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Abstract 
 
Gene expression changes with age have consequences for healthy aging and disease 
development. Here we investigate age-related changes in gene expression measured by 
RNA-seq in four tissues and the interplay between genotypes and age-related changes in 
expression. Using concurrently measured methylation array data from fat we also 
investigate the relationship between methylation, gene expression and age. We identified 
age-dependent changes in mean levels of gene expression in 5,631 genes and in splicing of 
904 genes. Age related changes were widely shared across tissues, with up to 60% of age-
related changes in expression and 47% on splicing in multi-exonic genes shared; amongst 
these we highlight effects on genes involved in diseases such as Alzheimer and cancer. We 
identified 137 genes with age-related changes in variance and 42 genes with age-dependent 
discordance between genetically identical individuals; implying the latter are driven by 
environmental effects. We also give four examples where genetic control of expression is 
affected by the aging process. Analysis of methylation observed a widespread and stronger 
effect of age on methylation than expression; however we did not find a strong relationship 
between age-related changes in both expression and methylation. In summary, we 
quantified aging affects in splicing, level and variance of gene expression, and show that 
these processes can be both environmentally and genetically influenced.  
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Background 
Aging is a complex process, characterized by a progressive decline in an organism's 
biological function and phenotypic characteristics, which leads to an increased chance of 
developing disease and ultimately the death of the organism [1]. Others have attempted to 
understand the aging process by identifying common denominators of aging in different 
organisms [2]. Many of these hallmarks, such as genome instability, epigenetic alterations, 
loss of proteostasis and telomere attrition, are accompanied by changes in gene expression. 
Identification of genes differentially expressed with age has proven useful in identifying 
pathways whose behavior is modified by age, as well as identifying biomarkers of aging and 
therapeutic targets [3-5]. Expression studies into aging using animal models have discovered 
that the expression of up to 75% of genes are associated to aging [6]. As well as associations 
with the level of gene expression, age-related differences in the splicing of the mRNA 
produced and differences in the genetic regulation of gene expression have also been 
observed [6, 7]. On the other hand, human studies have only recently managed to identify 
thousands of genes associated with age in multiple tissues [3, 8, 9], but are still far from 
identifying the same scale of aging effects in expression or the same variety of changes. 
Reasons for this include a reduced power to see interactions due to inability to control 
environment compared to model organisms, and importantly the lack of sufficient human 
expression data using appropriate technologies and tissues.  
 
In this study, we investigate changes in gene expression with age using previously published 
RNA-seq measurements of fat, skin, whole blood and derived lymphoblastoid cell lines 
(LCLs) expression from ~800 monozygous (MZ) and dizygous (DZ) adult female twins 
(Additional Table S1). We take a comprehensive approach that includes not only an analysis 
of the effect of age on the mean of gene expression and alternative splicing, but also look at 
age-related  changes in gene expression variance and  changes in genetic regulation. 
Although age-related changes in variance of gene expression have been identified before 
[10-14], we believe this is one of the first studies exploring the underlying causes for 
changes in variance with age. For that and exploiting the similarities and differences 
between twins, we discover genes where the discordance between MZ pairs is age-
dependent implying environmentally driven effects. Also partition of the variance shows 
that for a majority of genes the effect of age on expression is small relative to the effect of 
genetic variation. For a more mechanistic understanding of how age affects expression, we 
studied age-related epigenetic changes using genome-wide methylation profiles from the 
same fat biopsies as the expression data which showed a more widespread and stronger 
influence of aging. Finally, we observe a greater degree of sharing of age effects across 
tissues than has been previously reported, demonstrating the benefits of studying 
expression using accurate RNA-seq derived quantifications in a large cohort. 
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Results 
Effects of aging in gene expression levels 
To investigate the wide range of changes in gene expression with age, we used publicly 
available RNA-seq data from 855 healthy individuals drawn from the TwinsUK cohort ([15, 
16], Additional Table S1) in four tissues: i) photo protected skin, ii) subcutaneous fat, iii) 
whole blood and iv) lymphoblastoid cell lines (LCLs). We consider a gene associated with age 
if at least one exon was associated with chronological age. We discovered that 36.6% of 
tested genes (5,631 of 15,353) had expression levels of at least one exon where expression 
level was significantly associated with age in at least one tissue (FDR < 0.05; Figure 1A, 
Additional Table S2 and S3, Additional File 1). This number is roughly double that we 
previously reported (18.3%, 3,019 genes) using exactly the same skin, fat and LCLs samples 
but measuring expression using microarrays [3] (Figure 1A, Additional Figure S1). This 
increase in power is due to the higher resolution provided by RNA-seq data, which also 
allows exon level quantifications which are more biologically interpretable than working on 
the gene level [17]. We also found that the total number of expressed genes increased as a 
function of age in fat tissue (adjusted P value = 0.00264, Additional Figure S2) but not in the 
other tissues. Application of Gene Set Enrichment Analysis (GSEA) to the differentially 
expressed genes showed significant enrichment in GO terms (FDR < 0.05) related to RNA 
processing, fat metabolism and oxidation reduction in skin; and cell adhesion, membrane 
structure and sodium channel complex structure in fat tissue (Additional files 2). In blood, 
there was no specific enrichment for GO terms, and in LCLs only 7 genes showed significant 
association with age, 3 of which were previously reported [3]. In conclusion, we identify 
thousands of genes whose expression levels were associated to age.  
 
 

 
 
Figure 1 | Effects of aging in gene expression: The effect of aging in gene expression is not limited to changes 
in mean expression values with age (a), but includes also changes in levels of phenotypic variance(b,c), and 
splicing (d). The top row graphs show real data examples for the effects of aging in expression investigated. 
The middle graphs show bar plots with the percentage of exons with positive (+) or negative (-) age effects in 
each analysis. And finally the bottom tables provide the number of exons and genes with significant 
association for each of the effects presented. All the real examples are from skin, the tissue with larger age 
effect in expression overall analyses. a) Effect of aging in mean gene expression, usually referred as 
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differentially expression with age in exons. The example shows the residuals (after removing technical 
covariates) of the expression of the ZBED3 gene decreasing with age. Skin is the tissues with a larger effect of 
age in expression and LCLs the smaller. b) The effect of aging in variance of gene expression is shown with the 
ELOVL3 gene and a significant decrease of variance in expression with age. From the bar plot it is possible to 
appreciate that the majority of the significant exons had a decrease in variance with age. c) Differences in 
expression between monozygous (MZ) twins point out to environmental factors different among the siblings 
affecting gene expression, since MZ twins are genetically identical individuals with the same age. The example 
shows the difference in expression between MZ twins in the gene CCHR1. d) For the splicing analysis, only links 
(reads between two exons) were considered. The example shows the structure of the gene APOE with its 
exons (boxes) and lines connecting the exons representing reads spanning between two exons. The number of 
reads linking exons 3 and 4 (in purple) decreased in number with age, while reads linking exons 2 and 4 (blue) 
increased with age. The model suggested that an isoform skipping the third exon (from the 5') may be more 
abundant in older individuals compare to an isoform that includes the third exon linked to the last exon. 

 
 
To quantify the overall influence of age on global gene expression, we estimated the 
proportion of variance in exon expression levels (removing technical confounders) explained 
by age and additive genetic effects (heritability). In exons associated with age, age explained 
only a small proportion of the variation in gene expression, with median values between 
2.2% and 5.7% depending on tissue and with maximum values ranging from 12% to 27% 
(Additional File 3). Globally, the effect of age on expression was greatest in blood, then skin, 
fat, and finally LCLs had the least. In comparison, the proportion of variance explained by 
additive genetic effects on the same set of age-affected exons was greater than that 
explained by age in all tissues (median h2

skin = 0.12, h2
fat = 0.22, h2

LCLs = 0.20, h2
blood = 0.23). 

Our results indicate that the influence of age in gene expression is much lower in 
comparison with the effects of genetic variation in the expression of genes. These relative 
differences suggest that considering genetics would be crucial in producing an expression 
derived individual level estimate of “biological age”, similar to those previously proposed for 
methylation [18]. 
 
 

 Fat Skin Blood LCLs 

 All  Age All  Age  All  Age  All  Age  

Age 0.0012 0.0287 0.0026 0.0224 0.0039 0.0542 0.0006 0.0366 

Genetics 0.0809 0.2228 0.0856 0.1275 0.1301 0.2333 0.1089 0.2032 

Commo Env. 0.0236 0.0573 0.0000 0.0162 0.0380 0.0341 0.0971 0.1312 

Unique Env. 0.8550 0.6655 0.8566 0.7662 0.7403 0.6214 0.7320 0.6214 

N. of exons 101,133 1,511 96,736 11,695 71,393 688 98,372 7 

 
Table 1: Summary of median proportion of variance attributed to age, genetics, common environment and 
unique environment, for all exons (All) and for age-affected exons (Age). In general, age explained a small 
proportion of the variance attributed to gene expression. However, for exons affected by age in their 
expression, the genetic component (heritability) explained significantly higher proportion of the variance in 
expression compare to the rest of the genes in fat, skin and blood tissues (willconox test Pvalue < 2.1e-17).   
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Splicing is associated with aging 
As well as changes in the average level of expression, age has been shown to cause genome 
wide changes in splicing [19-21], including in the human brain, that manifest in a differential 
expression of isoforms with age. Furthermore, splicing changes have been shown to be 
crucial in the development of a number of age related diseases. To identify changes in 
splicing with age, we quantified splicing based on link reads between exons using Altrans 
[22]. This method uses the proportion of reads linking different exons as a quantitative 
phenotype for splicing in our population, which can be tested for associations with age. We 
found a total of 904 genes (6.3% of the 14,261 genes with more than one exon expressed) 
with at least one link differentially expressed with age in either fat or skin (FDR < 0.05, 
Additional Table S4, Additional Files 4, 5 and 6). For 51.8% of those genes in skin and 11.4% 
in fat, age was associated with level of expression of the gene as well. We did not see 
significant associations between age and splicing in LCLs and blood, probably due to the 
smaller age effect in LCL expression and the smaller sample size available for blood (N = 
384). Among genes with age-related differential splicing we found APOE  (Figures 1D and 
5)(previously associated to extreme longevity, Alzheimer disease and cholesterol 
metabolism), LMNA (causal of progeria, an accelerated aging syndrome), HTRA2 (Parkinson 
disease) and AAP (Alzheimer disease). In fat tissue, many thrombospondins and collagen 
genes had age-related changes in splicing, as well as genes such as AKT1 and AKT2 from the 
insulin-IGF1 pathway, which is known to play a central role in aging. Overall, we observed 
that some age-related changes in gene expression were associated to changes in splicing, 
but that the effect of age in splicing was weaker than the observed effect on expression 
levels. 
 
Variance and differences in gene expression between MZ twins is dependent of age  
Age-dependent changes in the variance of gene expression (rather than mean expression 
levels) have been reported in model organisms [10-12] and humans [13, 14]. Changes in 
phenotypic variance with age can be due to different responses to environment, age-related 
damage accumulation leading to stochastic deregulation of gene expression or gene-age 
interactions, where changes in relative genetic effects can increase heterogeneity across the 
population at a particular age [23]. We looked for changes in variance with age and 
identified 137 genes where expression showed age-dependent variance in at least one 
tissue (FDR < 0.05, Figure 1B, Additional File 7). Since changes in global phenotypic variance 
have mainly been reported to increase with age, we were surprised to observe that for the 
majority of these genes we report a decrease in variance of expression. This reduction in 
variance could reflect a decreased ability for expression levels to respond to environmental 
stimuli in older individuals, or a reduction in genetic regulation with age. The biological 
functions associated to the genes with age-associated differential variance in skin included 
oxidation reduction, with examples such as SOD2, fatty acid metabolism with genes 
including CPT1B, ELOV3 and ELOV5 or cell cycle control like p21 (Figure1B, Additional Figure 
S3). In blood, enriched pathways included the VEGF signaling pathway with the PIK3CD and 
PXN genes. Our analysis shows concrete examples of age-related changes in phenotypic 
variance affecting expression in humans and identified changes in variance with age as 
another process by which aging may be linked to disease. 
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Changes in variance with age occur either as a consequence of environmental exposures or 
as a result of changes in genetic regulation of gene expression. However, differences in 
expression levels within MZ twin-pairs must relate to the first explanation, as the 
individuals’ genomes are identical. Therefore, and exploiting the twin design, we calculated 
the difference in expression between MZ co-twins (Additional Table S1). We have 
successfully used this strategy previously to classify genetic determinants of phenotypic 
variance in gene expression [15] and GxE interactions affecting allelic specific expression 
[16]. Here, we identified 42 genes where difference (discordance) in expression between MZ 
co-twins changed with age in at least one tissue (Figure 1C, Additional Figure S4 and 
Additional File 8). Of the 34 genes identified in skin, 11 also showed a decrease in variance 
with age (Additional Figure S5). This indicates that the observed change in variance for those 
genes was environmentally, and not genetically determined. However, for the remaining 
genes, either changing environments, concordant across MZ twins, or GxE interactions 
remain plausible explanations for the change in variance. In conclusion, changes in 
phenotypic variation with age can be attributed to different environmental exposures 
among the individuals and not only to a general decline in regulatory functions and 
increased genomic damage, as others have suggested [12].  
  
 
Age-related associations in expression are modulated by genetic variation 
Changes in variance in expression with age could also be a result of gene-by-age interactions 
affecting expression (GxA), when the genetic regulation of expression changes with age [6, 
24, 25]. To discover these effects, we searched for SNPs whose effect on expression levels 
depends on the age of the individual. It is well known that the power to discover such 
second order effects is much reduced compared to standard main effects; for this reason it 
is common to restrict the search space to those with known main effects, either genetic or 
on aging [26]. We concentrated on genes linked to age, as strong eQTL usually lie within 
promoter regions and as such are less likely to be environmentally influenced. We tested 
cis-GxA regulatory interaction effects with all SNPs in the cis window of 12,830 exons which 
were either 1) differentially expressed with age; 2) variance changes with age and 3) 
discordant in expression between MZ co-twins with age. After multiple testing corrections, 
we identified one significant GxA-eQTL, affecting the expression of CD82 (Figure 2A). We 
also detected three GxA-eQTL among the genes that were discordant for expression in skin 
(Additional Figure S6 and Additional Files 9, 10, and 11).  Despite the inherent challenges in 
identifying interaction effects, we here identify four GxA effects on gene expression with a 
relatively modest sample size. Given the many examples of GxA interactions reported in 
model organisms, we expected further studies with larger samples sizes to identify more 
examples. 
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Figure 2A | Interacting effects of aging on gene expression: The two plots show the effects of genotypes 
(eQTL) and methylation on gene expression can be modulated by age. A) The graph shows a genotype-by-age 
expression quantitative trait locus (gxa-eQTL) in fat tissue affecting the expression of the CD82 gene. The 
expression of the reported exon increased with age in homozygous individuals for the CC alleles in 
rs10769002. Homozygous individuals for the alternative allele (TT) showed a decreased in expression with age.  
 
 
The effect of age on methylation in fat tissue  
Methylation levels and discordance in methylation between MZ twins has been shown to 
increase globally with age in promotor regions [27, 28]. Given our findings of genes with 
age-dependent changes in variance and discordance of expression, and the difficulties of 
identifying genetic effects responsible for those changes, we postulated that epigenetic drift 
could explain some of the age-related changes in expression. Using 552 Infinium 
HumanMethylation450 BeadChip methylation profiles generated from the same fat biopsies 
as the RNAseq data (Grundberg et al.), we identified 39,092 differentially methylated 
regions (DMRs) with age from the 370,731 array probes, 93.6% of which were 
hypermethylated with age (Figure 3, Additional File 12, methylation data was not available 
for other tissues). The proportion of DMRs was significantly larger than the proportion of 
age associated exons (10.54% compared to 1.4%, P value < 2.2e-16, X2 test). In total, 3,555 
genes have an age-DMR near their TSS (<200 bp), of which 444 were also differentially 
expressed with age, suggesting methylation as a possible mechanism for age associated 
expression changes. 
 
In addition, we looked for associations between expression of exons with methylation 
probes within 200 bp of the TSS of the gene. Of 297,702 pairs of exon-methylation probes, 
we found 4,853 to be significantly correlated, 53% negatively and 46.91% positively 
correlated (Additional Figure S7 and Additional File 13). From those 4,853 exon-probe pairs, 
16.8% of exons and 15.3% of methylation probes were differentially expressed or 
methylated with age. In conclusion, we observed a widespread and stronger effect of age on 
methylation than expression and a lower number of significant associations between 
expression and methylation. 
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Figure 3 | A) CpG islands showed mainly an increased in methylation with age, independent form the genomic 
position (B and C). D) The estimates for the proportion of variance attributed to age in methylation show that 
up to 60% of the variance in methylation would be attributed to age. E) The position of CpG markers respect to 
the near TSS from genes (only CpGs at <50Mb from the TSS are shown) show a larger effect of age on 
methylated regions near the TSS. F) The left and right panels show age-associated CpGs positions at the near 0-
100bp at the 3’and 5’of each exon. The central panel show the relative position of the CpGs associated with 
age within each exon (blue box). The CpGs show higher associated with age in the exon 5’region, probably due 
to the proximity to the TSS of the genes.  

 
 
To investigate whether interactions involving methylation markers are proxies for 
environmental factors explaining changes of variance with age in gene expression, we 
looked for interactions between methylation and age (methylation*age) affecting 
expression. Since only 3 genes had a significant association between variance in gene 
expression in fat and age at an adjusted P value < 0.05, we chose to relax our threshold to 
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an FDR < 0.10 and test nine genes. We identified a Bonferonni significant methylation x age 
interaction effect on expression of IRS1 at three methylation probes, most significantly 
cg19451698 (P value = 6.6e-05, Figure 2B, Additional File 14). This significant interaction 
implies that the expression of the IRS1 gene decreases with age in individuals where 
cg19451698 is hypomethylated. Such an effect was not present in individuals with high 
levels of methylation in the same region. Homologs of IRS1 and other members of the 
insulin/IGF-1 pathway are known to regulate longevity in model organisms, a function that 
may be conserved in humans due to their involvement in age-related diseases like type 2 
diabetes. In summary, we detected an interaction between methylation and age affecting a 
gene expression showing how the effects of age can be modified by genetic and 
environmental factors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2B | Interacting effects of aging on gene expression: The two plots show the effects of genotypes 
(eQTL) and methylation on gene expression can be modulated by age. B) The graph shows a methylation-by-
age interaction affecting gene expression. The expression of the IRS1 gene decreased with age in individuals 
with the methylation cg19451698 hypomethylated. 

 
 
Age effects in expression are shared across tissues  
Previous studies performed in multiple tissues identified a limited number of shared genes 
whose expression associated with age across tissues [3, 8, 29]. Similarly, of the 5,631 genes 
(36.67%) affected by age in at least one tissue, we were only able to identify five genes 
significantly associated to age in all the three primary tissues (Figure 4A, Additional Figure 
S8, Additional Table 5). We found 274 genes significantly associated with age in both fat and 
skin. This overlap was highly significant compared to what would be expected given 
independent gene sets in each tissue (P value < 1e-216, Fishers test), indicating the presence 
of a common signature of aging. However, it is important to notice that defining tissue-
shared effects based on strict thresholds will underestimate the true sharing between 
tissues, particularly in blood which had reduced power to detect associations due to smaller 
sample size. Enrichment analysis, which can detect evidence of sharing which does not 
attain statistical significance by comparing the P value distributions across tissues, revealed 
shared age-related effects ranging from 21% to 60% (Figure 4C), with skin and blood 
showing the least overlap while fat and skin showed the most. This is considerably greater 
than the degree of enrichment observed in microarrays, 27%-28% between fat and skin [3]. 
We observed similar levels of tissue-shared age-related effects on splicing, with pairwise 
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sharing ranging from 16% to 47%. In summary, our results indicate that global biomarkers of 
aging with effects across multiple tissues are prevalent. 
 
 
 

 
  
 
Figure 4 | Tissue shared and specific effects of aging in gene expression changes with age. The top venn 
diagrams show A) the number of exons (left) and B) number of genes (right) significantly associated with 
chronological age in fat, skin and whole blood. Five exons were commonly associated to age in the three 
tissues. LCLs were not included, as only 7 exons were significantly associated with age. C) The P values of 
significant exons associated with age in one tissue were extracted from the analysis in the other tissues for 
enrichment analysis (π1). The histograms show the P values for association between expression and age in one 
tissue (left, green color) if the exons were significantly associated exons in another tissue (top, orange color). 
As show in the graphs, age-related signals detected in fat shared an estimated 60.2% of the age effect signal 
skin tissue and 45.6% with blood.   
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Discussion 
 
The association between aging and disease has been extensively demonstrated by 
epidemiological and GWAS studies [2, 30], but the association between specific genes with a 
disease in the context of the aging process remains elusive. We here identify chronological 
age-related changes in the expression of thousands of genes. Gene expression is an 
important endophenotype that underlies susceptibility to many common diseases and could 
mediate the effect of age on disease.  To illustrate the many different effects of age in the 
expression here investigated we present here two examples of disease-related genes: APOE 
and LMNA. APOE has been associated with Alzheimer and cardiovascular diseases, and 
genetic variants within the TOMM40/APOE/APOC1 locus have been linked to longevity [31]. 
Our analysis showed that the expression of multiple exons and links of APOE change with 
age in skin tissue, producing different isoforms that can potentially induce changes in the 
activity of the gene (Figure 5). Based on current models for APOE transcripts, we expect all 
transcripts to include exons 2, 3 and 4, with the possibility of including exon 1 given the use 
of an alternative TSS. However, the significant increase in the number of reads linking exons 
2 and 4, and reduction of those linking exons 3 and 4, indicates that transcripts skipping 
exon 3 are more common in older individuals. Such a transcript has not being reported as 
functional, for which we hypothesize that the APOE gene produces aberrant and likely non-
functional transcripts in older individuals after exon skipping events. Whether this reduces 
the overall expression of functional transcripts, leading to lower levels of circulating 
apoliprotein E, requires further testing. Additionally, we previously reported an eQTL 
affecting the expression of APOE in skin and fat tissues [16]. The lead SNP of this eQTL 
(rs439401) has been implicated in triglycerides metabolism, Alzheimer’s and cardiovascular 
diseases [32]. We here find a nominally significant gene x age interaction eQTL for this SNP 
(P = 0.014), suggesting the regulatory effect of this SNP on APOE expression is dependent on 
age. Given the strong association between APOE and age-associated diseases, such an effect 
could potentially be mediated by age-dependent changes in genetic regulation of APOE 
expression.  
 

 
 
 Figure 5 | Structure of the APOE gene. 
Mutations in this gene have been associated 
with alterations in fatty acid metabolism and 
cardiovascular diseases. Polymorphisms in 
and near the gene has been associated with 
Alzheimer and cardiovascular diseases. The 
gene produces multiple protein coding 
transcripts variants (yellow) and non-coding 
processed transcripts (blue). In the skin 
tissue, three exons and one link decreased 
their expression with age (green coloured 
exon and link between exons); and one link 
increase its expression (red coloured link). 
Furthermore, we detected one eQTL 
(rs439401) affecting the expression of the 
gene.  
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The second example we choose to highlight here involves the LMNA gene (Figure 6), which 
is causal of the Hutchinson-Gilford progeria syndrome. This syndrome is characterized by 
accelerated aging features as a consequence of the accumulation of a truncated progerin 
isoform of LMNA. The quantity of the progerin transcript increases with age in normal cells 
[33], with its protein known to accumulate in human skin in an age-dependent manner [34]. 
We identified age-related changes in expression of LMNA exons (FDR < 0.1) and links (FDR < 
0.05) consistent with the production of different alternative isoforms in an age-dependent 
manner. With increasing age, we observe an increase in the number of reads corresponding 
to exon 7 in the plot (red reads in Figure 6), and a decrease in the number of reads 
corresponding to exon 3. This by itself suggests that transcripts which include exon 7 but 
skip exon 3 are more prevalent in older individuals. This is consistent with our exon-link 
data, in which reads linking exon 2 to exon 4 (thereby skipping exon 3) were also more 
abundant in older individuals. Furthermore, we found an eQTL affecting LMNA expression in 
skin, blood and LCLs tissues, the peak LCL eQTL (rs915179) has been previously linked to 
exceptional longevity in humans [35, 36].  
 
 

 
 
Figure 6 | Structure of the LMNA gene. 
Mutations in this gene has been associated 
with multiple diseases, including the 
Hutchinson-Gilford progeria syndrome, 
characterize by accelerated aging features. 
The gene produces multiple protein coding 
transcripts (yellow) and non-coding 
processed transcripts (blue). In the skin 
tissue, two exons were affected in their 
expression by age by increasing expression 
(red coloured exon, corrected Pval < 0.1) 
and decrease expression with age (green 
coloured exon). Furthermore, two links 
were significantly associated with age in 
their expression (corrected Pval < 0.05). Our 
results suggested an increase in the 
production of isoforms using alternative 5’. 

 
 
 
Both examples presented for APOE and LMNA show age related changes in splicing of 
expression in genes linked to age-dependent diseases, as well as demonstrating how genetic 
variation can ameliorate these changes. However, it is important to take into account that 
the gene models included on our figures and used as references are based on GENCODE 
annotated transcripts. Some of the annotated transcripts may not necessarily translate into 
proteins and the used of annotated gene models means we do not account for the reported 
presence of aberrant or incomplete transcripts [37] We also note that some of the effects of 
age on gene expression, splicing and methylation will be mediated by age-related changes in 
cellular composition. Future studies should investigate the extent to which this is the 
mechanism underlying our observed age-related changes in expression. 
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An under-studied hypothesis liked to age-related changes propose that an increase in age-
related disease prevalence is a consequence of a loss in regulatory capacities in aging 
organisms, which manifested in an increase in phenotypic variance with age [10, 11]. This 
theory assumes that only an increase in variance can be associated with disease. However, a 
decrease in expression variance could indicate a reduction in the ability to respond to the 
organism’s environment or to reduced regulation of expression, either of which could lead 
to disease development. In contrast with reported patterns of increased expression variance 
with age, we mainly identified individual genes with an age-related decreased variance. This 
contradicts the expectation of a stochastic increase of the phenotypic variance with age due 
to reduced regulatory capabilities. Three factors may induce changes in phenotypic mean or 
variance: genetic variation, environmental variation or an interaction between the two. 
Genes and pathways associated with longevity and age-related changes are often strongly 
regulated in older organisms with low levels of stochasticity and higher levels of heritability 
[6, 11, 38]. In this study, the exons associated to age were highly heritable (Additional Figure 
S9, Additional Table S6 and Additional file 3) suggesting, as previously reported, that age 
modulates genetic regulation of expression [6]. 
 
We attempted to identify genetic and environmental factors involved in the changes of 
variance with age by testing for GxE interactions. We were able to identify a significant gxa-
eQTL in fat tissue acting on the gene CD82 (rs10769002). This gene is associated with tumor 
progression as it codes for a metastasis suppressor glycoprotein highly correlated with p53 
and which increase in expression have been associated with overall better survival to cancer 
[39]. In our analysis we observed that individuals homozygous for the reference allele 
increased gene expression with age compared to the alternative allele. Therefore, it is 
possible that the alternate allele in rs10769002 may be a risk factor for some types of cancer 
in older individuals. Three other examples were identified in skin tissue for genes also 
previously implicated in cancer and metabolism. In conclusion, we identify changes in 
phenotypic variance with age that would be explained by GxE and changes in regulation, 
suggesting that damage accumulation is not the only explanation to the observed change in 
phenotypic variance with age in many other phenotypes. Moreover, we show that the study 
of phenotypic variance with age in gene expression may identify new candidate genes 
relevant for age-related diseases. 
 
For a more mechanistic understanding of how age may affects expression, we investigated 
and detected a widespread effect of age on methylation. The effect of methylation was 
stronger than the observed effect of age on gene expression, although both age effects 
were small compared to the relative influence of genetics. Our search for interactions that 
would explain changes in variance with age identified IRS1 as a gene whose expression 
changes as a consequence of an age-methylation interaction. The IRS1 gene has been 
associated to type 2 diabetes, an age-related disease and it has also been found to have 
diabetes associated DMRs nearby [40]. Our results suggest that although methylation 
changes are strong markers for the aging process, their influence on expression changes 
with age may be only relevant for a small percentage of genes. We also observed that most 
age-DMRs were hypermethylated in our study, while there is currently no consensus in the 
literature on whether age-DMRs are primarily hypermethylated or hypomethylated in a 
particular tissue [41]. In conclusion, our search to explain results on global changes in 
phenotypic variance with age indicates that increase or decrease in expression regulation 
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jointly with the accumulation of environmental exposures may often be observed as 
multiple GxE interactions.  
 

Conclusions 
 
In summary, we have performed a large human transcriptomic study of aging, in a multi-
tissue dataset. We took advantage of studying aging in a healthy cohort to identify genes 
with expression associated with age. Since age-related changes are highly unlikely to be 
confounded with disease prevalence in this dataset, genes previously linked to disease and 
here associated with age are more likely to be causative of disease. Therefore, the 
thousands of age-related genes identified in this paper are of high interest to researchers 
studying these diseases. In addition, we found that the shared effect of aging in humans 
across four tissues as well as the number of affected genes is larger than previously 
reported. We also quantified the global effect of age in gene expression reporting a small 
influence in expression (median variance explained by age is between 2.2% and 5.74%). 
When compared to the large global effect of genetic factors on gene expression, the low 
age-related values may explain the difficulties in identifying biomarkers of aging in gene 
expression, and highlight the value to account for genetic variation when considering 
individual level biomarkers. On the other hand, we observed a larger global effect of age in 
methylation levels in the same fat samples, with age explaining up to 60% of the variance 
observed in methylation levels in some regions. However, we observed a low number of 
associations between expression and methylation, suggesting that the relationship between 
both phenotypes and age-related changes may be independent for most genes. Moreover, 
we have shown that age alters gene expression in multiple complex ways, including total 
expression, variance, splicing and genetic regulation. Many of the genes subjected to age-
related changes in expression have been linked to age-related diseases, highlighting the 
need for future studies into the relationship between age-related changes in gene 
expression and its regulation, and age-related diseases. This is particularly relevant for 
genome wide association studies (GWAS) where eQTLs are routinely used to identify target 
genes of genetic variants without accounting for the effects of age. 
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Methods 
 
Study design 
The sample collection, and mRNA extraction has been described in detail in [42]. In sort, 856 
Caucasian female individuals (336 MZ and 520 DZ twins) from the TwinsUK Adult twin 
registry [43] were recruited with a ranged age from 39 to 85 years (mean 59 years). Samples 
were prepared for sequencing and processed as described in [15] and [16]. The number of 
monozygotic (MZ), dizygotic (DZ) and unrelated individuals (individuals with no relatives in 
the dataset) included in the final analysis per tissue are described on Additional Table S1 

Exons and links quantification 
The 49-bp sequenced paired-end reads were mapped to the GRCh37 reference genome 
(The International Human Genome Sequencing Consortium, [44]) with BWA v0.5.9 [45]. We 
use genes defined as protein coding in the GENCODE v10 annotation [46], removing genes 
with more than 10% zero read count in each tissue. For the analysis presented in this paper, 
only exons from protein coding genes and LincRNAs from verified loci (level 1) and manually 
annotated (level 2) were investigated. We calculated the relative quantification of splicing 
events using Altrans [22]. Sequencing of each sample produced different number of reads, 
therefore read counts assigned to links and exons needed to be scaled to 10 million reads to 
allow comparisons across samples.  
Additional Table S3 show the total number of exons and genes sequenced per tissue, as well 
as the total number of exons, genes used in the analysis here presented. We quantified 
expression at the level of exons as exon-level quantifications provide both a greater 
resolution than gene-level quantifications and are more biologically relevant. Gene-level 
analysis assumes that effects operate on the mean level of all transcripts, whereas exon-
level analysis allows the identification of effects due to changes in mean expression of 
subsets of transcripts or changes in alternative splicing.   
 
Genotying and imputation. 
Genotyping of the TwinsUK dataset (N = ~6,000) was done with a combination of Illumina 
arrays as described in [15, 16, 42]. Samples were imputed into the 1000 Genomes Phase 1 
reference panel (data freeze, 10/11/2010) [47] using IMPUTE2 [48] and filtered (MAF<0.01, 
IMPUTE info value < 0.8). 
 
Splicing junction quantifications 
We calculated the relative quantification of splicing events using Altrans [49]. The method 
makes use of mate pairs mapped to different exons to count "links" between two exons 
based on the GENCODE v10 annotation for level 1 and 2 from protein coding genes and 
lincRNA. Exons that overlap were grouped into "exon groups" to identify unique portions of 
each exon from an exon group. The unique portions were used to assign reads to an exon. 
The quantitative metric produced by Altrans is the fraction of one link's coverage over the 
sum of overages of all the links that the primary exon produced. The values range from 0 to 
1, representing the proportion of a give link among all the links produced by the primary 
exon. The metric is calculated in 5'-to-3' (forward) and 3'-to-5' (reverse) directions to 
capture splice acceptor and donor effects respectively. Additional Table S4 show the total 
number of links identify per tissue, as well as the total number of links per gene detected.  
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Age effects on mean exon expression and links  
Rank normalized reads per exon or links were used to assess the age effect on exon 
expression mean. A linear mixed model was fitted to examine age effect on gene expression 
in R [50] with the lmer function in the lme4 package [51]. Confounding factors in all models 
included fixed (primer insert size, GC content mean and batch (only for blood samples)) and 
random effects (primer index, date of sequencing, family relationship and zygosity). The P 
values to asses significance for age effect were calculated from the Chi-square distribution 
with 1 degree of freedom using likelihood ratio as the test statistic. A set of 100 
permutations were used to adjust for multiple testing. Expression values were permuted 
while maintaining samples from twin pairs together.  
To account for the fact that genes have different numbers of exons, we stratified the genes 
into 16 groups based on number of exons and applied the multiple testing correction 
separately to each group. In this way we control the false discovery rate while 
simultaneously ensuring that we do not see a higher proportion of false positive results for 
genes with more exons.  The adjusted P values, controlling the FDR, were calculated as the 
proportion of permuted statistics more significant than the P value calculated on real data, 
divided by 100 (for the number of permutations). P values < 0.05 were considered 
significant. A gene was considered as significantly affected by age if the expression of at 
least one exon was significantly associated to age.  
 
Tissue shared effects  
For each pair of tissues comparison we extracted P values of exons in one tissue (e.g. skin) 
from significantly age associated exons in other tissue (e.g. fat). The P values distributions 
were used to assess the enrichment of age associated exons in other tissues. Analysis were 
performed in largeQvalue [52], an implementation of the R statistical software qvalue 
package  [53], for large datasets.   
 
Number of genes expressed with age 
Raw FPKM read counts were used to identify the number of genes expressed per 
individuals. A gene was considered expressed with FPKM read counts > 0.2. The numbers of 
expressed genes were rank normalized and used to assess the age effect on number of 
genes expressed. A linear mixed model with number of genes expressed per samples as 
response variable was used to assess the association between number of exons expressed 
and age. Confounding factors in all models included the same fixed and random effects as 
used before. P values were calculated from the Chi-square distribution as before.  
 
Age effect on variance of gene expression 
Residuals removing from technical covariates and family structure were used to assess the 
association for variance and age per tissue. Residuals were extracted from a linear mixed 
model fitted with the lmer function in the lme4 package [51] using R. Confounding factors in 
all models included fixed and random effects as detailed above. The residuals were fit on a 
loess function including age as response variable. Residuals from the loess regression were 
squared root to give a measure of the distance from the mean expression with age. A 
Spearman correlation test between this 'distance' and the age was used to asses evidences 
for an age effect on variance. Multiple testing corrections were performed as described for 
the expression association with age with 100 permutations.   
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Age effect on discordance of gene expression 
Residuals from expression after removing only technical covariates were used to assess the 
change in discordance of gene expression with age per tissue from complete MZ pairs of 
twins (Additional Table S1). Association with age was assessed by regressing the maximum 
expression of each twin pair on the expression of the sibling plus age to detect whether the 
relationship between maximum and minimum expression was conditional on age. Multiple 
testing was assess using 100 permutations and as described for the expression association.  
 
Fat methylation analysis 
Methylation data were downloaded from ArrayExpress, accession number E-MTAB-1866. 
The authors used Infinium HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA) to 
measure DNA methylation in 648 female twins. Further details of experimental approaches 
can be found here [54]. Since that publication we adopted a different QC procedure (BMIQ) 
[55] that identifies low quality samples and corrects the technical issues caused by the two 
Illumina probe types. Therefore, the number of samples after the new quality assessment 
was 552, of which 516 also had fat expression measured with RNA-seq. The methylation 
data was also background corrected. DNA methylation probes that mapped incorrectly or to 
multiple locations in the reference sequence were removed. Probes with >1% subjects with 
detection P-value > 0.05 were also removed. Subjects with more than 5% missing probes 
were also removed. All probes with non-missing values were included.  

Differential methylation with age was investigated for probes around the 50,000 bp from 
the TSS of genes included in the age analysis, which give us a total of 370,731 probes tested 
from a total of 541,369 CpGs probes on the 450K array. A linear mixed model was fitted to 
examine age effect on gene expression as in previous analysis. Confounding factors in the 
models included fixed (beadchip, BS conversion efficiency and BS-treated DNA input) and 
random effects (family relationship and zygosity). Multiple testing was assessed using 100 
permutations. Methylation expression association was tested using expression residuals 
after removing technical covariates and family structure using a linear model in R with. 100 
permutations were used to correct for multiple testing.  
 
Effect sizes and heritability analysis.  
We calculated effect size of age in expression and methylation from the normalized data 
and as a proportion of variance attributed to age over the total variance in exon expression. 
We also calculated the variance attributed to additive genetic effects, common environment 
and unique environment. Variance components were calculated from a linear mixed model, 
as previously described in [42], and [56] using all available complete twin pairs per tissue 
(Additional Table S1). The model was fitted as described above. 
 
Genotype-by-age and methylation-by-age interactions 
Expression residuals removing from technical covariates and family structure were used to 
assess the association of exons and genetics variance interacting with age. To identify 
genotype-by-age interactions affecting gene expression we performed a linear regression of 
the residuals of each exon on the SNPs in a 1Mb window around the transcription start site 
for each gene, using a linear model in R. Only SNPs with MAF >= 0.05 were tested. We used 
10 permutations to assess the significance of the interactions for exons with age-related 
effects, namely mean expression changes, variance changes and discordant effects. We 
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used a similar strategy as used by [57] and based on [58]. A linear model with main effects 
but without an interaction term was used to extract residuals for each exon-SNP association 
test. The residuals were permuted (10 times) and used in a linear association with a model 
for the interacting term (gxa). P values from this analysis were stored and used to adjusted P 
values correcting for the number of exons per genes, as described before.  
 
Methylation-by-age interaction analysis used expression and methylation residuals after 
removal of technical covariates and accounting for family structure. A linear model was used 
to test the association between expression and methylation levels with age. Significant 
associations were considered those with a P value < 1.0e-4 (Bonferroni correction).  
 
Code 
Additional File 15 contains code use for the analysis presented in this manuscript.  
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Age-dependent changes in mean and variance of gene expression across tissues in a twin 
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Additional Figure S1 | Top: Venn Diagrams per tissue comparing differentially expressed 
genes in array expriments (Glass et al, 2012) and gene swith at least an exon differentially 
expressed with age from RNA-seq data.  Bottom: we compared the direction of effect of 
significantly affected genes with age in both technologies in skin tissue and fat tissues. The 
plot shows how RNAseq data replicates the same direction of effect for age in the majority 
of the significant genes in both technologies, which should be expected as they relate to 
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quantifications of the same underlying phenotype in the same samples. For the very few 
genes with opposite effects, alternative splicing may explain the differences. 
 
 
 
 

 
 
Additional Figure S2 | On the left, histograms with the frequency of number of genes 
expressed per sample in each tissue. On the right, we show the linear association between 
the number of expressed genes in each tissue (FPKM > 0.2) and age. Only the number of 
genes expressed was significantly associated with age in fat tissue (P value = 0.0026).  
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Additional Figure S3| Examples for significant effect of age in variance of exon expression in 
skin. For this plot, individuals were grouped by ages, as indicated on the x-axis, with their 
expression values for the genes centered by the median expression, showing a decrease 
(top and bottom left plots) and an increased (bottom right) in variance with age. 
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Additional Figure S4 | Barplots showing the difference in expression between MZ twins 
younger than 55 years old and older than 65 years old for genes with a significant decrease 
(top plots) and increase (bottom plots) in variance.  
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Additional Figure S5 | Venn diagram showing the overlap in genes with at least one exon 
affected by changes in the mean (DE genes), variance and differences between MZ twins 
(discordance) in each tissue.  
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Additional Figure S6 | Interacting effects of aging on gene expression: All the graphs show 
a genotype-by-age expression quantitative trait locus (gxa-eQTL) in skin tissue affecting the 
expression of three genes.  
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Additional Figure S7 | CpGs islands associated to expression around the TSS of the genes. A) 
Histogram showing the frequency of methylation markers based on the amount of variance 
explained in expression by methylation levels of nearby CpGs. The proportion of hyper- and 
hypomethylated  CpGs associated to expression levels is near to 50%, with more stronger 
effects observed for hypomethylated CpGs associated to expression. B) Boxplots showing 
the genomic position of CpGs associated with expression. C) Barplots showing the 
percentage of CpGs associated to expression located in shores, open seas and CpG-Island 
regions. D) Histogram showing the distance of the methylation markers from the TSS of the 
genes they are associated to. In general, we observed a slightly larger number of 
methylation marker associated to expression in the promotor and coding region of the 
genes.  
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Supp Figure S8 | Genes commonly affected by age in the three primary tissues: skin, fat and 
whole blood. The graph shows the residuals from a linear mixed model removing technical 
covariates and family structure. The red lines are linear models fitted with the residuals 
association with age, indicating therefore the direction of effect of age in the expression of 
the exons plotted.  
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Additional Figure 9 | Median proportion of variance explained by age (left) and genetics 
(right) in all tested genes (All genes), differentially expressed genes with age (diff. 
expressed), genes changing variance with age (Variance) and genes discordant in MZ twins 
with age (Discordant). In general, the amount of variance explained by age and heritability 
in genes significantly affected by age in different ways is larger than in the median of the 
whole genome. The exception applies to those groups of genes with very little number of 
genes, like discordance genes in fat with 1 gene. The complete variance decomposition 
analysis is shown in table S3.  
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Tables 

Additional Table S1 | Number of monozyigous (MZ), dizygous (DZ) and unrelated individuals 
(individuals with no relatives in the dataset) included in the final analysis per tissue are 
described on the following.  

 Fat Skin LCLs 
Whole 
Blood 

Samples 766 716 814 384 

MZ pairs 131 114 137 69 

DZ pairs 187 173 217 91 

Unrelated 130 142 106 64 

 
 
 
Additional Table S2 | Number of exons and genes significantly associated with age in all 
tissues. The numbers of those genes that are protein coding genes and LincRNAs are also 
indicated. The last three rows show the average number of exons per significant gene, 
number of genes with only exons significantly associated with age and number of genes 
with all the exons significantly associated with age, respectively. The percentage of the age 
associated genes are show under each number.  
 
 

 
 
 
 
 
 

 Fat Skin 
Whole 
Blood 

LCLs 

Exons 1,511 11,695 688 7 

Protein coding 1,451 11,528 680 7 

LincRNA 60 167 8 0 

Genes 905 4,307 451 7 

Mean sign. exons per gene 1.67 2.71 1.52 1 

Genes with 1 sign. exon 
685 

(75.69%) 
2,333  

(54.16 %) 
347 

(76.94%) 
7   

 (100%) 

Genes with all exons sig. 
366 

(40.44%) 
904 

(20.98%) 
148 

(32.81%) 
2 

(28.57%) 
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Additional Table S3 | Total number of exons and genes sequenced per tissue, as well as the 
total number of exons, genes used in the analysis here presented. We use genes defined as 
protein coding in the GENCODE v10 annotation removing genes with more than 10% zero 
read count in each tissue. For the analysis presented in this paper, only exons from protein 
coding genes and LincRNAs from verified loci (level 1) and manually annotated (level 2) were 
investigated.  
 
 

 Fat Skin LCLs 
Whole 
Blood 

Exons 118,643 114,376 116,528 85,811 

Genes 19,111 19,900 18,230 16,148 

Tested exons 101,133 96,736 98,372 71,393 

Tested Genes 13,493 14,240 12,098 11,433 

Mean exons per 
gene 

7.49 6.79 8.13 6.24 

 
 
 
 
 
Additional Table S4 | Total number of links identify per tissue, as well as the total number 
of links per gene detected is shown in the following table. Those link belong to genes 
included in table 3. 
 

 Fat Skin LCLs 
Whole 
Blood 

Links 221,057 179,012 259,903 184,105 

Genes 4,572 4,289 5,502 5,185 

Tested links 179,675 146,908 227,594 86,777 

Tested Genes 3,876 3,557 4,673 1,590 
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Exon GeneName Chr Strand TSS 
P value 

Fat 
Beta Age 

Fat 
P value 

Skin 
Beta Age 

Skin 
P value 
Blood 

Beta Age 
Blood 

ENSG00000113448.11_58264865_58270907 PDE4D chr5 - 59284544 2.15E-07 0.02078 0.00103 0.00966 0.00074 -0.01471 

ENSG00000132846.5_76367897_76373720 ZBED3 chr5 - 76375207 2.49E-05 0.01769 3.22E-09 -0.02289 0.00166 -0.01710 

ENSG00000169047.4_227659705_227664475 IRS1 chr2 - 227657101 1.09E-05 -0.01876 0.00015 -0.01187 0.00176 -0.01918 

ENSG00000178860.8_72753784_72754982 MSC chr8 - 72754982 0.00113 0.01467 1.59E-08 -0.02374 0.00018 0.02339 

ENSG00000203797.4_110712974_110714545 DDO chr6 - 110713980 1.54E-08 0.02357 3.72E-08 -0.02299 0.00165 0.01926 

 
Additional Table S5 |List of significant exons differentially expressed with age in all tissues.  
 

 Fat Skin Blood LCLs 

 All DE Variance Discordance All Age Variance Discordance All Age Variance Discordance All Age Variance Discordance 

Age 0.0012 0.0287 0.0601 0.0263 0.0026 0.0224 0.0822 0.0658 0.0039 0.0542 0.0035 0.0225 0.0006 0.0366 0.0030 0.0018 

Genetics 0.0809 0.2228 8.9e-14 0.2649 0.0856 0.1275 0.3513 0.2380 0.1301 0.2333 0.2037 0.1560 0.1089 0.2032 0.1070 0.0901 

Commo Env. 0.0236 0.0573 0.172 -0.1066 0.0000 0.0162 -0.1017 -0.066 0.0380 0.0341 0.0716 0.0293 0.0971 0.1312 0.1966 0.0599 

Unique Env. 0.8550 0.6655 0.690 0.8094 0.8566 0.7662 0.6778 0.7512 0.7403 0.6214 0.6055 0.7179 0.7320 0.6214 0.6224 0.7644 

N. of exons 101,133 1,511 3 1 96,736 11,695 239 40 71,393 688 13 5 98,372 7 3 2 

 
 
Additional Table S6 | Summary of mean proportion of variance attributed to age, genetics, common environment and unique environment, 
for exons affected by age in their variance (Variance) and exons discordant for expression with age (Discordant). The last row indicates the 
number of exons significant for each category (corrected Pvalue < 0.05).    
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