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Abstract

Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of
vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered
absent and analogous functions are performed by the biogenic amines octopamine and its
precursor tyramine. These chemically similar transmitters signal by related families of GPCR
in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate
equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin
of these transmitter systems remain unclear. Using phylogenetic analysis and receptor
pharmacology, here we establish that norepinephrine, octopamine, and tyramine receptors
coexist in some marine invertebrates. In the protostomes Platynereis dumerilii (an annelid)
and Priapulus caudatus (a priapulid) we identified and pharmacologically characterized
adrenergic a.l and a2 receptors that coexist with octopamine a, octopamine 3, tyramine type
1, and tyramine 2 receptors. These receptors represent the first examples of adrenergic
receptors in protostomes. In the deuterostome Saccoglossus kowalewskii (a hemichordate),
we identified and characterized octopamine o, octopamine {3, tyramine type 1, and tyramine 2
receptors, representing the first example of these receptors in deuterostomes. S. kowalewskii
also has adrenergic a1l and a2 receptors, indicating that all three signaling systems coexist in
this animal. In phylogenetic analysis, we also identified adrenergic and tyramine receptor
orthologs in xenacoelomorphs. Our results clarify the history of monoamine signaling in
bilaterians. Since all six receptor families (two each for octopamine and tyramine and three
for norepinephrine) can be found in representatives of the two major clades of Bilateria, the
protostomes and the deuterostomes, all six receptors coexisted in the protostome-
deuterostome last common ancestor. Adrenergic receptors were lost from most insects and
nematodes and tyramine and octopamine receptors were lost from most deuterostomes. This
complex scenario of differential losses cautions that octopamine signaling in protostomes is
not a good model for adrenergic signaling in deuterostomes, and that the studies of marine
animals where all three transmitter systems coexist will be needed for a better understanding
of the origin and ancestral functions of these transmitters.

Background

Norepinephrine is a major neurotransmitter in vertebrates with a variety of functions
including roles in promoting wakefulness and arousal [1], regulating aggression [2], and
autonomic functions such a heart beat [3]. Signaling by the monoamine octopamine in
protostome invertebrates is often considered equivalent to vertebrate adrenergic signaling [4]
with analogous roles in promoting aggression and wakefulness in flies [5, 6], or the
regulation of heart rate in annelids and arthropods [7, 8]. Octopamine is synthesized from
tyramine (Figure 1A) which itself also acts as a neurotransmitter or neuromodulator in
arthropods and nematodes [4, 9-15]. Octopamine and norepinephrine are chemically similar,
are synthesized by homologous enzymes [16, 17], and signal by similar but not orthologous
G-protein coupled receptors (GPCRs) [4, 18].

Tyramine also signals by non-orthologous receptors in invertebrates and vertebrates. In
insects and nematodes, tyramine signals by a GPCR that is related to octopamine receptors
[12, 19]. In vertebrates, tyramine is only present at low levels and signals by the trace-amine
receptors, a vertebrate-specific GPCR family only distantly related to the invertebrate
tyramine receptors [20, 21]. Given these differences, the precise evolutionary relationships of
these monoamine signaling systems are unclear.

The evolution of neurotransmitter systems has been analyzed by studying the distribution of
monoamines or biosynthetic enzymes in different organisms [22]. This approach has
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limitations, however, because some of the biosynthetic enzymes are not specific to one
substrate [16] and because trace amounts of several monoamines are found across many
organisms, even if specific receptors are often absent [22]. For example, even if invertebrates
can synthesize trace amounts of norepinephrine, these are not considered to be active
neuronal signaling molecules, since the respective receptors are lacking. Consequently, the
presence of specific monoamine receptors is the best indicator that a particular monoamine is
used in neuronal signaling [11, 23].

To clarify the evolutionary history of adrenergic, octopamine, and tyramine signaling in
animals, we decided to undertake a comparative phylogenetic and pharmacological study of
these receptor families in bilaterians. Bilaterians, animals with bilateral symmetry, are
comprised of protostomes, deuterostomes, and xenacoelomorphs [24]. Deuterostomes include
chordates and ambulacrarians (hemichordates and echinoderms), and protostomes are formed
by the clades Ecdysozoa, Lophotrochozoa (Spiralia), and Chaetognatha. Ecdysozoa includes
arthropods, nematodes, priapulids and other phyla. Lophotrochozoa include annelids,
mollusks, and other, mostly marine groups. Xenacoelomorps, a group including acoel
flatworms, nemertodermatids, and Xenoturbella, have been proposed to belong to the
deuterostomes, or represent a sister group to all remaining bilaterians [25-27]. Here we
establish the orthology relationships of adrenergic, octopamine, and tyramine receptors
across bilaterians. We find that six receptor families originated at the base of the bilaterian
tree. We then pharmacologically characterize adrenergic receptors from an annelid and a
priapulid, and octopamine and tyramine receptors from an annelid and a hemichordate. The
broad phylogenetic sampling and comparative pharmacology paints a richer picture of the
evolution of these receptors, characterized by ancestral coexistence and multiple independent
losses.

Results

Using database searches, sequence-similarity-based clustering, and phylogenetic analysis, we
reconstructed the phylogeny of al, a2, and 3 adrenergic, octopamine o, octopamine f3,
and tyramine type-1 and type-2 receptors. Each family formed well-resolved clusters in a
sequence-similarity-based clustering analysis and well-supported clades in molecular
phylogenetic analysis (Figure 1B, C and Additional file 1).

We identified several invertebrate GPCR sequences that were similar to vertebrate adrenergic
al and a2 receptors (Figure 1B, C). An adrenergic al receptor ortholog is present in the sea
urchin Strongylocentrotus purpuratus. Adrenergic ol and a2 receptors were both present in
Saccoglossus kowalewskii, a hemichordate deuterostome (Figure 1B, C and Additional files
1-3), as previously reported [28]. We also identified adrenergic al and a2 receptor orthologs
in annelids and mollusks (members of the Lophotrochozoa), including Aplysia californica,
and 1in the priapulid worm Priapulus caudatus (member of the Ecdysozoa)(Figure 1B, C and
Additional files 1-3). Adrenergic o receptors are also present in a few arthropods, including
the crustacean Daphnia pulex and the moth Chilo suppressalis (the Chilo a2 receptor was
first described as an octopamine receptor [29]), but are absent from most other insects
(Additional files 1-3). Adrenergic a2 receptors are also present in xenacoelomorphs, in
Xenoturbella bocki and the nemertodermatid Meara stichopi. M. stichopi also has two
adrenergic al receptor orthologs (Figure 1C and Additional file 1-3).

The identification of adrenergic al, and a2 receptor orthologs in ambulacrarians,
lophotrochozoans, ecdysozoans, and xenacoelomorphs indicates that both families were
present in the bilaterian last common ancestor.

Adrenergic {3 receptors are found in chordates, including urochordates and cephalochordates.
In addition, we identified an adrenergic 3 receptor ortholog in the xenacoelomorph M.
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stichopi (Additional file 4). If xenacoelomorphs are sister to all remaining bilaterians, then
this receptor family also originated at the base of Bilateria and was lost from all protostomes.
To characterize the ligand specificities of these putative invertebrate adrenergic receptors, we
cloned them from S. kowalewskii, P. caudatus, and the marine annelid Platynereis dumerilii.
We performed in vitro GPCR activation experiments using a Ca>"-mobilization assay [30,
31]. We found that norepinephrine and epinephrine activated both the adrenergic al and a2
receptors from all three species with ECs, values in the high nanomolar range or lower. In
contrast, tyramine, octopamine, and dopamine were either inactive or only activated the
receptors at approximately two orders of magnitude higher concentrations (Figure 2, Table
1). These phylogenetic and pharmacological results collectively establish these invertebrate
receptors as bona fide adrenergic o receptors.

To investigate if adrenergic signaling coexists with octopamine and tyramine signaling in
protostomes, we searched for octopamine and tyramine receptors in P. dumerilii and P.
caudatus. In phylogenetic and clustering analyses, we identified orthologs for tyramine type
1 and type 2 and octopamine o and 3 receptors in both species (Figure 1B, C and Additional
files 5-8). We performed activation assays with the P. dumerilii receptors. The tyramine type
1 and type 2 receptors orthologs were preferentially activated by tyramine with ECs values
in the nanomolar range (Figure 3, Table 1). The P. dumerilii octopamine o receptor was
activated by octopamine at a lower concentration than by tyramine and dopamine (Figure 4,
Table 1). The P. dumerilii octopamine {3 receptor was not active in our assay. These results
show that specific receptor systems for norepinephrine, octopamine, and tyramine coexist in
P. dumerilii and very likely also P. caudatus.

When did tyramine and octopamine signaling originate? To answer this, we surveyed
available genome sequences for tyramine and octopamine receptors. As expected, we
identified several receptors across the protostomes, including ecdysozoans and
lophotrochozoans (Additional files 5-8). We also identified tyramine, but not octopamine,
receptors in xenacoelomorphs. However, chordate genomes lacked orthologs of these
receptors. Strikingly, we identified tyramine type 1 and 2 and octopamine a and 3 receptor
orthologs in the genome of the hemichordate S. kowalewskii (Figure 1B, C, Additional files
5-8). In phylogenetic analyses, we recovered at least one S. kowalewskii sequence in each of
the four receptor clades (one octopamine a, one octopamine 3, two tyramine type 1, and two
tyramine type 2 receptors), establishing these sequences as deuterostome orthologs of these
predominantly protostome GPCR families (Additional files 5-8).

We cloned the candidate S. kowalewskii tyramine and octopamine receptors and performed
ligand activation experiments. The S. kowalewskii type 2 receptors were preferentially
activated by tyramine in the nanomolar range. The type 1 receptor was only activated at
higher ligand concentrations. The octopamine o and {3 receptors were preferentially activated
by octopamine in the nanomolar range (Figures 3 and 4, Table 1). These data show that
octopamine and tyramine signaling also coexists with adrenergic signaling in this
deuterostome, as in P. dumerilii and P. caudatus. The presence of tyramine signaling in S.
kowalewskii is also supported by the phylogenetic distribution of tyrosine decarboxylase, a
specific enzyme for tyramine synthesis [32]. Tyrosine decarboxylase is present in
protostomes and S. kowalewskii but is absent from other deuterostomes (Additional file 9). In
mammals, aromatic amino acid decarboxylases are involved in synthesizing low amounts of
tyramine [33].

We also tested the o adrenergic agonist clonidine and the GPCR antagonists mianserin and
yohimbine on several receptors from all three species. These chemicals did not show
specificity for any of the receptor types, suggesting these chemicals may not be useful for
studying individual biogenic amine receptors in vivo (Table 1. and Additional file 10).
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Discussion

The discovery of adrenergic signaling in some protostomes and xenacoelomorphs and
octopamine and tyramine signaling in a deuterostome changes our view on the evolution of
monoamine signaling in bilaterians (Figure 5). It is clear from the phylogenetic distribution
of orthologous receptor systems that at least six families of octopamine, tyramine, and
adrenergic receptors were present in the bilaterian last common ancestor. These include the
adrenergic al and a2 receptors, the tyramine type 1 and type 2 receptors, and the octopamine
a and B receptors. From the six ancestral families, the octopamine and tyramine receptors
were lost from most deuterostomes, and the adrenergic receptors were lost from most
ecdysozoans. Interestingly, the xenacoelomorph M. stichopi also has an adrenergic

[ receptor, representing the only ortholog outside chordates. Octopamine o receptors were
likely lost from xenacoelomorphs, since the split of the six receptor families (four with well-
resolved xenacoelomorph sequences) predated the divergence of the main lineages of
bilaterians (Figure 1C).

Although we performed the receptor activation assays in a heterologous system that may not
mimic the in vivo situation very well, we find clear evidence of ligand preferences for each
receptor. In general, there is a two orders of magnitude difference in the ECsy values between
the best ligand and other related ligands for the same receptor measured under the same
conditions. We consider these in vitro ligand preferences as indicative of the physiological
ligands for these receptors. Furthermore, there is a high congruence between the in vitro
ligand specificities and the phylogenetic placement of the different classes of receptors,
further strengthening our receptor-type assignments. The most potent ligand of all six
orthologous receptor families we analyzed is the same across protostomes and deuterostomes,
indicating the evolutionary stability of ligand-receptor pairs, similar to the long-term stability
of neuropeptide GPCR ligand-receptor pairs [34, 35].

Understanding the ancestral role of these signaling systems and why they may have been lost
differentially in different animal groups will require functional studies in organisms where all
three neurotransmitter systems coexist.

Conclusions

We established the coexistence of adrenergic, octopaminergic, and tyraminergic signaling in
the deuterostome S. kowalewskii and the protostomes P. dumerilii and P. caudatus. Signaling
by norepinephrine in vertebrates has often been considered as equivalent to signaling by
octopamine in invertebrates. Our results change this view and show that these signaling
systems coexisted ancestrally and still coexist in some bilaterians. The extent of functional
redundancy in species where all six receptor systems coexist will require experimental
studies. It may be that some of these monoamines ancestrally had partially overlapping roles.
In that case, following the loss of a receptor, functions associated with that ligand-receptor
pair may have been taken over by another pair. However, regardless of such potential shifts
in function, it is clear that octopamine signaling in invertebrates and adrenergic signaling in
vertebrates is not equivalent or homologous from an evolutionary point of view. This has
important implications for our interpretation of comparative studies of the function of these
neurotransmitter systems and their neural circuits. Our study also contributes to the
understanding of nervous system evolution in bilaterians by revealing extensive losses during
the history of one of the major classes of neurotransmitter systems.
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Methods

Gene identification and receptor cloning

Platynereis protein sequences were collected from a Platynereis mixed stages transcriptome
assembly [36]. GPCR sequences from other species were downloaded from NCBI. GPCRs
were cloned into pcDNA3.1(+) (Thermo Fisher Scientific. Waltham. USA) as described
before [31]. Forward primers consisted of a spacer (ACAATA) followed by a BamHI or
EcoRI restriction site, the Kozak consensus sequence (CGCCACC), the start codon (ATG)
and a sequence corresponding to the target sequence. Reverse primers consisted of a spacer
(ACAATA), a Notl restriction site, a STOP codon, and reverse complementary sequence to
the target sequence. Primers were designed to end with a C or G with 72°C melting
temperature. PCR was performed using Phusion polymerase (New England Biolabs GmbH,
Frankfurt, Germany). The sequences of all Platynereis GPCRs tested here were deposited in
GenBank (accession numbers: al-adrenergic receptor. KX372342; a2-adrenergic receptor,
KX372343 Tyramine-1 receptor, KP293998; Tyramine-2 receptor, KU715093; Octopamine
a receptor, KU530199; Octopamine P receptor, KU886229). Tyramine receptor 1 has been
previously published [31] as Pdu orphan GPCR 48. The GenBank accession numbers of the
S. kowalevskii and P. caudatus sequences tested are: S. kowalevskii al-adrenergic,
ALR88680; S. kovalewskii a2-adrenergic, XP_002734932; P. caudatus al-adrenergic
XP_014662992; P. caudatus a2-adrenergic, XP_014681069; S. kovalewskii Tyramine-1,
XP_002742354; S. kovalewskii Tyramine-2A, XP_002734062; S. kovalewskii Tyramine-2B,
XP_006812999; S. kowalevskii Octopamine a, XP_006823182; S. kowalevskii Octopamine 3,
XP 002733926.

Cell culture and receptor deorphanization

Cell culture assays were done as described before [31]. Briefly, CHO-K1 cells were kept in
Ham’s F12 Nut Mix medium (Thermo Fisher Scientific, Waltham, USA) with 10 % fetal
bovine serum and penicillin-streptomycin (PenStrep, Invitrogen). Cells were seeded in 96-
well plates (Thermo Fisher Scientific, Waltham, USA) at approximately 10,000 cells/well.
After 1 day, cells were transfected with plasmids encoding a GPCR, the promiscuous Ga-16
protein [37], and a reporter construct GFP-apoaequorin [38] (60 ng each) using 0.375 ul of
the transfection reagent TurboFect (Thermo Fisher Scientific. Waltham. USA). After two
days of expression, the medium was removed and replaced with Hank’s Balanced Salt
Solution (HBSS) supplemented with 1.8 mM Ca*", 10 mM glucose, and 1 mM coelenterazine
h (Promega, Madison, USA). After incubation at 37°C for 2 hours, cells were tested by
adding synthetic monoamines (Sigma, St. Louis, USA) in HBSS supplemented with 1.8 mM
Ca®" and 10 mM glucose. Solutions containing norepinephrine, epinephrine or dopamine
were supplemented with 100 uM ascorbic acid to prevent oxidation. Luminescence was
recorded for 45 seconds in a plate reader (BioTek Synergy Mx or Synergy H4, BioTek,
Winooski, USA). For inhibitor testing, the cells were incubated with yohimbine or mianserin
(Sigma, St. Louis, USA) for 1 hour. Then, synthetic monoamines were added to yield in each
case the smallest final concentration expected to elicit the maximal response in the absence of
inhibitor and luminescence was recorded for 45 seconds. Data were integrated over the 45-
second measurement period. Data for dose-response curves were recorded in triplicate for
each concentration. Dose-response curves were fitted with a four-parameter curve using
Prism 6 (GraphPad, La Jolla. USA). The curves were normalized to the calculated upper
plateau values (100% activation). The different ECsy values for each receptor were compared
with the extra sum-of-squares F test in a pairwise manner using Prism 6.

Bioinformatics
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Protein sequences were downloaded from the NCBI. Redundant sequences were removed
from the collection using CD-HIT [39] with an identity cutoff of 70%. Sequence cluster maps
were created with CLANS2 [40] using the BLOSUMG62 matrix and a P-value cutoff of 1e-70.
For phylogenetic trees, protein sequences were aligned with MUSCLE [41]. Alignments were
trimmed with TrimAI [42] in “Automated 1”” mode. The best amino acid substitution model
was selected using ProtTest 3 [43]. Maximum likelihood trees were calculated with RAXML
[44] using the CIPRES Science Gateway [45] or with IQ-TREE and automatic model
selection (http://www.igtree.org/). Bootstrap analysis in RAXML was done and automatically
stopped [46] when the Majority Rule Criterion (autoMRE) was met. The resulting trees were
visualized with FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The identifiers of
deorphanized adrenergic, octopamine, and tyramine receptors [12, 29, 47-59] were tagged
with AA1, AA2, Oa, Ob, TI1,or T2. The trees were rooted on SHT receptors.
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Figures, tables additional files

EC50 (M)/IC50 Tyramine Octopamine Clonidine Norepinephri Dopamine Epinephrine Yohimbine Mianserin
M) ne
P. dumerilii al- inactive inactive inactive 2.1E-07 *** 1.2E-04 *** 3.7E-07 n.s. 4.4E-06 3.7E-06
adrenergic
95% CI 1.0E-007 to 2.7E-005 to 1.3E-007 to 2.3E-006 to 1.9E-006 to
4.2E-007 0.00056 1.1E-006 8.2E-006 7.2E-006
P. dumerilii 02- 8.4E-05 2.7E-06 *** 2.6E-06 8.2E-09 *** 1.6E-06 1.1E-08 n.s. 5.7E-06 2.5E-05
adrenergic
95% CI 2.8E-005 to 6.683E-007 to 2.4E-007 to 5.7E-009 to 8.3E-007 to 5.0E-009 to 3.5E-006 to 1.2E-005 to
0.00024 1.0E-005 2.7E-005 1.1E-008 3.2E-006 2.2E-008 9.1E-006 5.1E-005
S. kowalevskii al- inactive inactive inactive 1.7E-08 *** 3.8E-06 *** 1.9E-08 n.s. 1.3E-05 4.5E-06
adrenergic
95% CI 1.0E-008 to 1.9E-007 to 9.0E-009 to 7.6E-006 to 1.6E-006 to
2.7E-008 7.4E-005 4.1E-008 2.2E-005 1.1E-005
S. kovalewskii a2- 3.7E-06 1.9E-06 3.6E-08 1.2E-13 *** 5.6E-09 2.3E-09 *** 3.3E-07 inactive
adrenergic
95% CI 2.0E-006 to 2.5E-007 to 6.7E-009 to 6.7E-014 to 3.3E-009 to 1.1E-009 to 2.6E-007 to
6.8E-006 1.4E-005 1.9E-007 1.9E-013 9.4E-009 4.6E-009 4.0E-007
P. caudatus al- inactive inactive inactive 7.5E-09 inactive inactive inactive inactive
adrenergic
95% CI 4.0E-009 to
1.3E-008
P. caudatus a2- inactive inactive 1.1E-06 * 4.7E-07 * inactive 4.5E-07 n.s inactive 9.8E-07
adrenergic p=0.021
95% CI 4.5E-007 to 1.7E-007 to 1.8E-007 to 4.3E-007 to
2.4E-006 1.2E-006 1.0E-006 2.2E-006
P. dumerilii 1.1E-08 *** 2.7E-06 *** 2.1E-06 1.7E-05 7.8E-06 3.1E-05 2.1E-06 4.7E-05
Tyramine-1
95% CI 7.6E-009 to 1.1E-006 to 1.0E-006 to 1.0E-005 to 1.5E-006 to 9.8E-006 to 7.0E-007 to 1.7E-005 to
1.6E-008 6.1E-006 4.1E-006 2.8E-005 3.9E-005 9.9E-005 6.0E-006 0.00012
P. dumerilii 7.0E-09 *** 7.8E-07 *** 5.3E-06 1.1E-04 3.9E-06 4.8E-05 5.4E-05 6.4E-06
Tyramine-2
95% CI 3.0E-009 to 3.8E-007 to 2.1E-006 to 2.9E-005 to 2.1E-006 to 8.6E-006 to 3.6E-005 to 3.9E-006 to
1.6E-008 1.5E-006 1.3E-005 0.00038 7.0E-006 0.00026 7.9E-005 1.0E-005
S. kovalewskii 8.6E-05 n.s. inactive 2.9E-04 n.s. inactive 0.57 inactive 1.7E-06 1.7E-05
Tyramine-1
95% CI 2.8E-005 to 0.00013 to very wide 2.1E-006 to 7.1E-007 to 7.7E-006 to
0.00025 0.00065 0.00017 3.9E-006 3.7E-005
S. kovalewskii 1.0E-09 *** 8.6E-08 *** 1.4E-06 inactive 7.2E-08 inactive inactive 1.6E-04
Tyramine-2A
95% CI 6.6E-010 to 4.0E-008 to 7.4E-007 to 1.4E-008 to 5.4E-008 to
1.5E-009 1.8E-007 2.6E-006 3.5E-007 0.47
S. kovalewskii 5.9E-09 *** 1.6E-06 *** 1.6E-05 1.2E-04 1.4E-06 2.8E-05 2.1E-05 1.9E-05
Tyramine-2B
95% CI 2.4E-009 to 6.5E-007 to 6.2E-006 to 3.6E-005 to 9.0E-007 to 5.1E-006 to 1.1E-005 to 1.1E-005 to
1.4E-008 3.7E-006 4.0E-005 0.00036 2.2E-006 0.00015 3.6E-005 3.0E-005
P. dumerilii 1.3E-05 2.6E-07 * 1.4E-07 n.s. 3.5E-06 * inactive 8.8E-06 9.0E-09 1.6E-06
Octopamine a p=0.003
95% CI 4.2E-006 to 8.4E-008 to 6.7E-008 to 1.8E-006 to 2.5E-006 to 4.1E-009 to 9.7E-007 to
4.1E-005 7.7E-007 3.0E-007 6.7E-006 3.0E-005 1.9E-008 2.6E-006
S. kowalevskii 1.7E-05 6.9E-07 * 1.6E-07 * 5.3E-05 2.6E-04 1.8E-05 7.8E-06 2.2E-05
Octopamine a p=0.048
95% CI 3.0E-006 to 1.8E-007 to 7.6E-008 to 1.5E-005 to 3.4E-006 to 7.1E-006 to 3.1E-006 to 1.2E-005 to
9.5E-005 2.4E-006 3.5E-007 0.00018 0.02 4.7E-005 1.8E-005 3.6E-005
S. kowalevskii inactive 6.4E-08 *** inactive 3.5E-06 *** inactive inactive 1.6E-04 6.4E-06
Octopamine §
95% CI 4.0E-008 to 1.4E-006 to 1.0E-005 to 3.1E-006 to
1.0E-007 8.1E-006 0.0023 1.3E-005

Table 1. ECso (M)/ICsp (M) values of all tested GPCRs with the indicated ligands or
inhibitors. The most effective natural ligand for each receptor is shown in bold. 95%
confidence intervals for the ECsy (M)/ICso (M) values are given in every second line. The
lowest ECsg value for each receptor was compared to the next lowest one using the extra
sum-of-squares F test. *** p<0.0001; *, p<0.05; n.s., not significant. Significance values are
shown for the compared pairs.
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Figure 1. Biosynthesis of monoamines and phylogeny of adrenergic, tyramine, and
octopamine GPCR sequences.
(A) Biosynthesis of tyramine, octopamine, norepinephrine, and epinephrine from tyrosine.
The enzymes catalyzing the reaction steps are indicated. (B) Sequence-similarity-based
cluster map of bilaterian octopamine, tyramine, and adrenergic GPCRs. Nodes correspond to
individual GPCRs and are colored based on taxonomy. Edges correspond to BLAST
connections of P value >1e-70. (C) Simplified phylogenetic tree of bilaterian adrenergic,
tyramine, and octopamine GPCR sequences. The tree is rooted on SHT receptors.
Abbreviations: Pdu, P. dumerilii; Pca, P. caudatus, Sko, S. kowalevskii; Msti, M. stichopi;
Xboc, X. bocki.
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Figure 2. Dose-Response curves of adrenergic GPCRs from P. dumerilii, P. caudatus, and S.
kowalevskii treated with varying concentrations of ligand.
Data, representing luminescence units relative to the maximum of the fitted dose-response

curves, are shown as mean + SEM (n = 3). ECs, values and significance values are listed in
Table 1.
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Figure 3. Dose-Response curves of tyramine GPCRs from P. dumerilii and S. kowalevskii
treated with varying concentrations of ligand.
Data, representing luminescence units relative to the maximum of the fitted dose-response

curves, are shown as mean + SEM (n = 3). ECs, values and significance values are listed in
Table 1.
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Figure 4. Dose-Response curves of octopamine GPCRs from P. dumerilii and S. kowalevskii
treated with varying concentrations of ligand.

Data, representing luminescence units relative to the maximum of the fitted dose-response
curves, are shown as mean + SEM (n = 3). ECs values and significance values are listed in

Table 1.
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Figure 5. Evolution of adrenergic, octopamine, and tyramine signaling in bilaterians.

(A) Phylogenetic tree of major clades of bilaterian animals with the presence/loss of specific
GPCR families indicated. (B) Phyletic distribution of adrenergic, octopamine, and tyramine
GPCR families across major bilaterian clades. Half squares mean losses in a large number of

species in a phylum.
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Additional files

Additional file 1. Maximum likelihood tree of adrenergic, octopamine,
and tyramine receptors. Bootstrap support values are shown. This tree containing all
investigated GPCRs. The tree was rooted on SHT receptor sequences. Subtrees are shown in
Additional files 2-8.
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Additional file 2. Maximum likelihood tree of al-adrenergic receptors. Bootstrap support
values are shown for selected nodes. This tree is part of a larger tree containing all
investigated GPCRs.
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a2-adrenergic receptors
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Additional file 3. Maximum likelihood tree of a2-adrenergic receptors. Bootstrap support

values are shown for selected nodes. This tree is part of a larger tree containing all
investigated GPCRs.
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B-adrenergic receptors
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Additional file 4. Maximum likelihood tree of -adrenergic receptors. Bootstrap support
values are shown for some nodes of interest. This tree is part of a larger tree containing all
investigated GPCRs.
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Tyramine-1 receptors
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Additional file 5. Maximum likelihood tree of Tyramine-1 receptors. Bootstrap support
values are shown for selected nodes. This tree is part of a larger tree containing all
investigated GPCRs. The identifiers of deorphanized tyramine receptors were tagged with

CTIL.
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Tyramine-2 receptors
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Additional file 6. Maximum likelihood tree of Tyramine-2 receptors. Bootstrap support

values are shown for selected nodes. This tree is part of a larger tree containing all

investigated GPCRs. The identifiers of deorphanized tyramine receptors were tagged with
T2.
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Octopamin-a receptors
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Additional file 7. Maximum likelihood tree of Octopamine-a receptors. Bootstrap support
values are shown for selected nodes. This tree is part of a larger tree containing all
investigated GPCRs. The identifiers of deorphanized octopamine receptors were tagged with

Oa.
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Octopamin-p receptors
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Additional file 8. Maximum likelihood tree of Octopamine- receptors. Bootstrap support
values are shown for selected nodes. This tree is part of a larger tree containing all
investigated GPCRs. The identifiers of deorphanized octopamine receptors were tagged with

_Ob.
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Additional file 9. Maximum likelihood tree of tyrosine decarboxylase and aromatic amino
acid decarboxylase enzymes. Bootstrap support values are shown for selected nodes. P.
dumerilii. P. caudatus, and S. kowalevskii sequences are highlighted in color. The
Caenorhabditis elegans tyrosine decarboxylase was experimentally shown to be required for
tyramine biosynthesis [32].
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Additional file 10. Dose-response curves of adrenergic, tyramine, and octopamine receptors
from P. dumerilii, P. caudatus, and S. kowalevskii treated with varying concentrations of
inhibitors. Data, representing luminescence units relative to the maximum of the fitted dose-
response curves, are shown as mean + SEM (n = 3). ICs, values are listed in Table 1.
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