes with QTL based on the most likely multiple-QTL models found 

by model selection (Figure S6). Each row represents a different trait, and within each trait are four nested 

rows that each represents a different timepoint (days after planting; DAP). Each group of columns 

represents a chromosome, and each column represents a marker at its genetic position. Cells are colored 

by marker LOD for the phenotype at the particular timepoint. 

 

Figure 5: Organ-level measurement of average leaf length over time. (A, B) Meshes displaying 

development over time for a plant bearing BTx623 alleles (A; RIL 257) and a plant bearing IS3620C 

alleles (B; RIL 306) of an indel marker on chromosome 4 that had the MLOD for leaf length. (C) Change 

in average leaf length over time.  Each thin line in the plot represents the average leaf length of a RIL 

(n=3) colored by its genotype. Leaf length was calculated as the average of the third, fourth, and fifth 

leaves counting from the bottom, corresponding to the light green, dark green, and blue leaves in panels A 

and B. The two thick lines represent a linear fit for each genotype and 95% confidence intervals. 
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Figure 6: LOD profiles for composite traits. For each phenotype, LOD profiles are based on 

chromosome-wide scans of chromosomes with QTL based on the most likely multiple-QTL models found 

by model selection (Figure S7). Each row represents a different trait, and within each trait are four nested 

rows that each represents a different timepoint (days after planting; DAP). Each group of columns 

represents a chromosome, and each column represents a marker at its genetic position. Cells are colored 

by marker LOD for the phenotype at the particular timepoint. 

 

Figure 7: Composite measurement of shoot height over time.  (A, B) Meshes displaying development 

over time for a plant bearing IS3620C alleles (A; RIL 175) and BTx623 alleles (B; RIL 19) of an indel 

marker closely linked with the Dw3 gene, an auxin transporter that regulates plant height. (C) Change in 

plant height over time. Each thin line in the plot represents the average height of a RIL (n=3) colored by 

its genotype at the Dw3 locus. Shoot height was measured as the vertical distance from the lowest shoot 

point to the highest shoot point, including leaves and the inflorescence (Table 1). The two thick lines 

represent a linear fit for each genotype at Dw3 and 95% confidence intervals.  
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