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Abstract 
Public compendia of raw sequencing data are now measured in petabytes. Accordingly, it is 
becoming infeasible for individual researchers to transfer these data to local computers. 
Recently, the National Cancer Institute funded an initiative to explore opportunities and 
challenges of working with molecular data in cloud-computing environments. With data in the 
cloud, it becomes possible for scientists to take their tools to the data and thereby avoid large 
data transfers. It also becomes feasible to scale computing resources to the needs of a given 
analysis. To evaluate this concept, we quantified transcript-expression levels for 12,307 RNA-
Sequencing samples from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas. 
We used two cloud-based configurations to process the data and examined the performance 
and cost profiles of each configuration. Using “preemptible virtual machines”, we processed the 
samples for as little as $0.09 (USD) per sample. In total, we processed the TCGA samples 
(n=11,373) for only $1,065.49 and simultaneously processed thousands of samples at a time. 
As the samples were being processed, we collected detailed performance metrics, which helped 
us to track the duration of each processing step and to identify computational resources used at 
different stages of sample processing. Although the computational demands of reference 
alignment and expression quantification have decreased considerably, there remains a critical 
need for researchers to optimize preprocessing steps (e.g., sorting, converting, and trimming 
sequencing reads). We have created open-source Docker containers that include all the 
software and scripts necessary to process such data in the cloud and to collect performance 
metrics. The processed data are available in tabular format and in Google’s BigQuery database 
(see https://osf.io/gqrz9). 

Introduction 
Over the past decade, public cancer compendia have played a crucial role in enabling scientists 
to identify genomic, transcriptomic, proteomic, and epigenomic factors that influence tumor 
initiation, progression, and treatment responses1–19. Due to efforts like The Cancer Genome 
Atlas (TCGA), International Cancer Genomics Consortium, Cancer Cell Line Encyclopedia 
(CCLE), and Connectivity Map, thousands of studies have been published. Typically, consortia 
who oversee these efforts release raw and preprocessed data for the public to use. Accordingly, 
researchers who wish to reprocess raw data using alternative methods may do so20–22.  For 
example, we previously reprocessed 10,005 RNA-Sequencing samples from TCGA and 
demonstrated that an alternative pipeline provided analytical advantages over the preprocessed 
data provided by the TCGA consortium20. However, this effort required us to copy more than 50 
terabytes of data, across three time zones, from the data repository to our local file servers—
and to employ tens of thousands of hours of computational time on local computer clusters. 
Other efforts, such as the Genomic Data Commons23, are also reprocessing cancer compendia 
using updated pipelines. Such efforts require considerable institutional investment in 
computational infrastructure24. In the case of raw sequencing data, computational infrastructure 
must also implement appropriate security measures to ensure patient privacy25,26. Many 
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research institutions do not have the resources to support such infrastructure, and duplicate 
efforts may unwittingly occur, resulting in wasted resources. 
 
As an alternative, the National Cancer Institute initiated the Cancer Genomics Cloud Pilots27, 
which enable researchers to access cancer compendia via cloud-computing services, such as 
Google Cloud Platform28 or Amazon Web Services29. Via these public/private partnerships, 
cancer data are stored (and secured, as necessary) in shared computing environments. 
Researchers can rent virtual machines (VMs) in these environments and apply computational 
tools to the data, without needing to transfer the data to or from an outside location. This model 
promises to speed the process of scientific discovery, reduce barriers to entry, and democratize 
access to the data30,31. In the current era of highly collaborative science, this model also makes 
it easier for researchers from multiple institutions to collaborate in the same computing 
environment. 
 
The landscape of bioinformatics tools available to process RNA-Sequencing data is rapidly 
evolving. Seemingly small differences in software versions or annotations can lead to 
considerable analytical differences or make it difficult to integrate datasets32,33. However, 
because the Cancer Genomics Cloud Pilots provide access to raw data, researchers can 
reprocess the data using whatever tools and annotations support their specific needs. 
 
In coordination with the Institute for Systems Biology (ISB)34, we used the Google Cloud 
Platform to process 12,307 RNA-Sequencing samples from the CCLE and TCGA projects. After 
preprocessing, we aligned the sequencing reads to the most current GENCODE reference 
transcriptome (see Methods) and calculated transcript-expression levels using kallisto, a 
pseudoalignment and read-quantification program that executes considerably faster than 
previous-generation tools, while attaining similar levels of accuracy35. We encapsulated all the 
software necessary to perform these steps into software containers33,36. Where possible, the 
containers execute tasks in parallel and dynamically determine the number of tasks that can be 
executed simultaneously. In addition, the containers collect detailed computer-performance 
metrics while the containers execute. We have made these containers freely available to the 
research community—along with scripts for executing and monitoring them (see Methods). 
 
We processed the CCLE samples (n = 934) using either 1) a cluster-based configuration, 
orchestrated by the Kubernetes system37, or 2) preemptible VMs. In this paper, we describe our 
experiences with these deployment approaches. The cluster-based configuration more closely 
resembles computing environments typically available at research institutions and thus may be 
more intuitive for researchers to use. However, using preemptible VMs, we were able to process 
the data at a considerably lower cost and with less monitoring overhead. Therefore, we used 
preemptible VMs to process all available TCGA RNA-Sequencing samples (n=11,373) for a 
total cost of $1,065.49. 
 
Below we describe lessons learned as we processed these data, and we discuss logistical and 
financial issues that should be considered when using cloud-computing environments. We hope 
these observations will enable researchers to better evaluate options for processing large 
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biological datasets in the cloud. We also explore opportunities for bioinformaticians to optimize 
data processing. 

Results 

Cluster-based configuration (CCLE data) 
We created a software container to quantify transcript-expression levels for 934 RNA-
Sequencing samples from CCLE on the Google Cloud Platform. Initially, we processed these 
samples on a cluster of 295 computing nodes. Each computing node had access to 4 virtual 
central processing units (vCPUs), 26 gigabytes of random access memory (RAM), and 400 
gigabytes of disk-storage space. We used the Kubernetes system to distribute execution across 
these nodes in a queue-like manner: as one sample completed processing, a new sample 
began processing, and so on. 
 
The CCLE samples were available in BAM format38, whereas kallisto only accepts input files in 
FASTQ format. Therefore, the first step in our pipeline was to sort the BAM data by name and 
convert the data to FASTQ format (see Methods). To enable faster execution, we performed 
these steps in parallel (see Methods). On average, these preprocessing steps took 84.7 minutes 
per sample (71.7% of the processing time), whereas kallisto took only 29.8 minutes (25.2% of 
the processing time; see Figure 1). The remaining 3.6 minutes (3.0%) were used to copy files to 
and from the computing nodes. These observations indicate that RNA-Sequencing 
preprocessing steps require a considerable amount of computational time and must be taken 
into account when planning resource allocation and estimating costs. 
 
One limitation of a cluster-based configuration is that all computing nodes must remain active 
while even one sample is still processing. In general, larger RNA-Sequencing samples take 
longer to process than smaller samples. Therefore, in an attempt to reduce costs, we submitted 
samples to the queue in order of size (largest to smallest). Figure 2 illustrates the start and end 
times at which each sample was processed. The longest-running sample finished processing in 
274 minutes, while one sample took only 46 minutes. Few computing nodes were idle during the 
first 350 minutes of overall processing time, and all but two samples had completed processing 
after 450 minutes. Disk-storage drives failed to mount properly while the remaining two samples 
were processing, so these samples had to be resubmitted to the queue. 
 
We collected computer-performance metrics at one-second intervals while the software 
container was executing. Resource utilization varied dramatically across the processing tasks 
(Figure 3). The sorting and kallisto phases were relatively vCPU intensive, whereas the BAM-to-
FASTQ conversion used the disk-storage devices relatively heavily. RAM usage was 
consistently high, although it decreased temporarily during the sorting and conversion stages. 
As expected, network usage was high while data files were being transferred to and from 
computing nodes—but zero at other times. vCPU usage was highly variable across the 
individual vCPUs on a given computing node, and vCPUs were never used at full capacity for a 
considerable length of time. 
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The cost for each node in the cluster was $0.252 (USD) per hour. There was no cost for the 
master node that orchestrated the cluster. These computing costs and data-storage costs 
constituted the great majority of expenses that we incurred (see Tables 1-2). In total, the cost 
was $716.52 ($0.77 per sample). Because cloud-computing offerings, service prices, and 
bioinformatics tools change regularly, it is difficult to compare costs across projects. However, a 
2011 study used the MAQ software39 to align a single biological sample in the cloud for 
$320.1029. 

Preemptible-node configuration (CCLE data) 
Next we reprocessed the CCLE RNA-Sequencing samples using an alternative approach. First, 
to assess whether quality trimming would have a significant effect on the kallisto quantification 
values, we excluded low-quality bases and any adapter sequences that were present in the 
data. Second, we used preemptible VMs and compared the performance and cost profiles of 
this configuration against what we observed for the cluster-based option. 
 
Typically, cloud-service providers have more computing nodes available than customers will use 
at any given time. While these extra nodes are idle, users can request to use the nodes with 
“preemptible” status—at a considerably reduced price. When demand rises, the service provider 
halts (preempts) execution of the nodes and makes them available to full-paying customers. In 
situations where nodes are preempted infrequently—and preemptible nodes are available—this 
approach can reduce costs, although additional care must be taken to ensure that preempted 
samples are re-executed when new nodes become available. 
 
To reduce the time that the CCLE samples would take to process—and thus to reduce the 
likelihood of preemption—we used more powerful computing nodes: 16 vCPUs and 104 
gigabytes of RAM per node. As the samples were processing, we executed a script, every 60 
seconds, to check whether any samples had been preempted and then resubmitted those 
samples for processing (see Methods). Unlike the cluster-based configuration, which employed 
a static number of computing nodes, the number of preemptible nodes changed dynamically, 
according to availability. During the first 20 minutes, 932 nodes were allocated, and most 
samples completed processing before 150 total minutes had elapsed (Figure S1). Of the 934 
CCLE samples, 78 were preempted at least once (Figure S1). Eight samples were preempted 
twice, and one sample was preempted three times. On average, preempted nodes executed for 
76.64 minutes (min = 1.87; max = 126.57) before preemption. The BAM files for the preempted 
samples averaged 14.07 gigabytes in size, whereas the remaining samples averaged 13.79 
gigabytes. Accordingly, preemption was a relatively random process, not necessarily influenced 
by the size of the data files. 
 
Trimming next-generation sequencing reads is a common, though somewhat controversial, 
practice40–42. Trimming can remove low-quality bases and reads and can remove artefactual 
adapter sequences. We compared transcript-expression levels from our initial (untrimmed) 
CCLE data against the data that had been subjected to trimming. The average, sample-wise 
Spearman correlation coefficient was 0.988; however, the correlation coefficients for some 
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samples were as low as 0.92 (Figure S2), suggesting that these samples had a considerable 
number of low-quality reads. 
 
The performance profiles for the preemptible configuration were similar to those from the 
cluster-based configuration (Figures S3-S4). The read-trimming step required an average of 
7.97 minutes (9.0%) of processing time per sample (see Figure S3). In addition, there was 
considerable overhead to “spin up” and configure the VMs and to localize the necessary files 
(19.4% of processing time). We suspect this overhead was relatively high because the cloud 
environment needed to allocate a relatively large amount of resources (vCPUs and RAM) per 
computing node. Overall, the kallisto alignment and quantification process took only 9.8% of the 
processing time, reaffirming that preprocessing steps may contribute more to the expense of 
processing RNA-Sequencing data than alignment and quantification, which have been 
optimized substantially in recent years. 
 
The cost of the preemptible nodes (16 vCPU) was $0.280 per hour. In addition, we rented a 
master node for $0.01 per hour. The total cost to process the samples was $364.22 ($0.39 per 
sample). Even though preemption occurred 88 times—contributing an estimated $31.48 to the 
total cost—the overall cost was 49.2% lower than the cluster-based configuration. This was true, 
even though we added the read-trimming step. Accordingly, we conclude that preemptible 
nodes show promise as a way to reduce expenses markedly, so long as preemption rates 
remain low. 

Preemptible-node configuration (TCGA data) 
Based on our experiences with the CCLE samples, we used preemptible VMs to process 
11,373 RNA-Sequencing samples from TCGA that spanned 34 cancer types. The TCGA 
samples were available in FASTQ format; therefore, we did not need to sort or convert the data. 
However, the FASTQ file were packed inside “tar” files, so we included a step to unpack these 
files. Based on preliminary testing, we estimated that using less-powerful computing nodes—2 
vCPUs and 7.5 gigabytes of RAM—would provide an optimal balance between cost and 
performance. 
 
We started with 1,811 breast carcinoma and lung squamous cell carcinoma samples. These 
samples completed processing in 101 minutes on average, compared to 88.5 minutes for the 
CCLE samples. Although individual TCGA samples took 14% longer to process than the CCLE 
samples, the computing nodes used 87.5% fewer computational resources per sample. The VM 
“spinup” and configuration tasks were considerably shorter (Figure 4), ostensibly because the 
computing nodes required fewer resources. The kallisto step took 41.3% of the processing time, 
due to the shorter preprocessing times. Only 210 preemptions occured (Figure 5). 
 
Because most of the TCGA samples were assigned to a single read group, we were not able to 
parallelize the quality-trimming step in most cases. Therefore, one of the vCPUs was 
consistently underutilized during the trimming phase (Figure 6). However, kallisto maximized 
use of both vCPUs during most of its processing; it also consistently used all available RAM. 
Disk usage was heaviest while the FASTQ files were being unpacked, at the end of quality 
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trimming, and at the beginning of kallisto execution. Because the data files were transferred to 
the VMs before our software container began executing, we detected no network activity (as 
expected). 
 
Lastly, we applied our software container to the remaining 9,562 TCGA samples, which ranged 
from 0.27 to 27.69 gigabytes in size. In total, raw sequencing data for the TCGA samples were 
64.47 terabytes in size and consumed a total of 30,795.2 vCPU hours. Overall, the cost to 
process these samples was $1,065.49 ($0.09 per sample; see Tables 1-2). These costs are far 
lower than any prior cloud-based project of which we are aware. 
 
We have deposited the processed data—as read counts and transcripts per million—in tabular 
format and in Google’s BigQuery database (see https://osf.io/gqrz9). 

Discussion 
The size of biomolecular data will continue to increase at a dramatic pace over the coming 
years31. To devise solutions for managing and processing these data, the research community 
will likely benefit from working with industry partners43, including cloud-computing providers44–47. 
Here we describe lessons learned as we quantified transcription levels for 12,307 samples from 
CCLE and TCGA. We hope these insights will be useful both to the academic community and to 
industry partners. 
 
Our analyses were not exhaustive. Indeed, further optimization may yield better performance 
and lower cost than we observed. However, we have demonstrated that raw RNA-Sequencing 
data can be preprocessed, aligned, and quantified for pennies per sample. Furthermore, to 
enable others to reproduce our findings, we have provided all source code that we used to 
process the samples, to collect performance metrics, and to create the figures in this paper (see 
Methods). Our workflow can be used to process additional RNA-Sequencing samples available 
via the NCI Cloud Pilots or to process samples that have been sequenced by individual labs. 
With minor modifications to our pipeline, different reference genomes or algorithms could be 
applied to these data. We hope these resources will serve as examples to other researchers 
who wish to start using cloud environments. 
 
Initially, we processed the CCLE samples using a cluster-based container engine, which is 
loosely comparable to cluster-computing environments commonly used at academic institutions. 
A disadvantage of this configuration is that the entire container engine needs to remain 
available while any sample remains to be processed. It may be possible to mitigate this 
limitation by processing the larger samples first (as we did); however, if any error occurs and 
sample(s) must be re-added to the queue, cost efficiency will decrease. When we used 
preemptible VMs to process the same samples, we did not need to pay for excess computing 
power and paid 50-70% less per computing node. Thus even though some samples were 
preempted and had to be reprocessed, the overall cost was much lower. We recommend this 
option as a way to reduce expenses. 
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Due to the way our workflow is structured, it was necessary to completely reprocess samples 
that had been preempted. An alternative solution would be to use persistent disk storage to 
store intermediate data files that result from individual processing steps within the workflow. 
When a sample is preempted, the workflow could check for these intermediate files and resume 
processing at the latest checkpoint. This approach might reduce overall processing times, but it 
would require users to rent additional storage space and thus might offset savings gained from 
reduced processing times. Yet another solution would be to split the workflow into smaller 
segments and execute the workflow in stages; again, this would require additional persistent 
storage, and the VMs would need to be deployed repeatedly, a step that can take several 
minutes at a time. Although such approaches may provide advantages in some cases, we favor 
simplicity, especially in situations where preemption occurs infrequently. 
 
Our performance-profiling data demonstrate that computational resources are often 
underutilized by bioinformatics tools. For example, in our pipeline, vCPUs were used unevenly 
and often not at full capacity. Although it is unreasonable to expect that all computational 
resources can be used at full capacity at all stages of data processing, opportunities exist for 
tool developers to examine ways to optimize the use of these resources. 
 
Due to the rapidly changing landscape of next-generation sequencing analysis, it is extremely 
beneficial for cloud providers to provide access to raw data. Until recently, raw sequencing data 
from CCLE and TCGA were available via the CGHub service48. Users who desired to compute 
on these data were required to bring “data to the tools,” whereas in cloud-computing 
environments, users can take their “tools to the data”49. In the case of CCLE, raw data were 
available in BAM format, which required us to convert the files to FASTQ format. In addition, we 
trimmed the reads for quality control. Together these steps took 70-75% of the processing time 
per sample (Figures 1 & S3). The TCGA raw data were available in FASTQ format; however, 
we needed to decompress and unpack tar files before trimming the reads (52% of the 
processing time). Accordingly, we recommend that alignment and quantification tools support 
both FASTQ and BAM input files—ideally, they would also support quality trimming. We also 
recommend that cloud providers store two versions of raw sequencing data: 1) compressed (but 
not packed) files that have been manipulated by no bioinformatics tool, and 2) files that have 
been sorted, trimmed, and compressed using standard tools. The former could be used by 
those who prefer to preprocess the data using alternative tools, whereas the latter could be 
used by all other users. Although storing these two versions of the raw data would increase 
disk-storage costs, it would likely decrease overall costs. 
 
Cloud environments enable scientists to flexibly determine which resources are employed for a 
given research task. In contrast, academic computing environments are relatively fixed 
resources that may be oversubscribed, forcing individual researchers to wait long periods of 
time to process their data. At other times, these environments may be underutilized, thus 
reducing cost efficiency. In addition, because individual researchers typically do not have 
administrative privileges in academic computing environments, they may be limited in how they 
can customize their workflows. A central feature of our approach is the use of software 
containers, which enabled us to package, deploy, and monitor our software more readily. We 
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anticipate that as containerization technologies continue to mature, they will be an integral part 
of cloud-computing workflows (and perhaps academic environments). 
 
Commercial cloud-computing environments have been available for more than a decade. 
Sequencing and bioinformatics service providers commonly use cloud environments to apply 
bioinformatics tools to genomic data50. Recently, publicly funded, data-generating consortia, 
including projects funded by the National Cancer Institute, have begun to explore the benefits 
and challenges of providing centralized access to large compendia of genomic data. Our 
experiences confirm that the cloud has potential to make it easier to apply custom workflows to 
sequencing data at a modest price. Accordingly, we believe cloud computing will play an 
increasingly important role in cancer research. We encourage funding agencies and research 
institutions to consider implications of cloud computing on research budgets. Whereas 
academic-computing infrastructure has traditionally been funded by indirect costs, individual 
researchers may be required to categorize cloud computing as direct costs. Efforts such as The 
NIH Commons have begun to address this issue51. Finally, we encourage university training 
programs to place an emphasis on teaching students how to use cloud-computing resources. 

Methods 

Cluster-based configuration 
The Google Cluster Engine allowed us to control hundreds of dedicated computing nodes with 
one central node. This central node used Kubernetes37 to manage resources and a queue. 
Using a YAML52 configuration file, we submitted each RNA-Sequencing sample to Kubernetes, 
which then scheduled the samples to execute on the worker nodes. For each sample, 
Kubernetes deployed the relevant software container to the node, copied data files to the node, 
executed the software container, and copied output files to persistent storage. In cases where 
execution failed, Kubernetes automatically restarted sample processing. By default, the Google 
Cluster Engine allocated a 100 GB disk to each computing node; however, due to the size of the 
raw data and disk-space requirements for sorting and converting to FASTQ, we mounted a 
secondary disk drive (300 GB) to each node. While processing the samples, two nodes 
experienced errors while mounting disk drives. We used a two-node cluster to finish processing 
the remaining samples. 

Preemptible-node configuration 
We used the Google Genomics Pipeline service53 to control execution of tasks on preemptible 
computing nodes. As a preemptible node became available, the service 1) created a VM on the 
node, 2) deployed the relevant software container to the VM, 3) copied data files to the 
secondary disk drive, 4) executed the software container, 5) copied output files to persistent 
storage, and 6) destroyed the VM after the sample finished processing (or was preempted). To 
help facilitate this process, we used a software framework provided by the Institute for Systems 
Biology54. Via a command-line interface, this framework facilitated the process of submitting 
samples to the Google Genomics Pipeline for processing. In addition, the framework monitored 
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each sample’s status and resubmitted samples that had been preempted (at 60-second 
intervals). 

Software containers 
We created three different Docker containers to house the software required to process each 
combination of data source and cloud configuration. The first container was used by the Google 
Cluster Engine to process BAM files from the CCLE samples. The cluster-based configuration 
required us to use the container to copy input files to and from the computing nodes. After 
copying the files, the container used Sambamba (version 0.6.0)55 to sort the BAM files by name 
and then Picard Tools (version 2.1.1, SamToFastq module)56 to convert the BAM files to FASTQ 
format. In accordance with kallisto’s documentation, we used the “OUTPUT_PER_RG” flag in 
Picard Tools to ensure that paired-end reads were placed in separate output files. The FASTQ 
files were then used as input to kallisto (version 0.43.0)35, which pseudoaligned the reads to the 
GENCODE reference transcriptome (version 24)57 and quantified transcript-expression levels. 
Based on the kallisto authors’ recommendation, we used 30 bootstrap samples; we also used 
the “--bias” flag to account for variance and bias. We used the parallelization features in 
Sambamba and kallisto to enable faster processing. 
 
The second software container is similar to the first but was modified for use with the Google 
Genomics Pipeline service. Because this service handles copying the data files between Google 
Cloud Storage and the computing nodes, these tasks were not performed by the container. We 
also added a read-trimming step using Trim Galore! (version 0.4.1)58, a wrapper around 
Cutadapt (version 1.10)59. This tool trims adapter sequences and low quality bases/reads. To 
process multiple FASTQ files (or pairs of FASTQ files for paired-end reads) in parallel, we used 
GNU Parallel (version 20141022)60. 
 
The third software container was designed specifically for the TCGA data. It extracts FASTQ 
files from a tar archive (whether compressed or not), performs quality trimming, and executes 
kallisto. Where applicable, it uses the pigz tool (version 2.3.1)61 to decompress the input files in 
parallel. 
 
All three containers use the sar module of the sysstat program (version 11.2.0)62 to log each 
machine’s vCPU, memory, disk, and network activity throughout the course of data processing. 
The containers copied these data to persistent storage, prior to the job’s completion. We 
changed the time of each entry in the logs to a corresponding percentage of total job time, to 
allow the activity metrics to be summarized consistently across all jobs. 

Code availability 
 
We compiled an open-access repository (https://osf.io/gqrz9) that contains all the scripts we 
used to construct the Docker containers and to process samples on the Google Cloud Platform. 
The repository also includes summarized performance data and scripts that we used to 
generate the figures in this manuscript. 
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Tables 
 
Table 1: Summary of data sets and computational resources. 

Category CCLE 
(cluster) 

CCLE 
(preemptible) 

TCGA 
(breast, lung) 

TCGA (other 
cancer types) 

# samples 934 934 1,811 9,562 

Data input format BAM BAM FASTQ FASTQ 

Total data sizea 12.59 12.59 10.67 57.8 

# vCPUs per nodeb 4 16 2 2 

RAM per nodec 26 104 7.5 7.5 

Primary disk storage per 
noded 

100 100 10 10 

Secondary disk storage 
per nodee 

300 300 350 350 

a Total amount of raw sequencing data (measured in terabytes). 
b vCPU = virtual central processing unit. 
c RAM = random access memory (measured in gigabytes). 
d The primary disks were used to store operating system components and temporary files. 
  Storage capacity was measured in gigabytes. 
e The secondary disks were used to store input and output data. 
  Storage capacity was measured in gigabytes. 
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Table 2: Summary of cost information. 

Expense categorya CCLE 
(cluster) 

CCLE 
(preemptible) 

TCGA 
(breast, lung) 

TCGA (other 
cancer types) 

Data transfer $0.02 $0.08 $0.10 $0.70 

Data storage $111.27 $25.48 $66.10 373.08 

Computing nodes $605.16 $338.09 $95.75 $520.80 

Miscellaneous $0.07 $0.57 $1.47 $8.12 

Total cost $716.52 $364.22 $163.42 $902.07 

Cost per sample $0.767 $0.390 $0.090 $0.094 
a We obtained cost information for the Google Cloud Platform and assigned expenses to high-
level categories. All values are in US Dollars (rounded to the nearest cent). All TCGA samples 
were processed using preemptible VMs. There is no charge for the time required to spinup VMs, 
pull images, localize files, or delocalize files.  
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Figure Legends 
Figure 1. Relative time spent on computational tasks for CCLE samples using the cluster-
based configuration. We logged the durations of individual processing tasks for all CCLE 
samples, averaged these values, and calculated the percentage of overall processing time for 
each task. Because the raw data were stored on Google Cloud Storage, copying the BAM and 
index files to the computing nodes took less than 3% of the total processing time. For 
preprocessing, the BAM files were sorted and converted to FASTQ format, which took 71.8% of 
the overall processing time. The kallisto alignment and quantification steps took only 25.2% of 
the overall processing time. 
 
Figure 2. Processing time per CCLE sample using the cluster-based configuration. The 
934 CCLE samples were processed on a cluster of 295 virtual machines. The horizontal lines 
represent the relative start and stop times at which each sample was processed. Darker lines 
identify samples that took longer to process. The longest-running sample took over 4.5 hours to 
process; the shortest-running sample completed in less than 1 hour. All but two samples 
finished processing within 7.5 hours. These two samples failed due to a disk-mounting error, so 
we reprocessed the samples on a smaller cluster (see Methods). 
 
Figure 3. Computational resource utilization while CCLE samples were processed using 
a cluster-based configuration. These graphs show the (a) percentage of user and system 
vCPU utilization, (b) percentage of memory usage, (c) disk activity, and d) network activity. The 
“main” disk for each virtual machine had 100 gigabytes of storage space. The “secondary” 
disks, which stored temporary files during the sorting and FASTQ-to-BAM conversion steps, had 
300 gigabytes of space. The background colors represent the five computational tasks shown in 
Figure 2. Each graph summarizes data from all 934 CCLE samples. 
 
Figure 4. Relative time spent on computational tasks for TCGA breast and lung samples 
using the preemptible-node configuration. We logged the durations of individual processing 
tasks for the TCGA breast and lung samples, averaged these values, and calculated the 
percentage of overall processing time for each task. The “spinup,” image pulling, and file 
localization steps enabled the virtual machines to begin executing. For sample preprocessing, 
the FASTQ files were unpacked, decompressed, and quality trimmed; together these steps took 
52.0% of the processing time (on average). The kallisto alignment and quantification steps took 
41.3% of the overall processing time. 
 
Figure 5. Processing time per TCGA breast and lung sample using the preemptible-node 
configuration. The 1,811 TCGA breast and lung samples were processed using a variable 
number of preemptible virtual machines. The horizontal lines represent the relative start and 
stop times at which each sample was processed. Darker lines identify samples that took longer 
to process. Vertical lines indicate times at which samples were preempted and then resubmitted 
for processing. In total, 210 preemptions occurred. 
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Figure 6. Computational resource utilization while TCGA breast and lung samples were 
processed using a preemptible-node configuration. These graphs show the (a) percentage 
of user and system vCPU utilization, (b) percentage of memory usage, and (c) disk activity. The 
“main” disks had 10 gigabytes of storage space and stored operating-system files. The 
“secondary” disks, which stored all data files, had 350 gigabytes of space. The background 
colors represent the computational tasks shown in Figure 4. We were unable to collect 
performance metrics for preliminary tasks, such as file localization, because these tasks were 
not performed within the software container. Each graph summarizes data observed across all 
1,811 TCGA lung and breast samples. Because there was typically only one pair of FASTQ files 
per sample, quality trimming could not be parallelized; therefore, we used only 2 vCPUs per 
sample. 
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