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Abstract

In the era of antiretroviral therapy (ART), HIV-1 infection is no longer tantamount to early

death. Yet the benefits of treatment are available only to those who can access, afford, and

tolerate taking daily pills. True cure is challenged by HIV latency, the ability of integrated virus

to persist within memory CD4+T cells in a transcriptionally quiescent state and reactivate

when ART is discontinued. Using a mathematical model of HIV dynamics, we demonstrate

that treatment strategies offering modest but continual enhancement of reservoir clearance rates

result in faster cure than abrupt, one-time reductions in reservoir size. We frame this concept in

terms of compounding interest: small changes in interest rate drastically improve returns over

time. On ART, latent cell proliferation rates are orders of magnitude larger than activation rates.

Contingent on subtypes of cells that may make up the reservoir and their respective proliferation

rates, our model predicts that coupling clinically available, anti-proliferative therapies with ART

would result in functional cure within 2-10 years rather than many decades on ART alone.
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1 Introduction

The most significant accomplishment in HIV medicine is the suppression of viral replication and

prevention of AIDS with antiretroviral therapy (ART) [1]. However, HIV cure remains elusive

due to viral latency, the ability of integrated virus to persist for decades within CD4+T cells in a

transcriptionally quiescent state. When ART is discontinued, latently infected cells soon reactivate,

and virus rebounds [2, 3]. Attempts to cure HIV by eradicating the latent reservoir (summarized

in [4]) have been unsuccessful except in one notable example [5].

To investigate persistence of the latent reservoir, we use a mathematical model that distinguishes

between latently and actively infected cells. After demonstrating analytically that infection of new

cells does not meaningfully contribute to sustaining the latent reservoir in ART-treated patients,

we separate the observed clearance half-life of 44 months [2] into one positive component rate

(proliferation) and two negative component rates (death and reactivation). The reactivation rate

defines the rate at which memory CD4+T cells transition to an activated phenotype in which

HIV initiates replication. We demonstrate the impact of changes to any of these rates via an

analogy with the compound interest formula in finance: small changes in interest rates result in

large overall gains or losses over time. In the absence of an intervention, proliferation and death

rates far exceed the reactivation rate [6]. Thus, reduction of the proliferation rate will deplete the

latent pool much more rapidly than a comparable increase in the reactivation rate as in latency

reversal therapy (‘shock-and-kill’). In keeping with the financial analogy, we call the strategy of

continuous reduction of the proliferation rate compound interest cure. We conclude by proposing

strategies to test this concept and by addressing theoretical reasons for its failure, including latency

in various T cell subsets with different proliferation rates and potential toxicities of anti-proliferative

drugs.
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Figure 1: Schematics of models for HIV dynamics on and off ART. The top panel shows all
possible transitions in the complete set of equations. The bottom shaded panel shows the available
transitions for the decoupled dynamical equations when ART suppresses the virus. The parameters
in the model are found in Table 1. Infection by HIV virus V of susceptible cells S mediated by
ART of efficacy ε is given by βε. The probability of latent infection is τ . The rate of activation from
the latently infected (L) to active state (A) is ξ. Cellular proliferations and deaths are determined
by α and δ for each compartment.

2 Results

2.1 ART decouples latent pool dynamics from ongoing infection

To model the latent reservoir, we expand the infected compartment of the original HIV model [7]

to account for the latently infected cells L and actively replicating, infected cells A [6, 8, 9, 10].

Our model is a set of ordinary differential equations (visualized schematically in the top panel of

Fig. 1 and detailed in the Materials and Methods section). All parameters and their meanings are

tabulated in Table 1 with further information in the Supporting Information (SI).

In particular, we adjust the infectivity parameter β to capture the effectiveness of ART therapy by

defining βε = β(1− ε) such that inert therapy implies ε = 0, and perfectly effective therapy implies

ε = 1. If ART is perfectly effective, no virus is generated, and no new infections occur even when
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cells reactivate from latency. Then, the dynamics of the latent pool can be considered on their own,

decoupled from the dynamics of the other cell types, and the only mechanisms changing the latent

cell pool size are cell proliferation, death, and activation (shown in the lower panel of Fig. 1).

Perfectly effective ART is not strictly necessary to consider the latent pool on its own. Using the

tools of dynamical systems mathematics, we can derive an expression for the viral set-point and

calculate the critical therapy efficacy εc in terms of the rates in Table 1 (Materials and Methods)

[11]. When ART achieves the critical efficacy, viral production from reactivation infrequently

creates another latent cell because the probability of latency is so low (τ � 1). Therefore, we can

consider the latent cells as their own system, decoupled from the other cell types. Put another way,

the model does not preclude the possibility of some small, ongoing viral replication and infection,

but rather demonstrates that this mechanism is unlikely to contribute to latent reservoir dynamics.

[10, 12].

The mathematical analysis is pertinent to discussion of viral evolution and ART escape mutations.

From a practical point of view, using parameters from Table 1, we find εc ∼ 85%, considerably

lower than empirically derived measures of ART potency [13, 14]. Thus, because true ART efficacy

is likely much larger than the necessary minimum εc, we predict little de novo infection in patients

suppressed on ART, consistent with the reported lack of viral evolution following years of ART

[12, 15, 16]. We do not address the question of anatomic drug sanctuaries directly in the model.

However, to have an impact on the reservoir, a sanctuary would have to contribute enough ongoing

infection to drive the average ART efficacy below critical levels and thus to permanent viral rebound,

which does not occur on suppressive ART.

Above the critical efficacy, we can solve for the decoupled time-evolution of the latent pool (see

Materials and Methods):

L(t) = L0e
θLt (1)

in which we define θL = αL − δL − ξ as the net clearance rate for the latent cells and L0 the initial

size of the reservoir. Eq 1 implies that the clearance rate of infected cells is a function of their

proliferation rate αL minus both death δL and activation ξ rates. Experimental measurements

indicate an average latent cell half-life of 44 months (θL = −5.2 × 10−4 per day) [2, 17] and an
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Table 1: Parameters used in the HIV latency model
Param. Value Dimensions Source Meaning

θL −5.2× 10−4 day−1 [2, 17] net latent T cell clearance rate on ART
αcm 0.015 day−1 [18, 19] latent central memory T cell proliferation rate
δcm 0.0155 day−1 latent central memory T cell death rate
αem 0.047 day−1 [18, 19] latent effector memory T cell proliferation rate
δem 0.0475 day−1 latent effector memory T cell death rate
αn 0.002 day−1 [18, 19] latent naive T cell proliferation rate
δn 0.0025 day−1 latent naive T cell death rate
ξ 5.7× 10−5 day−1 [8] activation rate

αA 0 day−1 [14] active T cell proliferation rate
δA 1.0 day−1 [14] active T cell death rate
τ 10−4 day−1 [10] probability of latency given infection
αS 300 cells/(µL-day) [20] susceptible T cell growth rate
δS 0.2 day−1 [14] susceptible T cell death rate

β 10−4 µL/(virus-day) [6] HIV infectivity off ART
βε β(1− ε) µL/(virus-day) [6] HIV infectivity on ART (with efficacy ε ∈ [0, 1])
π 103 virus/(cell-day) [8] viral production rate
γ 23 day−1 [14] viral clearance rate

average initial latent pool size L0 of one-million cells [2]. A mathematical correspondence to the

principle of continuous compound interest is now evident with L0 as the principal investment and

θL as the interest rate.

2.2 Existing thresholds are used to compare cure strategies

We use existing experimentally derived thresholds to compare potential cure therapies in the frame-

work of our mathematical model. Hill et al. employed a stochastic model to estimate that a 2,000-

fold reduction in the latent pool would result in HIV suppression off ART for a median time of

one year. After a 10,000-fold reduction in latent cells, 50% of patients would remain functionally

cured (defined by the authors as ART-free remission for at least 30 years) [8]. Pinkevych et al.

inferred from patient data that decreasing the latent reservoir by 50-70-fold would lead to HIV

remission in 50% of patients for one year [21]. Using the Pinkevych et al. results, we extrapolate

a functional cure threshold as a 2,500-fold decrease in the reservoir size (Materials and Methods).

In the following discussion, we consider all four thresholds—henceforth referred to as Hill 1-yr, Hill

cure, Pinkevych 1-yr and Pinkevych cure.
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Figure 2: Simulated comparisons of latent reservoir eradication strategies on standard antiretroviral
(ART) treatment. The thresholds (shown by black lines) are discussed in the text. A) One-
time therapeutic reductions of the latent pool (L0). B) Continuous therapeutic increases in the
clearance rate (θL). Relatively small decreases in rates produces markedly faster times to cure than
much larger decreases in the initial reservoir size. C-E) Latency reversal agent (LRA) and Anti-
proliferative (AP) therapies are given continuously for durations of weeks with potencies given by
εLRA, and εAP respectively. The color bar is consistent between panels, and thresholds of cure are
shown as solid black lines both on plots and on the color bar. C) Latency reversing agent therapy
(LRA) administered alone requires years and potencies above 100 to achieve the cure thresholds. D)
Anti-proliferative therapies (AP) administered alone lead to cure thresholds in 1-2 years provided
potency is greater than 2-3. E) LRA and AP therapies are administered concurrently, and the
reduction in the latent pool is measured at 70 weeks. Because the proliferation rate is naturally
greater than the reactivation rate, increasing the AP potency has a much stronger effect than
increasing the LRA potency.

2.3 Sustained mild effects on clearance rate deplete the reservoir more rapidly

than large, one-time reductions in the reservoir

The HIV cure strategy most extensively tested in humans is ‘shock-and-kill’ therapy: small molecules

(called latency reversing agents or LRAs) activate latent cells to replicate and express HIV pro-

teins, allowing immune clearance while ART prevents further infection [4, 22]. Other strategies in
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development include therapeutic vaccines [23], viral delivery of DNA cleavage enzymes [24], and

transplantation of modified HIV-resistant cells [25] informed by the ‘Berlin patient’ who was cured

following a similar protocol [5]. Some of these therapies may manifest as one-time reductions in

the number of latent cells. We simulate such instantaneous decreases using Eq. 1 in Fig. 2A. With

θL constant and a 100-fold reduction in L0, the Pinkevych 1-yr threshold is immediately satisfied,

but the Hill 1-yr and Pinkevych cure still require 15 years of ART. Hill cure requires a 1000-fold

reduction and over 10 subsequent years of ART.

In comparison to one-time treatments, continuous-time interventions are more promising. In

Fig. 2B, relatively small changes in θL in Eq. 1 lead to significant changes in the time to cure.

On ART alone, the reservoir is depleted slowly with estimated cure occurring at roughly 70 years

[2]. However, just a 3-fold increase in clearance rate achieves Hill-cure in fewer than 20 years. If

a 10-fold sustained increase is possible, Hill cure requires only 5 years. Analogous to the ‘miracle

of compound interest,’ increasing the clearance rate for an extended duration produces profound

latency reduction.

2.4 Smaller reductions in proliferation rate achieve more rapid reservoir deple-

tion than comparable relative increases in reactivation rate

Latency reversing therapy can be modeled by Eq. 1 if treatment is assumed to be a continuous-time

multiplication of the reactivation parameter (ξ). Simulations of the latent pool at various potencies

and therapy durations in Fig. 2C indicate both Hill and Pinkevych cure thresholds require more

than a 150-fold multiplication of ξ sustained for two or three years, respectively.

Experimental evidence [15, 19, 26, 27] and theoretical analysis [6] demonstrate that proliferation

of latently infected cells is critical for reservoir persistence. While two anti-proliferative drugs,

mycophenolate mofetil (MMF) and hydroxyurea, have been used in the past as adjuncts to ART

to further limit replication [28, 29, 30], anti-proliferative strategies have not been tested specifically

to treat HIV latency [31]. We now justify mathematically how such therapies could have curative

potential.

The latent cell proliferation rate is considerably larger than the reactivation rate (αL � ξ). Thus,
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anti-proliferative therapies would clear the reservoir faster than equivalently potent latency reversal

strategies. When the reservoir of CD4+T cells harboring replication competent HIV is assumed to

consist only of central memory cells (Tcm), a 10-fold reduction in αL(cm) reaches Pinkevych 1-yr,

Hill 1-yr, Pinkevych cure, and Hill cure in 0.8, 1.6, 1.6, and 1.8 years, respectively (Fig. 2D).

The improvement in cure time in Fig. 2D (as opposed to equivalent 10-fold reduction of θL in

Fig. 2B) is possible because decreasing the proliferation rate means the net clearance rate ap-

proaches the death rate. The potency is relatively unimportant beyond reducing the proliferation

rate by a factor of ten because the underlying death rate δcm is actually the bound on the clearance

rate. Fig. 2D also demonstrates substantial asymmetry of the contours over its y = x axis, convey-

ing that outcomes improve more by extending duration than by equivalent increases in potency.

This can also be demonstrated mathematically (see SI). Fig. 2E further illustrates that the relative

impact of anti-proliferative therapy is much greater than that of latency reversal therapy when the

two therapies are given concurrently for just over a year.

2.5 Heterogeneity in reservoir cell types may necessitate prolonged anti-proliferative

therapy

Recent studies indicate that the reservoir is heterogeneous, consisting of CD4+central memory

(Tcm), näıve (Tn), effector memory (Tem), and stem cell-like memory (Tscm) T cells with compo-

sition differing dramatically among patients [19, 32, 33]. This heterogeneity suggests the potential

for differing responses to anti-proliferative agents. Tcm homeostatic proliferation rates exceed the

rates for Tnbut lag behind antigen-driven Tem turnover rates (Table 1). Tscm are assumed to

proliferate at the same frequency as Tn in our model based on similar properties. We simulate

possible reservoir profiles in Fig. 3A-C. At least 7 years of treatment is needed for Pinkevych func-

tional cure if slowly proliferating cells (Tn and/or Tscm) comprise more than 20% of the reservoir.

In contrast, an increased proportion of Tem has no clinically meaningful impact on time to cure.

Slowly proliferating cells are predicted to comprise the entirety of the reservoir within two years

of 10-fold anti-proliferative treatment regardless of initial percentage Tn or Tscm (Fig. 3D&E).

Therefore, anti-proliferative strategies may face a challenge akin to the cancer stem cell paradox,

whereby only the rapidly proliferating tumor cells are quickly expunged with chemotherapy. For
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Figure 3: Simulated comparisons of anti-proliferative therapies on standard antiretroviral therapy
(ART) assuming variable reservoir composition; see proliferation and death rates in Table 1. The
potency of the therapy is εAP = 0.1 (i.e., each cell type i has proliferation rate equal to αi/10
with i ∈ [em, cm, n]). Plausible initial compositions of the reservoir (Li(0)) are taken from exper-
imental measurements [19, 32, 33]. It is assumed that the HIV reactivation rate ξ is equivalent
across all reservoir subsets. A-C) Plots of times to therapeutic landmarks on long-term ART and
anti-proliferative therapy with heterogeneous reservoir compositions consisting of effector mem-
ory (Tem), central memory (Tcm), and näıve plus stem cell-like memory (Tn+Tscm) CD4+T cells.
Tem and Tn+Tscm percentages are shown with the remaining cells representing Tcm. Times to
one-year remission and functional cure are extremely sensitive to percentage of Tn+Tscm but not
percentage of Tem. D&E) Continuous 10-fold therapeutic decreases in all proliferation rates (αi)
result in Hill 1-yr/Pinkevych cure in D) 3.5 years assuming Tn+Tscm=1% and E) 6 years assuming
Tn+Tscm=10%. The reservoir is predicted to become Tn+Tscm dominant within 2 years under
both assumptions, thus providing an indicator to gauge the success of anti-proliferative therapy in
a potential experiment.

example, tyrosine kinase inhibitors suppress proliferation of cancer cells in chronic myelogenous

leukemia (CML). While many patients achieve ‘undetectable minimal residual disease,’ some pa-

tients relapse to pre-therapy levels of disease following cessation of therapy—perhaps due to slowly

proliferating residual cancer cells [34].

The uncertainty in the reservoir composition tempers the results in Fig. 2. On the other hand,

our model assumes that the HIV reactivation rate ξ is equivalent across all CD4+T cell reservoir

subsets. It is biologically plausible, though unproven, that HIV rarely or never reactivates from

resting Tn or Tscm. Under this assumption, more rapid functional cure akin to Fig. 3D would be

expected because theoretically this would allow cessation of ART despite long-term persistence of

Tn harboring latent HIV.
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2.6 Reservoir size, reservoir composition, and efficacy of anti-proliferation agents

predict time to HIV cure

We performed a single parameter sensitivity analysis (Fig. S3) and identified that the latency

probability τ , ART efficacy above the critical efficacy ε, and reactivation rate of HIV ξ did not vary

the kinetics of the HIV reservoir using concurrent ART and anti-proliferative therapy. Alternatively,

low initial reservoir size L0, low percentage of näıve cells in the reservoir Ln(0)/L0, and high

reservoir clearance rate −θL decreased time to cure.

We also performed an uncertainty analysis in which multiple therapeutic parameters were ran-

domly selected from distributions and generated a wide range of therapeutic outcomes among

individual simulated patients (Fig. S4A). No single parameter was completely predictive of time

until Pinkevych 1-yr or Hill cure (Fig. S4B), and ART efficacy again had no impact on time to

cure above the critical efficacy. Low initial reservoir size, low percentage of näıve cells in the reser-

voir, and high anti-proliferative therapy efficacy were the most predictive factors of rapid reservoir

clearance (Fig. S4C).

2.7 Model output is congruent with available clinical data

Chapuis et al. treated 8 ART-suppressed, HIV-infected patients with 24 weeks of mycophenolate

mofetil (MMF). They measured Ki67+CD4+T cells before and after MMF treatment as a marker

of anti-proliferative effect and found the Ki67+CD4+T cells had decreased 2.2-fold. Incorporating

that reduction in latent cell proliferation rate αL into our model, we find an average reduction in the

latent reservoir of 77% using the assumptions in Fig. 2. Chapuis et al. also estimated an average

relative reduction in reservoir size by quantitative viral outgrowth assay in 6 of those patients and

found a 1 to 2 log reduction in infectious units per million (IUPM) in 5 of those patients and a

statistically significant reduction in 3 [29].

Garciá et al. treated 9 virally suppressed HIV patients with MMF for 17 weeks before ART was

discontinued. Ki67+CD4+T cell measurements demonstrated an anti-proliferative response in 6

of 9. The median time to viral rebound (6-12 weeks) was longer, and average viral set-point was

lower (by ≈ 1 log) than in the control cohort and in the 3 patients with no pharmacologic response
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to MMF [28]. Our model estimates a 1-2 order of magnitude reduction in reservoir size after 17

weeks of treatment, which in turn would correspond with a median of a 4-8 week delay in HIV

reactivation, consistent with their findings (see SI for parameter selections) [8].

3 Discussion

Several authors have studied similar systems of equations to represent the latency dynamics of HIV

[6, 8, 9, 10]. Here, we focus on cure strategies and contrast their respective times to functional

cure. We demonstrate that minor reductions in memory CD4+T cell proliferation rate would exhibit

powerful reductions in the latent pool when therapy duration is extended over time. We call this

proposed strategy compound interest cure due to the correspondence with financial modeling.

Our results are relevant because the only HIV cure strategy currently being tested in humans—

latency reversal therapy (‘shock-and-kill’)—does not capitalize on the advantages of a compound

interest strategy. Promising latency reversing agents are typically dosed over short time-frames

based on concern for toxicity. Furthermore, even if these agents exert a large relative impact on

the reactivation rate of memory CD4+T cells, we predict the reduction in the reservoir will be

insignificant given the small size of the natural reactivation rate (orders of magnitude smaller than

the proliferation and death rates).

The potential of the compound interest approach is enhanced by the existence of licensed medi-

cations that limit T cell proliferation, including mycophenolate mofetil (MMF) and azathioprine.

In line with our suggestion that duration is more important than potency, these drugs are dosed

over time periods of months or years. MMF is commonly used to treat several rheumatologic con-

ditions and to prevent rejection in solid organ transplant. The most frequent side effects reported

are gastrointestinal symptoms and increased risk of infection though the latter risk is obscured by

concurrent use of high-dose glucocorticoids [35]. MMF has been given to a small number of HIV

patients suppressed on ART for 17 [28] and 24 weeks [29]. No opportunistic infections or adverse

events were observed in either study, and CD4+T cell counts did not decrease significantly during

therapy. We hypothesize that whereas MMF decreases proliferation of existing CD4+T cells, it

does not suppress bone marrow replenishment of these cells (see SI). Finally, MMF did not coun-
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teract the effects of ART [28, 29], and thus we do not expect viral drug resistance to develop or

ongoing viral evolution to occur on anti-proliferative therapy. However, despite these reassuring

findings, future studies of HIV infected patients on anti-proliferative agents will require extremely

close monitoring for drug toxicity and immunosuppression.

Our model suggests that slowly proliferating cells in the reservoir could present a barrier to rapid

eradication of latently HIV-infected cells. Additional limitations could include insufficient drug

delivery to anatomic sanctuaries, certain cellular subsets that are unaffected by treatment, and

cytokine-driven feedback mechanisms that compensate for decreased proliferation. These chal-

lenges might be countered by combining anti-proliferative agents with other cure therapies. Avoid-

ance of nucleoside and nucleotide reverse transcriptase inhibitors, which may enhance homeostatic

proliferation, could provide an important adjunctive benefit [31, 36, 37].

The anti-proliferative approach is attractive because it is readily testable without the considerable

research and development expenditures required for other HIV cure strategies. Anti-proliferative

approaches require minimal potency relative to latency reversal agents, and T cell anti-proliferative

medications are well studied mainstays of organ rejection prevention. Therefore, we propose trials

with anti-proliferative agents as an important next step in the HIV cure agenda.

4 Methods

4.1 Decoupling the latent reservoir dynamics

HIV dynamics have been described mathematically in many fashions [38]. We describe a model

(schematic in Fig. 1) that includes susceptible and latently or actively infected T cells. We follow the

concentrations [cells/µL] of susceptible CD4+T cells S, latently infected cells L, actively infected

cells A, and plasma viral load V [virions/µL]. The system of ordinary differential equations tracks
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the states and is expressed (using the over-dot to denote derivative in time)

Ṡ = αS − δSS − βεSV

L̇ = αLL+ τβεSV − δLL− ξL

Ȧ = (1− τ)βεSV − δAA+ ξL

V̇ = πA− γV,

(2)

with αS [cells/µL-day] as the constant growth rate of susceptible cells, δS [1/day] as the death rate

of susceptible cells, and βε = (1 − ε)β [µL/virus-day] as the therapy-dependent infectivity with ε

[unitless] the therapy efficacy ranging from 0 (meaning no therapy) to 1 (meaning perfect therapy).

αL and δL [1/day] are the proliferation and death rates of latent cells. The death rate of activated

cells is δA, and the proliferation of activated cells αA ≈ 0 is likely negligible [39]. τ [unitless] is the

probability of becoming latent given infection, and ξ [1/day] is the activation rate from latent to

actively infected cells. The viral production rate is π [virions/cell-day], mechanistically describing

the aggregate rate of constant leakage and burst upon cell death. γ [1/day] is the clearance rate of

virus. The values of the rates are defined in Table 1.

Equilibrium solutions to the set Eq. 2 can be calculated by solving the set when all Ṡ, L̇, Ȧ, V̇ = 0.

See SI for this calculation and stability analysis. Notably, the viral ‘set-point,’ or the equilibrium

value for non-zero virus and infected cells, is

V ∗ =
παSfL
γδA

− δS
βε

(3)

where we have defined the dimensionless latency factor fL = 1 − τ(ξ/θL + 1) to encapsulate all

latent pool dynamics. Solving this equation, the critical drug efficacy εc can be derived such that

the viral equilibrium is unstable (V ∗ < 0):

εc = 1− δSγδA
βπαSfL

. (4)

If it is assumed that ART also affects π in Eq. S10, i.e. π → π(1−ε) this decreases the critical efficacy

(SI). Above the critical efficacy reactivation from latency is the only mechanism that produces
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virus. After a reactivation, a transient small viral load exists, but the small probability (τ) of

new latent infections from this small amount of virus allows us to ignore any increase in latent

cells. Thus, the latent state can be considered independently, and the transition from latency to

activation represents another pathway to removal from the latent pool. We express the dynamics

of latency decoupled from virus with the two-equation system as shown in the shaded bottom panel

of Fig. 1:

L̇ = αLL− δLL− ξL

Ȧ = −δAA+ ξL.

(5)

A similar model has been studied recently in Conway and Perelson [10] who also show that tran-

sitions back to latent cells from replicating active cells are negligible. In another manner, we

demonstrate the ability to ignore transitions back from active cells in simulation (Fig. S1&S2).

The two equation system is linear, and we solve for the latent dynamics as

L = L0e
θLt (6)

where the initial number of latent cells is L0 and the total clearance rate θL = αL−δL−ξ for the la-

tent cells corresponds with the experimentally known net clearance rate. We use the correspondence

of Eq. 6 to the formula for continuous compound interest throughout the paper.

4.2 Modeling multiple T cell subsets

It has been demonstrated that several subsets of CD4+T cells may contribute to the reservoir.

We reviewed existing data to find the rates of proliferation for each subset as well as estimates of

the total fractional makeup of the reservoir [19, 32, 33]. The typical groupings are central memory

(Tcm), effector memory (Tem), and näıve (Tn) cells. Deuterated glucose measurements by Macallan

et al. found turnover rates as 4.7% per day for Temcompared with 1.5% per day for Tcm and only

0.2% per day for Tn[18]. Transitional memory T cells (Ttm) have also been described to represent a

transition from Tcmto Tem[19]. For the model we consider Ttmto have equivalent proliferation rates

to central memory cells. Similarly, we characterize the recently described stem cell-like memory
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CD4+T cells (Tscm) as Tn given their likely slow turnover rate [33]. Chomont et al. determined the

percentage of each cellular subset from 31 aviremic individuals [19]. They find mean contributions

of Tcm+Ttm to be 86%, whereas Tem are 13% and Tn roughly 1-2% though there is a wide range

of values amongst patients. Buzon et al. report larger percentages of naiv̈e cells up to 15% and

include Tscm at 24%, Tem at 26%, and Tcm at 22% [33].

To model the heterogeneity, we make the latent pool L→ Li a vector with a dimension i for each

T cell subset. The differential equation for the decoupled latent dynamics is then

L̇i = θijLj . (7)

We ignore transitions among subsets, as the natural composition of the reservoir is reasonably

stable over time [19]. The solution then with diagonal θii = αi − δi − ξ is

L =
∑
i

Li(0) exp[(αi − δi − ξ)t]. (8)

The percentages discussed in the preceding paragraph determine the initial makeup of the reservoir

Li(0). We simulate the dynamics of a heterogeneous reservoir with 10% potent anti-proliferative

therapy εAP = 10 in Fig. 3 using

L =
∑
i

Li(0) exp[(αi/10− δi − ξ)t] (9)

in which the index i ∈ [cm, em, n] indicates the T cell subsets with rates from Table 1.

4.3 Important model parameters

The parameters that affect our model most critically are those that contribute to the total clearance

of latent cells θL. The half-life of latently infected cells has been determined experimentally using

the quantitative viral outgrowth assay [2, 17]. We use a proliferation rate for αL obtained using

in vivo labeling of CD4+T cells with deuterated glucose [18]. Importantly, these estimates depend

on the length of the labeling period and the model used to interpret the measurements [40]. Thus,

we perform uncertainty and sensitivity analyses (see SI) to explore a larger range of values. In
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Fig. 2, we assume that the majority of latently infected CD4+T cells are in fact central memory

T cells (Tcm), and thus αL = αcm = 0.015 per day. The importance of reservoir proliferation has

been supported experimentally [19, 16] and predicted theoretically [6, 41]. In [6], αL parameter

values were chosen between 0.011 and 0.03 per day, consistent with our model. The activation

rate ξ is several orders of magnitude smaller than the proliferation rate. Luo et al. estimated HIV

model parameters from structured treatment interruptions in the AutoVac trial [14]. Using those

estimates, Hill et al. found that on average, 57 CD4+T cells per day transition from latency to the

activated state and assuming 1 million latent cells then, ξ = 5.7 × 10−5 per day [8]. We calculate

the death rate for each of i cell types δi in Table 1, using the respective proliferation, activation

and net clearance rates [18]. The remaining parameters are necessary here only to calculate the

critical efficacy. They are tabulated in Table 1 for completeness and are discussed in further detail

in the SI.
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Some results in the main body of the paper were stated without full justification. Extended

calculations and results from models that are secondary to the main model of the paper are included

in this supplementary information document. The first section (§1) expounds upon the basic

latency model and addresses some possible extensions. The second (§2) is a discussion of how

model parameters were obtained from the literature. The third and final section (§3) contains both

a local and global uncertainty and sensitivity analysis for parameters in the model as found in §2.

We compare our theoretical treatment using anti-proliferative agents in conjunction with ART with

previous experimental results, and discuss how anti-proliferative therapy can deplete HIV-infected

CD4+T cells without depleting all CD4+T cells from the body.
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6 Appendix I: Additional model discussion and calculations

6.1 HIV dynamical equations including latency and therapy

The SLAV model for HIV latency is briefly described in the main body and schematized in

Fig 1. Our system of equations captures the dynamics of the concentrations [cells/µL] of sus-

ceptible CD4+ T cells, latently infected cells L, actively infected cells A, and viral concentration

V [virions/µL]. Experimentally derived values of all parameters are found in Table 1 of the main

body. The system is

Ṡ = αS − δSS − βεSV

L̇ = θLL+ τβεSV

Ȧ = (1− τ)βεSV − δAA+ ξL

V̇ = πA− γV

(S10)

where the over-dot denotes time derivative. We use the variables described in Table S1 throughout

the paper.

6.2 Equilibrium solutions leading to decoupled equations for the latent pool

Equilibrium solutions (denoted by the asterisk) to the set of ODEs Eq. S10 can be calculated by

setting Ṡ, L̇, Ȧ, V̇ = 0. The viral free equilibrium has the solution S∗ = αS/δS , L∗ = 0,A∗ = 0, and

V ∗ = 0. We assume that the model begins at this equilibrium such that S(0) = S∗. To calculate

the non-trivial equilibrium, referred to as the viral set-point equilibrium, we begin by solving the

fourth equation for A∗ and multiply by δA

δAA
∗ =

δAγV
∗

π

then identify δAA
∗ from the third equation to get

δAγV
∗

π
= (1− τ)βεS

∗V ∗ + ξL∗
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Parameter Description

αS Constant growth rate of susceptible cells due
to thymic production

δS Death rate of susceptible cells
βε = (1− εART )β ART dependent infectivity
εART ART efficacy from 0 meaning no therapy to 1

meaning perfect therapy
αL Proliferation rate of latent cells
αi Proliferation rate of latent cells of subset i ∈

[cm, em, n] to account for different T cell phe-
notypes

L0 Initial number in the latent pool
Li(0)/L0 Initial fraction in the latent pool of subset i

or the fraction of new infections of type i (ex-
pected to remain constant over time)

εAP Anti-proliferative potency (acts as αL/ε
AP )

τ Probability of becoming latent given infection
δL Death rate of latent cells
ξ Activation rate from latent to actively in-

fected cell
εLRA Latency reactivation agent potency (acts as

ξ · εLRA)
π Virus production rate, due to constant leakage

or burst upon cell death
γ Clearance rate of virus
θL = αL − δL − ξ Net clearance rate of the latent reservoir, as-

sumed the same between T cell subtypes

Table S2: List of parameters and descriptions. Dimensions and values are found in Table 1 of the
body; confidence intervals are included in Table S7

then solving the second equation for L∗ leads to

δAγV
∗

π
= (1− τ)βεS

∗V ∗ + ξ
τβεS

∗V ∗

−θL

so that we can factor and cancel V ∗

δAγ

π
=

[−ξτ
θL

+ (1− τ)

]
βεS

∗
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and rewrite the bracketed term as fL = 1− (1 + ξ/θL)τ so that we can solve for the viral set-point

equilibrium value of the susceptible cells

S∗ =
γδA
βεπfL

.

From here, we solve for the viral set-point equilibrium viral load concentration,

V ∗ =
αS
βεS∗ −

δS
βε

and the other equilibria follow, leading to the set of equilibrium solutions:

S∗ =
γδA
βεπfL

L∗ =
τ

θL

[
γδSδA
βεπfL

− αS
]

A∗ =
αSfL
δA
− γδS
βεπ

V ∗ =
αSπfL
γδA

− δS
βε

(S11)

where fL = 1 − (1 + ξ/θL)τ . We refer to this factor as the latency factor because it encapsulates

all the latent dynamics. When τ � 1, we have fL ∼ 1 which is true for parameter values from the

literature (see Table 1).

We can also calculate the basic reproductive ratio RART0 of HIV on ART quickly using the equation

for the viral equilibrium. When the basic reproductive number is less than 1, the viral equilibrium

point is unstable. We can rewrite

V ∗ =
δS
βε

(
αSβεπfL
γδAδS

− 1

)

and thus identify the combination of parameters

RART0 =
αSβεπfL
γδAδS

, (S12)

where we include the superscript to remind the reader that the value is not the natural value,
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but the value with βε. This expression for the basic reproductive number can be checked using

the next-generation matrix method for example [42]. This expression is fairly independent of the

activation rate. For example, if LRA treatment is not very potent

fL =≈ 1− τ,

and if LRA treatment provides a huge increase in the activation parameter (εLRAξ > αL − δL),

aside from the point when they are actually equal and the function is undefined, the expression

approaches (using the Binomial expansion [1− x]n ≈ 1− nx+ . . .)

fL = 1− (1 + ξ/θL)τ ≈ 1 + τ
αL − δL
εLRAξ

≈ 1,

because αL − δL is a negative number, as activation increases

RART0 ≈ αSβεπ

γδAδS

which is the typical value for the viral dynamics model without a latent compartment. This

is understandable because when reactivation is instantaneous, the latent model acts as a model

without latency. This is excellent for clearance of the reservoir, but it is unclear how possible it is

to have such a potency.

6.3 Critical drug efficacy

The critical drug efficacy εc is then calculated for the situation where V ∗ < 0 [6]. This leads us

to

εc > 1− δSγδA
βαSπfL

(S13)

which is precisely the drug efficacy for which RART0 < 1. Thus when therapeutic effectiveness is

above this threshold, the virus will decay and never reach a stable set point. We could also consider

a therapeutic effect in the parameter that controls viral production from active cells. This could

be implemented by changing π → πε = π(1− ε) for example. If this choice is made instead of the

change in the infectivity the equilibrium analysis is identical. If both parameters are changed we

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2016. ; https://doi.org/10.1101/063305doi: bioRxiv preprint 

https://doi.org/10.1101/063305


arrive at the second critical efficacy

ε(2)c > 1−
√

δSγδA
βαSπfL

(S14)

which is in general lower than the previous calculation (i.e., ε
(2)
c < εc), the critical efficacy provided

by a drug only affecting the infectivity.

6.4 Stability analysis

By linearizing our system of equations, we can comment on the stability of the equilibrium points.

We begin by defining our state variables as a vector x = [S,L,A, V ]T such that we can express the

system of ODEs as F(x) = d
dtx. We have calculated the equilibrium solutions above, and thus can

Taylor expand our function around the equilibrium:

F(x) ≈ F(x∗) +
∂F

∂x

∣∣∣∣
x∗

(x− x∗) +
∂2F

∂x2

∣∣∣∣
x∗

(x− x∗)2 + . . .

By construction the first term is zero, because it is the equilibrium point, and calling a small

∆x = x − x∗ � 1, then terms of O(∆x2) are negligible. Because the derivative function is linear

and using x = x∗ + ∆x we can rewrite

F(x) =
dx

dt
=
dx∗

dt
+
d∆x

dt

and because x∗ is not a function of time we have finally the linear equation

d

dt
∆x ≈ ∂F

∂x

∣∣∣∣
x∗

∆x = Jx∗∆x

where the matrix of derivatives (∂F∂x = ∂iFj where both i, j ∈ [1, 4]) is referred to as the Jacobian.

The eigenvalues of the Jacobian describe how perturbations near equilibrium behave. Notably, if all

eigenvalues λj of the Jacobian have negative real components Re(λj) < 0, perturbations decay back

to equilibrium and the equilibrium is deemed stable. Importantly, a stable set-point equilibrium

only exists when ε < εc. As mentioned in the body, for realistic parameters the critical efficacy is
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εc ∼ 85%. Above the critical efficacy of ART, no stable viral set-point equilibrium exists, and the

viral-free equilibrium becomes stable.

Understanding how perturbations to the viral-free equilibrium behave gives insight into what hap-

pens when a small bit of virus is introduced. We evaluate the Jacobian at the viral-free equilibrium

x∗ = [αS/δS , 0, 0, 0]T , leaving

Jx∗ =



−δS 0 0 0

0 θL 0 τβεαS/δS

0 ξ −δA (1− τ)βεαS/δS

0 0 π −γ


.

We can see immediately that one of the eigenvalues is −δS , and by noting that τβεαS/δS is very

small relative to the other rates, we see that another eigenvalue is θL. In fact, all eigenvalues

(when calculated numerically) above the critical efficacy have negative real parts, so we know the

equilibrium is stable. Furthermore, the timescale to return to equilibrium t∗ is due to the largest

(least negative) eigenvalue by t∗ = 1/maxλj [43]. Numerically, it turns out that this timescale is

on the order of 1/θL, demonstrating that for the equilibrium to truly return to virus-free, all the

latent cells must be cleared.

The mathematical analysis gives the condition for true eradication, and it is possible to make a

heuristic argument for the dynamics of the latent cells. Soon after initiation of ART, virus only

exists when long lived latent cells are activated, and these small activation events are quickly

removed by ART. Furthermore, the few infections that do recur also have a minute probability of

becoming latent (due to the magnitude of τ). All of this results in the observation that ongoing

infection is ignorable in the latent reservoir [10]. We can now focus on the active and latent cells

in the two equation system as shown and visualized in the bottom of Fig. 1 of the paper.

L̇ = αLL− δLL− ξL

Ȧ = ξL− δAA
(S15)
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6.5 Solving the decoupled equations: the compound interest formula

The system Eq. S15 is linear and trivially solvable. Solving the equation using the initial number

of latent cells L0 yields

L = L0e
(αL−δL−ξ)t

We will now define the total clearance rate θL = αL − δL − ξ for the latent cells. This definition is

important to make correspondence with the experimentally known parameter of the net clearance

rate first measured by Siliciano et al. [2]. We have now

L = L0e
θLt (S16)

It is clear that when θL < 0 the latent cell pool is cleared exponentially. Equivalently, if the

latent cell proliferation rate αL is greater than the sum of the reactivation rate ξ and the latent cell

death rate δL, the latent reservoir L grows indefinitely. We call the exponential decay expression the

compound interest model because of the correspondence with financial modeling. The principal

investment is analogous to the initial size of the latent pool, and the interest rate analogous to the

clearance rate of the latent pool.

The differential equation for the active cells is

Ȧ+ δAA = ξL0e
θLt

with solution that can be computed by multiplying both sides by exp(δAt) and identifying the total

derivative ∂t[A exp(δAt)]. We have then

A =
ξL0

δA + θL

(
eθLt − e−δAt

)
+A0e

−δAt

A plot of the trajectory of the latent pool with the drug efficacy above and below the critical efficacy

is shown in Fig. S4. As expected by the stability analysis, above the critical efficacy the decoupled

solution (the compound interest formula) matches the full solution perfectly. The full solution is

achieved by solving the set of equations Eq. S10 using Matlab’s ode23s solver.
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Figure S4: Plots of the latent pool clearance below and above the critical efficacy εc ∼ 85%. Above
the critical value, the compound interest formula L = L0 exp(θLt) matches the full ODE solutions
exactly.

6.6 Impact of duration and rates on clearance time

It was claimed and demonstrated graphically in Fig. 2D of the body that it is better to increase

the duration of therapy to deplete the latent pool than to increase the potency of the therapy

equivalently. We can show this formally as well. If we examine the remaining fraction of latent

cells over time

L/L0 = exp [(αL − δL − ξ)t]

we can study the effect of multiplying any rate by a factor r or multiplying the duration of time

by factor d. The ratio of the percent remaining after doing either of these multiplications tells us

which procedure is more valuable. For example if we multiply the reactivation rate only

L(r)

L(d)
= exp [t(αL − δL − rξ − d(αL − δL − ξ))]

then for the rate changed L(r) to be smaller than the duration changed L(d) we must have

αL − δL − rξ − d(αL − δL − ξ) = (1− d)(αL − δL) + ξ(d− r) < 0.
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This means that the factor multiplying the rate must obey

r >
(αL − δL)(1− d) + ξd

ξ

and note if we set d = r, we find that d < 1 because (αL − δL) is a negative number. Therefore,

the decrease in the latent pool due to multiplying the duration of therapy will always be larger

than an equivalent multiplication of the rate (unless the r < 1, which is a nonsensical proposition

equivalent to making therapy less effective).

6.7 The minimal impact of allowing active to latent transitions

In some modeling works a transition from active to latent cells has been included [6, 44]. If we add

that term to the model as a rate φ the equations for the latent and active pool (decoupled from

the virus and susceptible as before) are

L̇ = αLL− δLL− ξL+ φA

Ȧ = ξL− δAA− φA.
(S17)

These equations can be solved with typical linear algebraic methods, but the eigenvalue/eigenvector

solutions are not intuitively enlightening. Instead we plot the solutions (of the “latency reversion”

model) for varying values of φ in Fig. S5. The solution is compared with the compound interest

model, and only for unnaturally large values of φ do the solutions deviate from the compound

interest formula. For example, in Ref. [44], the largest values for the re-latent rate (fitting to

patient data) is 0.078, well below the values that appear different from the compound interest

model. In these simulations we use L0 = 106 and A0 = 3×105 as in Hill et al. 2014. Only for large

φ and at early points in time do we see any impact of the active cells. At that point, the active

cells almost instantly transition to latency before the active cells decay. Then in the long time

limit, the clearance is identical to the typical exponential decay. The result is that the solution

is approximately L = (L0 + φA0) exp(θLt). If A0 is assumed to be larger the error in the model

occurs for smaller latency reversion rate, but still above the expectation for φ. Indeed, this is not

so much a problem for the model, because the initial conditions can be adjusted accordingly.
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Figure S5: Solutions of Eq. S18 compared to the compound interest model L = L0 exp(θLt). Only
for unrealistically large values of the return to latency rate φ does the solution deviate from the
exponential decay.

6.8 Composition of the reservoir: modeling T-cell subsets

It has been demonstrated that several subsets of CD4+ T cells may contribute to the reservoir

[19, 32, 33]. We reviewed the existing data to find the rates of proliferation for each subset, as well

as estimates of the total fractional makeup of the reservoir.

The typical T cell phenotypes considered to make up the reservoir are central memory Tcm, effector

memory Tem, and näıve Tn cells. Transitional memory Ttm have also been described to represent a
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transition from Tcm → Tem. For the model we consider Ttm to have equivalent proliferation rates

to Tcm. Similarly, we characterize newly recognized stem-cell-like memory CD4+T cells (Tscm) as

Tn given their likely slow turnover rate. Of note, these are conservative estimates that would not

favor anti-proliferative therapy.

We include the T cell diversity into the decoupled model by breaking the differential equation for the

latent pool down into three differential equations, one for each subtype Li with i ∈ [cm, em, n]. We

ignore transitions between types because on average the composition of the reservoir is reasonably

stable over time and thus our model is the system

L̇i = θiLi. (S18)

The total number of latent cells is the sum of the subset numbers, L =
∑

i Li. We only use three

types mentioned above (including stem-cell-like and transitional memory cells into näıve and central

memory sets respectively). Solutions for the total latent pool when decoupled on ART are thus

linear combinations

L(t) =
∑
i

Li(0)eθit (S19)

where θi = αi− δi− ξ, Li(0) are the initial numbers of each subtype, and because we have assumed

there are no couplings between types.

As in Fig. 3 in the main body, simulations assume the same original net clearance rate and

activation rates, but different proliferation rates αi and thus different death rates δi. When the

proliferation rate is reduced using an anti-proliferative therapy, the clearance rates are different

among types. The initial conditions for each type Li(0) are inferred from Chomont et al. [19],

though we do simulate larger values than this to cover the worst case scenario of many näıve cells

as in Buzon et al. [33].
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7 Appendix II: Discussion of model parameters

7.1 The components of θL: proliferation, death, and activation

Our most critical parameter values are those that describe the proliferation, death, and activation

rates of the latent cell pool–the sum of which is the the net clearance rate of the latent cell

pool θL. We estimate the proliferation rate αL from Macallan et al. who used in vivo labeling

with deuterated glucose to measure turnover in memory T cells in humans and found that on

average, 1.5% of CD45R0+CCR7+ T cells (central memory) proliferate daily, whereas 4.7% of

CD45R0+CCR7− T cells (effector memory) and 0.2% of CD45R0−CCR7+ T cells (näıve) proliferate

per day, corresponding with exponential growth rates of αi = 0.015, 0.047, and 0.002, respectively

[18]. We initially describe the model assuming that latently infected CD4+ T cells are in fact mostly

central memory T cells but then go on to generalize the results to different fractional makeups of

the reservoir.

Despite the fact that in the past, most mathematical models of HIV latency have not included this

proliferation parameter αL, Rong et al. demonstrated that incorporating a homeostatic proliferation

rate allowed them to “describe the multi-phasic viral decline following initiation of antiretroviral

treatment and maintain both low-level persistent viremia and the latent reservoir during therapy.”

In their models, αL parameter values are chosen between 0.011 and 0.03 per day, consistent with

our value of 0.015 [6].

The activation rate ξ is several orders of magnitude smaller than the proliferation rate. Using

parameters calculated by Luo et al. from structured treatment interruptions, Hill et al. found

that on average, 57 CD4+T cells per day transition from latency to the activated state [14, 8].

Assuming that the reservoir contains 1 million cells on average, we find ξ = 5.7× 10−5 is the rate

of reactivation of a single cell per day [8], i.e. 57 cells/(106 cells × day) = 5.7 ×10−5 per day.

The half-life estimate of the latent pool from Siliciano et al.’s quantitative viral outgrowth assay

yields the total clearance rate of latent cells, θL = -5.2 ×10−4 per day [2]. This result was cor-

roborated closely by Crooks et al. [17]. Thus, the clearance, proliferation, and activations rates

are derived from human experiments. However, the death rate is calculated. The total clearance
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rate of the latent pool is the death and activation rates subtracted from the proliferation rate.

A rearrangement of this equation (using central memory cell values) gives the daily death rate

δL = αL − ξ − θL = 0.0155.

A large body of work has been reviewed in de Boer and Perelson on the variety of experimental

techniques employed to measure the turnover of T cells [40]. The modeling and experimental

challenges are discussed, and we include the reference here to emphasize how much uncertainty

in the parameters indeed exists. The uncertainty and sensitivity analysis in §3 are included to

demonstrate our awareness of the uncertainty and provide theoretical ranges for plausible outcomes

given the varying measurements of these rates.

7.2 Fractional makeup of the reservoir

Chomont et al. determined the percentage of each cellular subset from 31 aviremic individuals.

They found mean contributions of Tcm+Ttm ≈ 85%, whereas Tem ≈ 13% and Tn ≈ 2% [19]. Buzon

et al. 2014 found higher percentages of näıve and stem-cell-like memory cells, up to 40% [33]. Thus

in the model inclusive of diversity we set the initial conditions of each subtype proportional to their

fractional makeup, e.g. Li(0) = [85, 13, 2] for the example above.

7.3 Susceptible and activated cell dynamics: αS, δS, αA, δA

The production of CD4+T cells from the bone marrow and thymus is described by αS ; and δS is

the rate of susceptible T cell death. In several of the early HIV modeling papers, a value of 10 per

µL-day was estimated for the production rate[39], [45] with δS estimated at 0.02.

Luo et al. used a Bayesian Markov-Chain Monte-Carlo method to estimate HIV model parameters

[14]. They used data from 10 patients who underwent a series of 30-day ART treatment interrup-

tions with viral loads taken three times weekly following interruptions and then weekly following

initiation of treatment. Each patient underwent 3-5 interruption/treatment cycles. They estimated

αS = 295, δS = 0.18, and δA = 1. Huang et al. also use Bayesian methods (Markov Chain Monte

Carlo) and fit their model to data from [46], an AIDS clinical trial comparing dosing regimens

for indinavir and ritonavir [47]. This model also incorporated adherence, drug concentrations, and
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drug susceptibilities [47]. They find αS = 98.1, δS = 0.08, and δA = 0.37. Note in Table S3 that the

ratio of αS to δS varies between 500 - 1639 with the more recent experiments in relative agreement

near 1500. Thus, we chose αS = 300, δS = 0.2 to reflect this ratio.

The death rate of productively infected cells δA was initially thought to be 0.24 [39]. Later, Perelson

et al. find δA = 0.5 based on frequent sampling of 5 patients after giving ritonavir monotherapy

[7]. Using a fixed viral clearance rate γ = 23 from [48], Markowitz et al. determined δA = 1 based

on potent antiretroviral therapy with lopinavir-ritonavir, tenofovir, lamivudine, and efavirenz in 5

chronically-infected patients [49]. We chose δA = 1.0 to reflect more recent experimental findings.

We assign αA = 0, as the relative rate of proliferation of actively infected cells likely occurs at

neglible rates compared to the death rate of these cells [39].

Parameter Perelson [39] Huang [47] Luo [14] Markowitz [49] Units

αS 10 98.1 295 - per µL-day
δS 0.02 0.08 0.18 - per day

αS/δS 500 1226 1639 - per day
δA 0.24 0.37 1.0 1.0 per day

Table S3: Proliferation and death parameters for susceptible and actively infected cells estimated
in prior experiments and mathematical models.

7.4 Estimating the infectivity β

Perelson et al. calculate the infectivity of a virus β with Smoluchowski’s formula for the diffusion-

limited rate constant for two spherical particles to estimate the probability of cell-virus contact,

multiplied by in vitro experimental values for the probability of viral attachment to cells and

consequent infectivity and notes “one might safely assume that k1 is a strain-dependent parameter

that can vary greatly,” where k1 is the parameter used to represent infectivity in that model. They

find β = 2.4× 10−5µL per day [39]. This value is often referenced in other works. Using Bayesian

methods, both Luo et al. and Huang et al. estimate parameter values for β [14, 47] as 3.9×10−3

and 1.7×10−5, respectively. Given that the range of these values covers two orders of magnitude,

we chose a value between these extremes: 10−4.
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Parameter Perelson [39] Huang [47] Luo [14] Units

β 2.4×10−5 1.7×10−5 3.9×10−3 µL per day

Table S4: Infectivity as estimated in prior experiments and mathematical models.

7.5 Viral dynamics

The viral ‘burst rate’ π is the amount of virus a single actively infected cell emits in a day (roughly

its lifetime). Rong and Perelson note that π is problematic, as its experimental value is under

question and affects the values of many of the other parameters [6]. Haase et al. used radioactively-

labeled RNA probes and quantitative image analysis to determine the number of viral particles per

mononuclear cell in biopsies from fixed lymph tissue and found a mean value of 74 [50]. Using

quantitative, competitive, real-time PCR (QT-RT- PCR) to measure the mean viral RNA copy

number per infected cell from fresh-frozen cervical lymph nodes from 9 HIV patients with varied

viral loads, Hockett et al. found π = 103.6 = 4 × 103 [51]. Both of these estimates were obtained

experimentally rather than derived from models; however, they do not necessarily reflect the number

of copies produced in a day per cell or in a cell’s lifetime, rather the amount that was being produced

at the instant the experiments were performed. In any case, the value of π appears to be in the

neighborhood of 103, which is the value we will adopt. For the viral clearance rate γ, we use

Ramratnam et al.’s estimate γ = 23, obtained from viral load measurements taken over 5 days

before, during, and after apheresis in 4 patients assuming a constant rate of viral production

[48].

Parameter Perelson [39] Huang [47] Luo [14] Units

π 1200 976 5.9×103 copies/cell-day
γ 2.4 3.06 18.8 per day
π/γ 500 319 314 copies/cell

Table S5: Viral burst and clearance rates as estimated in prior experiments and mathematical
models. Note: [14] used the data from [48] but used the geometric mean rather than the arithmetic
mean, i.e. 18.8 rather than 23.

The ‘latent cell fraction’ τ is the rate at which newly infected cells join the latent cell pool, whereas

1− τ is the rate at which they join the actively infected pool. There are few estimates available for

this parameter, and the estimates vary across a wide range. Despite this, the choice of τ within the

given range does not affect our cure estimates or our estimate of the critical epsilon (εc). Because
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their estimates are based on modern measurements of the reservoir, we chose Conway and Perelson’s

value τ = 10−4, which is the upper bound on their estimates ranging from 10−7 to 10−4 [10].

Parameter Callaway [45] Jones [52] Conway [10] Units

τ 10−6 10−3 10−4 unitless

Table S6: Latency fraction as estimated in prior experiments and mathematical models.

8 Appendix III: Further discussion of anti-proliferative therapy

from a mathematical and clinical standpoint

8.1 Complete parameter table, sensitivity analysis and uncertainty analysis

The previous section reported how parameter values were found from the literature. Here we

summarize the results and include associated confidence intervals or ranges found in the literature

where parameter distributions are unspecified.

Working within the intervals given in Table S7 we first conduct a local uncertainty analysis [53]

that shows how anti-proliferative therapy coupled with ART depletes the latent reservoir. First,

we fix each parameters to its typical value and vary one parameter at a time within its bounds as

given in Table S7 and with the constraint that RART0 < 1. The results are shown in Fig. S6. We

see that the variables affecting the basic reproductive number (here for example τ , εART ) have no

effect on the time to cure. As we have shown, if RART0 < 1, the dynamics of the latent reservoir

effectively decouple from the viral dynamics. The original number of cells in the reservoir has a

large impact on the time to cure. Additionally, as discussed in the main body, the makeup of the

reservoir impacts the clearance: a higher percentage of näıve cells slows decay and extends the time

to cure. Also, the value of the clearance rate changes time to cure as expected by the compound

interest framework. However, the expected range of this value is not large, so our results are not

drastically changed by this variation.

We also complete a global uncertainty and sensitivity analysis in which all variables for the model

are drawn from uniform distributions based on the ranges in Table S7 and sampled using Latin

Hypercube sampling [53]. Any variable whose range spans more than one order of magnitude is
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Param. Value (CI)/[Literature Range] Dimensions Source

αS 300 [10, 760] cells per µL-day [14, 39, 47]
δS 0.2 [0.02, 0.45] per day [14, 39, 47]
αcm 0.015 (0.01, 0.02) per day [18]
δcm 0.0155∗ per day calculated∗

αem 0.047 (0.038, 0.057) per day [18]
δem 0.0475∗ per day calculated∗

αn 0.002 (0.0015, 0.0023) per day [18]
δn 0.0025∗ per day calculated∗

δA 1.0 (0.8, 1.2) per day [14, 49]
L0 106 [104, 108] cells [2]

Lcm(0) 0.6L0 [0.2, 0.8]L0 cells [19, 33]
Lem(0) 0.4L0 [0.2, 0.8]L0 cells [19, 33]
Ln(0) 0.02L0 [0, 0.1]L0 cells [19, 33]
ξ 5.7 ×10−5 (5.4, 6.0)× 10−5 per day [8]
θL −5.2× 10−4 −(2, 8.4)× 10−4 per day [2]
β 1× 10−4 [0.016, 6]× 10−3 µL/copy-day [14, 39, 47]
τ 10−4 [10−6, 10−3] unitless [10, 52, 45]
π 103 [20, 5340] copies/cell-day [14, 39, 47]
γ 23 [9, 36] per day [48]

Table S7: A summary of all parameters used in our simulations. ∗δL is back-calculated from
known αL, θL, and ξ. 95% confidence intervals are given in parentheses () where applicable from
experimental data. Otherwise, the range is taken from our literature search or from the ranges
given in the cited works not assumed to be normally distributed; these values are given in square
brackets [].

sampled to achieve even sampling on a logarithmic scale. The simulations are carried out in Matlab

using lhsdesign and ode23s. We note that a stochastic model is not necessary because we are

studying decay dynamics with large numbers of cells as opposed to rebound dynamics.

The simulations from the global uncertainty analysis are used in a sensitivity analysis to correlate

each parameter with time to cure on ART and anti-proliferative therapy. Time to cure is defined by

the number of latent cells as compared to the thresholds described in the main body. We calculate

correlation with the the Pearson correlation coefficient ρT,p, the ratio of the covariance of the time

to cure T with the parameter of interest p normalized by each’s standard deviation:

ρT,p =
〈(T − 〈T 〉)(p− 〈p〉)〉

[(〈T 2〉 − 〈T 〉2)(〈p2〉 − 〈p〉2)]1/2
,

where 〈·〉 indicates the expectation value. The results of the simulations are shown in Fig. S7.
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Figure S6: Local uncertainty analysis of the complete model, Eq. S1 where ART is coupled with
anti-proliferative therapy (potency εAP = 5) to analyze the variability of solutions and time to
cure. Note that the model includes varying phenotypes of T cells with varying proliferation rates
as in Table S7. Each parameter that is varied is listed above the panel with the range of variability
shown in the panel legend, and all other values are constant as in the Value column of Table S7.

One thousand simulations are carried out and only the parameter ranges that obey RART0 < 1 are

considered. The variables are shown to correlate positively, negatively, or not at all with time to

cure. As expected, as the initial size of the latent pool increases, the time to cure goes up, and as

the anti-proliferative therapy potency increases, the time to cure goes down. The percentage of the

latent reservoir that are näıve T cells delays the time to cure while a higher magnitude decay rate

hastens cure. The probability of latency and RART0 do not affect time to cure strongly.

8.2 Comparison with latent pool reduction from Chapuis et al. 2000

Mycophenolate mofetil (MMF) is a clinically approved and commonly used drug for organ trans-

plantation because it selectively inhibits the proliferation of lymphocytes. In 2000, Chapuis et al.

administered MMF along with ART to 6 HIV-infected patients for 24 weeks. Three study par-

ticipants demonstrated a 1-2 order of magnitude reduction in reservoir size by quantitative viral

outgrowth assay. The authors concluded that MMF for ‘the treatment of HIV infection deserves

further investigation in controlled clinical trials’. In Fig. 2b of their paper, the potency of anti-

proliferative medicine (εAP ) follows a dose-response, but can exceed 10 which is well above the

35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2016. ; https://doi.org/10.1101/063305doi: bioRxiv preprint 

https://doi.org/10.1101/063305


= #10-4
2 4 6 8

100
101
102

0
ART

0.75 0.8 0.85 0.9 0.95

100
101
102

R0
ART

0.2 0.4 0.6 0.8

100
101
102

L0 (cells) #107
2 4 6 8

100
101
102

-3L (1/day) #10-4
2 4 6 8

100
101
102

0
AP

2 3 4

100
101
102

Ln(0)/L0

0.02 0.04 0.06 0.08

100
101
102

-1 0 1

0
AP

-3L (1/day)

0
ART

R0
ART

=

Ln(0)/L0

L0 (cells)

P1
Hc

0 50 100102

103

104

105

106

107

108

Si
ze

 o
f l

at
en

t p
oo

l (
ce

lls
)

A B C

Ye
ar

s 
un

til
 th

re
sh

ol
d

-1 -0.5 0 0.5 1

n

9

S0

R0
ART

L(t=0)

|3L|
0
ap

Tn % P1
Hc

Time (years)

Figure S7: Global uncertainty and sensitivity analysis using the ranges of parameters from Table S7.
A) The 1,000 simulations are shown to give an idea of the variance over the whole parameter range.
B) The time until each cure threshold, Pinkevych 1 yr and Hill cure, are calculated as the time
when the latent reservoir contains fewer than 20,000 and 200 cells respectively. In some cases cures
are achieved within months, in others, many years. C) Pearson correlation coefficients indicate
which variables correlate with time to cure.

saturation point where duration is more important than potency in Fig. 2D of our paper. Assum-

ing an εAP > 3, our model predicts a 1 to 2 order of magnitude decrease in the reservoir after 24

weeks of MMF, which is in keeping with Fig. 6a of their paper.

We suspect that the anti-proliferative drugs are not successful in all patients, so that the 3 patients

who had no reservoir reduction may not have responded well to MMF. The suspicion is corroborated

in the next subsection by the fact that the authors of a separate MMF study had to rearrange

their clinical cohorts to deal with participants who received MMF but showed no anti-proliferative

effect.

8.3 Comparison with time to rebound from Garćıa et al. 2004

In 2004, Garćıa et al. also assessed the effect of MMF in treatment interruption studies of ART

[28]. In the study, seventeen HIV patients received ART for a year. They were then randomized

into two groups, the control group that remained on ART only, and the experimental group that

also received MMF for 17 weeks. After this time, ART was interrupted in both groups and viral

rebound was measured. The benchmark to compare the two groups was to be the number of
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individuals who maintained a viral load set-point below 200 copies/mL. 5/9 in the experimental

group and 1/6 in the control group met this standard, though this was not statistically significant.

The MMF recipients were subsequently reclassified into a group of the 6 that successfully inhibited

proliferation (as measured by an in vitro assay) and a group of 3 with no clear inhibition. The viral

load set-point measurement was indeed significantly different between these two groups, as was the

time to rebound. The authors provide two mechanisms by which they expect MMF to control HIV

infection: 1) antiviral in that MMF may deplete a substrate necessary for reverse transcription,

and 2) immunologic in that the number of target cells is reduced.

Previous studies allow us to estimate the possible decrease in reservoir size due to MMF or similarly

potent anti-proliferative therapy in general. Examining the patient data of Garćıa et al. (Fig. 1 of

Ref. [28]), we see that the times to achieving a viral load above the typical detectable limit (10-50

copies per mL) is 1-4 weeks for the control group and 6-12 weeks for the MMF responder group.

We can compare this experimental data with several theoretical predictions for the fold decrease in

the latent reservoir. Using the results of Pinkevych et al., a median time-to-detection of roughly 7

weeks (see Fig. 5B of Ref. [21]) corresponds to a 7-fold decrease in the latent reservoir. Using the

results of Hill et al. the same median time-to-detection of roughly 7 weeks (see Fig. 4 of Ref. [8])

corresponds to a 50-fold reduction in the latent reservoir. The result of Hill matches well with our

calculation. Because MMF was given to patients in the study for 17 weeks, and we assume the

potency of MMF is above a factor of 2 (εAP > 2) [29], our simulations suggest that the size of

the latent reservoir would be reduced by approximately a factor of 40 (visualized in Fig. 1D in the

main body).

8.4 Bone marrow/thymic production of T cells and the safety of MMF as an

anti-proliferative therapy

There is some debate about how the susceptible cells are sustained [54, 55, 56]. In our model we

assumed that bone marrow or thymic production is the mechanism that produces T cells. However,

density-dependent growth could also contribute to the production of T cells. To account for this

possibility, we and other modelers consider this effect to be grouped into the density-dependent

death rate δS . Thus, assuming that anti-proliferative drugs have no impact on thymic/bone marrow
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production, the total number of T cells should stay roughly constant. To be precise, the equilibrium

solution for the susceptible cells S∗ = αS/δS depends only on bone marrow/thymic production

and death rate. Perhaps more important than our theoretical perspective, experimental results

from studies discussed in the previous 2 subsections show that the total number of CD4+ and

CD8+ T cells stayed roughly constant even as the number of proliferating cells decreased on MMF

[29, 28].

Beyond the stability of CD4+T cell counts, the safety of MMF should be vetted in effective dosages

in HIV patients. Again, in the Chapuis and Garciái studies, no opportunistic infections or adverse

events were observed, but these were performed in small populations for relatively limited durations

[29, 28]. On the other hand, MMF has been given in many patients at higher dosages and for much

longer durations in autoimmune disease and solid organ transplantation though much of this data

is difficult to interpret given the usual, concurrent administration of steroids, calcineurin-inhibitors,

and/or cyclosporine [35]. However, Kriss et al. report retrospectively on 23 liver transplant patients

who were transitioned to MMF monotherapy after a median of 2 years on calcineurin-inhibitors

+/- MMF. Following conversion to MMF monotherapy, patients were followed for an average of 4

years. During that time, one patient discontinued MMF due to persistent diarrhea; one required

dose-reduction due to anemia; one developed zoster with resolution on acyclovir; and one developed

post-transplant lymphoproliferative disorder (PTLD) but achieved complete remission with MMF

dose-reduction and R-CHOP chemotherapy. Thus, the incidence of adverse events over 4 years

was small; but if the case of PTLD was caused by the MMF, the consequences are too severe to

merit treatment in HIV patients controlled on ART. The median dose in this trial was 2g/d, the

same dose given in [29] and twice the dose given in [28]. Questions of causation and relatedness to

dosage remain to be answered, but we propose worthy to be attempted with low doses and careful

monitoring.

As a final note, it is also possible that the number of divisions resulting in cell proliferation is finite.

This upper bound on rounds of proliferation is called the “Hayflick limit.” This limit is unlikely to

apply to our model, as destructive telomere shortening is not as relevant for T cells as other cell

types. See Ref. [57] for further discussion and references.
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