Abstract
Synaptic plasticity is thought to be the principal mechanism underlying learning in the brain. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the complexity of dendrites, which allow non-linear local processing of the synaptic inputs. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. Implementing biophysically realistic neuron models, we studied how dendrites allow for multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compared the conditions for STDP and for the synaptic strengthening by local dendritic spikes. We further explored how the connectivity between two cells is affected by these plasticity rules and the synaptic distributions. Finally, we show how memory retention in associative learning can be prolonged in networks of neurons with dendrites.