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Abstract 27 

Integrating costs and benefits is crucial for optimal decision-making. While much is 28 

known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices 29 

are attached to actions and require an evaluation of the associated motor costs. Yet how the brain 30 

incorporates motor costs into choices remains largely unclear. We used human functional 31 

magnetic resonance imaging during choices involving monetary reward and physical effort to 32 

identify brain regions that serve as a choice comparator for effort-reward trade-offs. By 33 

independently varying both options’ effort and reward levels, we were able to identify the neural 34 

signature of a comparator mechanism. A network involving supplementary motor area (SMA) 35 

and the caudal portion of dorsal anterior cingulate cortex (dACC) encoded the difference in 36 

reward (positively) and effort levels (negatively) between chosen and unchosen choice options. 37 

We next modelled effort-discounted subjective values using a novel behavioural model. This 38 

revealed that the same network of regions involving dACC and SMA encoded the difference 39 

between the chosen and unchosen options’ subjective values, and that activity was best described 40 

using a concave model of effort-discounting. In addition, this signal reflected how precisely value 41 

determined participants’ choices. By contrast, separate signals in SMA and ventro-medial PFC 42 

(vmPFC) correlated with participants’ tendency to avoid effort and seek reward, respectively. 43 

This suggests that the critical neural signature of decision-making for choices involving motor 44 

costs is found in human cingulate cortex and not vmPFC as typically reported for outcome-based 45 

choice. Furthermore, distinct frontal circuits ‘drive’ behaviour towards reward-maximization and 46 

effort-minimization. 47 
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Significance Statement 48 

The neural processes that govern the trade-off between expected benefits and motor costs 49 

remain largely unknown. This is striking because energetic requirements play an integral role in 50 

our day-to-day choices and instrumental behaviour, and a diminished willingness to exert effort is 51 

a characteristic feature of a range of neurological disorders. We use a new behavioural 52 

characterization of how humans trade-off reward-maximization with effort-minimization to 53 

examine the neural signatures that underpin such choices, using BOLD MRI neuroimaging data. 54 

We find the critical neural signature of decision-making, a signal that reflects the comparison of 55 

value between choice options, in human cingulate cortex, whereas two distinct brain circuits 56 

‘drive’ behaviour towards reward-maximization or effort-minimization. 57 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 15, 2016. ; https://doi.org/10.1101/064105doi: bioRxiv preprint 

http://www.jneurosci.org/site/misc/ifa_organization.xhtml#Significance
https://doi.org/10.1101/064105
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Introduction 58 

Cost-benefit decisions are a central aspect of flexible goal-directed behaviour. One 59 

particularly well-studied neural system concerns choices where costs are tied to the reward 60 

outcomes (e.g., risk, delay; Kable and Glimcher, 2007; Boorman et al., 2009; Philiastides et al., 61 

2010). Much less is known about choices tied to physical effort costs, despite their ubiquitous 62 

presence in human and animal behaviour. The intrinsic relationship between effort and action 63 

may engage neural circuits distinct from those involved in other value-based choice 64 

computations. 65 

There is growing consensus that different types of value-guided decisions are 66 

underpinned by distinct neural systems, depending on the type of information that needs to be 67 

processed (e.g., Rudebeck et al., 2008; Camille et al., 2011b; Kennerley et al., 2011; Pastor-68 

Bernier and Cisek, 2011; Rushworth et al., 2012). For example, activity in the ventro-medial 69 

prefrontal cortex (vmPFC) carries a signature of choice comparison (chosen-unchosen value) for 70 

decisions between abstract goods or when costs are tied to the outcome (Kable and Glimcher, 71 

2007; Boorman et al., 2009; Fitzgerald et al., 2009; Philiastides et al., 2010; Hunt et al., 2012; 72 

Kolling et al., 2012; Clithero and Rangel, 2014; Strait et al., 2014). By contrast, such value 73 

difference signals are found more dorsally in medial frontal cortex when deciding between 74 

exploration versus exploitation (Kolling et al., 2012). 75 

Choices requiring the evaluation of physical effort rest on representations of the required 76 

actions and their energetic costs, and thus likely require an evaluation of the internal state of the 77 

agent. This is distinct from choices based solely on reward outcomes (Rangel and Hare, 2010). 78 

Indeed, the proposed network for evaluating motor costs comprises brain regions involved in 79 

action planning and execution, including the cingulate cortex, putamen, and supplementary motor 80 
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area (SMA) (Croxson et al., 2009; Kurniawan et al., 2010; Prévost et al., 2010; Kurniawan et al., 81 

2013; Burke et al., 2013; Bonnelle et al., 2016). Neurons in anterior cingulate cortex (ACC) 82 

encode information about rewards, effort costs, and actions (Matsumoto et al., 2003; Kennerley 83 

and Wallis, 2009; Luk and Wallis, 2009; Hayden and Platt, 2010), and integrate this information 84 

into an economic value signal (Hillman and Bilkey, 2010; Hosokawa et al., 2013). Moreover, 85 

lesions to ACC profoundly impair choices of effortful options and between action values (Walton 86 

et al., 2003, 2006, 2009; Schweimer and Hauber, 2005; Kennerley et al., 2006; Rudebeck et al., 87 

2006, 2008; Camille et al., 2011b). 88 

While these studies highlight the importance of motor-related structures in representing 89 

effort information, it remains unclear whether computations in these regions are indeed related to 90 

comparing effort values (or effort-discounted net values) – the essential neural signature which 91 

would implicate these areas in decision making. Indeed, these regions could simply represent 92 

effort which is then passed onto other regions for value comparison processes. A number of 93 

questions thus arise. First, is information about reward and effort compared in separate neural 94 

structures, or is this information fed to a region that compares options based on their integrated 95 

value? Second, do regions that preferably encode reward or effort have a direct influence on 96 

determining choice? Finally, assuming separate neural systems are present for influencing 97 

choices based on reward versus effort, how does the brain arbitrate between these signals when 98 

reward and effort information support opposing choices? 99 

Here we employed a task designed to identify signatures of a choice comparison for 100 

effort-based decisions in humans using fMRI, and to test whether different neural circuits ‘drive’ 101 

choices towards reward-maximization versus energy-minimization. We show that the neural 102 

substrates of effort-based choice are distinct from those computing outcome-related choices: 103 

well-known reward and effort circuits centred on vmPFC and SMA bias choices to be more 104 
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driven by benefits or motor costs, respectively, with a region in cingulate cortex integrating cost 105 

and benefit information and comparing options based on these integrated subjective values.  106 
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Materials and methods 107 

Participants 108 

24 participants with no history of psychiatric or neurological disease, and with normal or 109 

corrected-to-normal vision took part in this study (mean age 28±1, age range 19-38, 11 females). 110 

All participants gave written informed consent and consent to publish prior to the start of the 111 

experiment; the study was approved by the local research ethics committee at University College 112 

London (UCL; 1825/003) and conducted in accordance with the declaration of Helsinki. 113 

Participants were reimbursed with £15 for their time and in addition they accumulated average 114 

winnings of £7.16±0.11 during each of the two blocks of the task (the maximum winnings per 115 

block were scaled to £8; the resulting average total pay was £29.32). Three participants were 116 

excluded from the analysis, one for failing to stay awake during scanning, and two due to 117 

excessive head movements (summed movement in any direction and run >40mm). All analyses 118 

were performed on the remaining 21 participants. 119 

Behavioural task 120 

Participants received both written and oral task instructions. They were asked to make a 121 

series of choices between two options, which independently varied in required grip force 122 

(‘effort’) and reward magnitude (Figure 1A). The reward magnitude was shown as a number 123 

(range: 10-40 points; roughly corresponding to pence) and required force levels were indicated as 124 

the height of a horizontal bar (range: 20-80% of the participant’s maximum grip force).  125 

Each trial comprised an offer, response and outcome phase; a subset of 30% of trials also 126 

contained an effort production phase. During the ‘offer’ phase, participants decided which option 127 

to choose but they were not yet able to indicate their response. There were two trial types (50% 128 
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each): ‘ACT’ (action) and ‘ABS’ (abstract). In ACT trials, the two choice options were presented 129 

to the left and right of fixation, and thus in a horizontal or ‘action space’ configuration in which 130 

the side of presentation directly related to the hand with which to choose that option. In ABS 131 

trials, choice options were shown above and below fixation, and thus in a vertical or ‘goods 132 

space’ arrangement that did not reveal the required action. In both conditions, stimuli were 133 

presented close to the centre of the screen and participants did not need to move their eyes to 134 

inspect them. To maximally distinguish the hemodynamic response from the offer and response 135 

phase, the duration of the offer phase varied between 4-11s (Poisson distributed; mean 6s). 136 

The response phase started when the fixation cross turned red. In ACT trials, the 137 

arrangement of the two choice options remained the same; in ‘ABS’ trials, the two options at the 138 

top and bottom were switched to the left and right of fixation (with a 50/50% chance), thus 139 

revealing the required action mapping. Choices were indicated by a brief squeeze of a grip device 140 

(see below for details) on the corresponding side (maximum response time: 3s; required force 141 

level: 35% of maximum voluntary contraction; MVC). Note that ACT and ABS trials were 142 

merged for all analyses because no significant differences were found for the tests reported in this 143 

manuscript. 144 

On 70% of trials, no effort was required: as soon as participants indicated their choice, the 145 

unchosen option disappeared, and the message ‘no force’ was displayed for 500ms. The next trial 146 

commenced after a variable delay (ITI: 2-13s; Poisson distributed; mean: 5s). On the remaining 147 

30% of trials, a power grip of 12s was required (‘effort’). Again, the unchosen option disappeared 148 

but now a thermometer appeared centrally and displayed the target force level of the chosen 149 

option. Participants were given on-line visual feedback about the applied force level using 150 

changing fluid levels in the thermometer. On successful application of the required force for at 151 

least 80% of the 12s period, a green tick appeared (500ms; ‘outcome’ phase; delay preceding 152 

outcome: 0.5-1.5s uniform) and the reward magnitude of the chosen option was added to the total 153 
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winnings. Otherwise, the total winnings remained unchanged (red cross: 500ms). Because 154 

participants were almost always successful in applying the required force on effort trials 155 

(accuracy: 99.30±0.004%; only four participants made any mistakes), there was no confound 156 

between effort level and risk/reward expectation.  157 

The sensitivity of the grip device was manipulated between trials (‘high’ or ‘low’). A high 158 

gain meant that the grippers were twice as sensitive as for a low gain, and thus the same force 159 

deviation doubled the rate of change in the thermometer’s fluid level. While this manipulation 160 

was introduced to study interactions between mental and physical effort, none of our behavioural 161 

or fMRI analyses revealed any significant effects of gain during the choice phase, which is the 162 

focus of the present paper.  163 

To summarize, our task involved several important features: (a) as our aim was to 164 

specifically examine value comparison mechanisms during effort-based choice, we manipulated 165 

both options’ values and thus the expected values of the two offers had to be computed and 166 

compared on-line in each trial, unlike in previous experiments (Croxson et al., 2009; Kurniawan 167 

et al., 2010, 2013; Prévost et al., 2010; Burke et al., 2013; Bonnelle et al., 2016); (b) the decision 168 

process and the resulting motor response were separated in time (Figure 1A). This enabled us to 169 

examine the value comparison in the absence of – and not confounded with – processes related to 170 

action execution; (c) both reward and effort levels were varied parametrically rather than in 171 

discrete steps, and orthogonally to each other, thereby granting high sensitivity for the 172 

identification of effort and reward signals, respectively; (d) efforts were only realised on a subset 173 

of trials, ensuring that decisions were not influenced by fatigue (Klein-Flügge et al., 2015). 174 

Importantly, however, at the time of choice participants did not know whether a given trial was 175 

real or hypothetical and therefore the optimal strategy was to treat each trial as potentially real; 176 

(e) the duration of the grip on effort trials (12s) had been determined in pilot experiments and 177 
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ensured that force levels were factored into the choice process. Moreover, the fixed duration of 178 

grip force also meant that effort costs were not confounded with temporal costs.  179 

Scanning procedure 180 

Prior to scanning, force levels were adjusted to each individual’s grip strength using a 181 

grip calibration. Participants were seated in front of a computer monitor and held a custom-made 182 

grip device in both hands. Each participant’s baseline (no grip) and MVC were measured over a 183 

period of 3s, separately for both hands. The measured values were used to define individual force 184 

ranges (0-100%) for each hand, which were then used in the behavioural task, both pre-scanning 185 

and during scanning.  186 

Before entering the scanner, participants completed a training session consisting of one 187 

block of the behavioural task (112 trials, ~30 minutes). This gave them the opportunity to 188 

experience different force levels and to become familiar with the task. Importantly, it also 189 

ensured that decisions made subsequently in the scanner would not be influenced by uncertainty 190 

about the difficulty of the displayed force levels. In the scanner, participants completed two 191 

blocks of the task (overall task duration ~60 minutes; 224 choices). 192 

Generation of choice stimuli 193 

Because our main question related to the encoding of value difference signals during 194 

effort-based choices, the generation of suitable choice stimuli was a key part of the experimental 195 

design. Choice options were identical for every individual and were chosen such that they would 196 

minimise the correlation between the fMRI regressors for chosen and unchosen effort, reward 197 

magnitude and value (obtained mean correlations post-scanning: effort: -0.23; reward magnitude: 198 

0.11; value: 0.43; Figure 1C). We also ensured that left and right efforts, reward magnitudes and 199 
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values were decorrelated to be able to identify action value signals (effort: 0.28; reward 200 

magnitude: 0.05; value: 0.07). We simulated several individuals using a previously suggested 201 

value function for effort-based choice (Prévost et al., 2010). Stimuli were optimized with the 202 

following additional constraints: either the efforts or the reward magnitudes had to differ by at 203 

least 0.1 on each trial, the range of efforts and reward magnitudes was [0.2 to 0.8] x MVC or 0-50 204 

points, respectively, and the overall expected value for both hands was comparable. Furthermore, 205 

in 85% of trials the larger reward was paired with the larger effort level, and the smaller reward 206 

with the smaller effort level, making the choice hard, but on 15% of trials, the larger reward was 207 

associated with the smaller effort level (‘no-brainer’). The two choice sets that minimized the 208 

correlations between our regressors of interest were used for the fMRI experiment. A third 209 

stimulus set was saved for the behavioural training prior to scanning.  210 

Preliminary fMRI analyses revealed that we had overlooked a bias in our stimuli. In the 211 

last third of trials of the second block, the overall offer value ((magnitude1/effort1 + 212 

magnitude2/effort 2)/2) decreased steadily, leading to skewed contrast estimates. Therefore the 213 

last 40 trials were discarded from all analyses. 214 

Note that we refer to choices in this study as ‘effort-based’ to highlight the distinction 215 

from purely outcome/reward-based choices or choices involving other types of costs (e.g., delay-216 

based). But of course, in our task, all choices were effort- as well as reward-based.  217 

Recordings of grip strength 218 

The grippers were custom-made and consisted of two force transducers (FSG15N1A, 219 

Honeywell, NJ, USA) placed between two moulded plastic bars (see also Ward and Frackowiak, 220 

2003). A continuous recording of the differential voltage signal, proportional to the exerted force, 221 

was acquired, fed into a signal conditioner (CED 1902, Cambridge Electronic Design, 222 
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Cambridge, UK), digitized (CED 1401, Cambridge Electronic Design, Cambridge, UK) and fed 223 

into the computer running the stimulus presentation. This enabled us, during effort trials, to give 224 

online feedback about the exerted force using the thermometer display.  225 

Behavioural analysis 226 

To examine which task variables affected participants’ choice behaviour, a logistic 227 

regression was fitted to participants’ choices (1=RH, 0=LH) using the following nine regressors: 228 

a RH-LH bias (constant term); condition (ABS or ACT); gain (high or low); LH-effort on 229 

previous trial; RH-effort on previous trial; reward magnitude left; reward magnitude right; effort 230 

left; effort right. T-tests performed across participants on the obtained regression coefficients 231 

were adjusted for multiple comparisons using Bonferroni correction. Since only reward 232 

magnitudes and efforts influenced behaviour significantly (see Results), the logistic regression 233 

models performed for the analysis of the neural data below (equations (2) and (3)) only contained 234 

these variables (or their amalgamation into combined value).  235 

To examine the influence of reward and effort on participants’ choice behaviour in more 236 

depth, we tested whether participants indeed weighed up effort against reward, and whether they 237 

treated reward and effort as continuous variables. If reward and effort compete for their influence 238 

on choice, then the influence of effort should become larger as the reward difference becomes 239 

smaller, and vice versa. Thus, we performed a median split of our trials according to the absolute 240 

difference in reward (or effort) between the two choice options. We then calculated the likelihood 241 

of choosing an option as a function of its effort (reward) level, separately for the two sets of trials. 242 

Effort (reward) values were distributed across ten bins with equal spacing; this binning was 243 

independent of the effort (reward) level of the alternative option. For statistical comparisons, we 244 

fitted a slope for each participant to the mean of all bins. T-tests were performed on the resulting 245 

four slopes testing for the influence of (a) effort in trials with small reward difference, (b) effort 246 
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in trials with large reward difference, (c) reward in trials with small effort difference, and (d) 247 

reward in trials with large effort difference. We report uncorrected p-values but all conclusions 248 

hold when correcting for six comparisons (a-d against zero; a versus b; c versus d). 249 

We also tested for effects of fatigue: the above logistic regression suggested that choices 250 

were not affected by whether or not the previous trial required the production of effort, as shown 251 

previously in this task (Klein-Flügge et al., 2015). More detailed analyses examined the 252 

percentage of trials in which the higher effort option was chosen (running average across 20 253 

trials), and participants’ performance in reaching and maintaining the required force. The latter 254 

was measured as the time point when 10 consecutive samples were above force criterion (the 255 

shorter, the sooner), and as the percentage of time out of 12s that participants were at criterion, 256 

respectively. For all measures, we compared the first and last third of trials. Here we report the 257 

comparison between the first and last third across the entire experiment. However, separate 258 

analyses – using the first and last third of just the first or the second block – revealed identical 259 

results. There were no effects of fatigue: in all cases participants either improved or stayed 260 

unchanged (% higher effort chosen: first third 60.56%±1.94; last third 60.93%±2.79, p=0.69, 261 

t20=-0.40; reaching the force threshold: first third 0.83s±0.04; last third 0.76s±0.03; p=0.01, 262 

t20=2.82; maintaining the force above threshold: first third 92.49%±0.47; last third 93.51%±0.28; 263 

p=0.01, t20=-2.84). 264 

To derive participants’ subjective values for the offers presented on each trial, we 265 

developed an effort discounting model (Klein-Flügge et al., 2015). This model has been shown to 266 

provide better fits than the hyperbolic model previously suggested for effort discounting (Prévost 267 

et al., 2010) both here and in our previously published work (Klein-Flügge et al., 2015). 268 

Crucially, its shape is initially concave, unlike a hyperbolic function, allowing for smaller 269 

devaluations of value for effort increases at weak force levels, and steeper devaluations at higher 270 
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force levels, which is intuitive for effort discounting and biologically plausible. Our model 271 

follows the following form: 272 

 

( )

1 1 1
1 1

1 1k C p kp kp
V M

e e e 

   
      

    
 (1)  

V is subjective value, C is the effort cost, M the reward magnitude, and k and p are free 273 

parameters. C and M are scaled between 0 and 1, corresponding to 0% MVC and 100% MVC, 274 

and 0 points and 50 points, respectively. A simple logistic regression on the difference in 275 

subjective values between choice options was then used to fit participants’ choices; in other 276 

words, the following function (‘softmax rule’) was used to transform the subjective values V1 and 277 

V2 of the two options offered on each trial into the probability of choosing option 1. 278 

    1 2

1
1

1
V V V

P choice
e

 



 (2)  

The free parameters (slope k, turning point p, softmax precision parameter βV), were fitted 279 

using the Variational Laplace algorithm (Penny et al., 2003; Friston et al., 2007). This is a 280 

Bayesian estimation method which incorporates Gaussian priors over model parameters and uses 281 

a Gaussian approximation to the posterior density. The parameters of the posterior are iteratively 282 

updated using an adaptive step size, gradient ascent approach. Importantly, the algorithm also 283 

provides the free energy F, which is an approximation to the model evidence. The model 284 

evidence is the probability of obtaining the observed choice data, given the model. To maximize 285 

our chances to find global, rather than local maxima with this gradient ascent algorithm, 286 

parameter estimation was repeated over a grid of initialization values, with eight initializations 287 

per parameter. The optimal set of parameters, i.e., that obtained from the initialization that 288 

resulted in the maximal free energy, was used for modelling subjective values in the fMRI data. 289 
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For our BOLD analyses, the only relevant parameter was βV. It reflects the weight (i.e., strength) 290 

with which participants’ choices are driven by subjective value, rather than noise; it is also often 291 

referred to as precision or inverse softmax temperature. Fitting ACT and ABS, or high and low 292 

gain trials separately did not lead to any significant differences between conditions (paired t-tests 293 

on parameter estimates between conditions all p>0.3), and did not improve the model evidence 294 

(paired t-test on the model evidence; fitting conditions separately or not: p=0.82; fitting gain 295 

separately or not: p=0.63). Trials were therefore pooled for model fitting. Once fitted, the 296 

performance of our new model was compared to that of the hyperbolic model and two parameter-297 

free models (difference: reward-effort; quotient: reward/effort) as described in (Klein-Flügge et 298 

al., 2015) using a formal model comparison. 299 

FMRI data acquisition and pre-processing  300 

The fMRI methods followed standard procedures (e.g., Klein-Flügge et al., 2013): T2*-301 

weighted echo-planar images (EPI) with blood oxygenation level-dependent (BOLD) contrast 302 

were acquired using a 12-channel head coil on a 3Tesla Trio MRI scanner (Siemens, Erlangen, 303 

Germany). A special sequence was used to minimise signal drop out in the OFC region 304 

(Weiskopf et al., 2006) and included an echo time (TE) of 30ms, a tilt of 30o relative to the 305 

rostro-caudal axis and a local z-shim with a moment of -0.4 mT/m ms applied to the OFC region. 306 

To achieve whole-brain coverage, we used 45 transverse slices of 2mm thickness, with an inter-307 

slice gap of 1mm and in-plane resolution of 3x3 mm, and collected slices in an ascending order. 308 

This led to a repetition time (TR) of 3.15 seconds. In each session, a maximum of 630 volumes 309 

were collected (~33 minutes) and the first five volumes of each block were discarded to allow for 310 

T1 equilibration effects. A single T1-weighted structural image with 1mm3 voxel resolution was 311 

acquired and co-registered with the EPI images to permit anatomical localisation. A fieldmap 312 

with dual echo-time images (TE1= 10ms, TE2 = 14.76ms, whole brain coverage, voxel size 313 
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3x3x3 mm) was obtained for each subject to allow for corrections in geometric distortions 314 

induced in the EPIs at high field strength (Andersson et al., 2001).  315 

During the EPI acquisition, we also obtained several physiological measures. The cardiac 316 

pulse was recorded using an MRI-compatible pulse oximeter (Model 8600 F0, Nonin Medical, 317 

Inc. Plymouth, MN, USA), and thoracic movement was monitored using a custom-made 318 

pneumatic belt positioned around the abdomen. The pneumatic pressure changes were converted 319 

into an analogue voltage using a pressure transducer (Honeywell International Inc. Morristown, 320 

NJ, USAir) before digitization, as reported in (Hutton et al., 2011).  321 

Pre-processing and statistical analyses were carried out using SPM8 (Wellcome Trust 322 

Centre for Neuroimaging, London, UK, www.fil.ion.ucl.ac.uk/spm). Image pre-processing 323 

consisted of realignment of images to the first volume, distortion correction using fieldmaps, slice 324 

time correction, conservative independent component analysis to identify and remove obvious 325 

artefacts (using MELODIC in Fmrib’s Software Library, http://fsl.fmrib.ox.ac.uk/), co-326 

registration with the structural scan, normalisation to a standard MNI template, and smoothing 327 

using an 8mm full-width at half maximum Gaussian kernel.  328 

Data analysis – General Linear Model 329 

The first general linear model (GLM1) included twelve main event regressors. The offer 330 

phase was described using onsets for (i) ACT trials preparing a left response; (ii) ACT trials 331 

preparing a right response; and (iii) ABS trials. All three events were modelled using durations of 332 

2s and were each associated with four parametric modulators: the reward magnitude and effort of 333 

the chosen and unchosen option. Crucially, these four parametric modulators competed to explain 334 

common variance during the estimation, rather than being serially orthogonalised (in other words, 335 

we implicitly tested for effects that were unique to each parametric explanatory variable). The 336 
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response phase was described using four regressors for ‘no force’ trials (1s duration) and four 337 

regressors for effort production trials (12s duration): (iv-vii) no force ACTleft, ACTright, ABSleft, 338 

ABSright; (viii-xi) effort production left (low gain), left (high gain), right (low gain), right (high 339 

gain). Finally, the outcome was modelled as a single regressor because the proportion of trials in 340 

which efforts were not produced successfully was negligible (median: 0; mean: 0.43 ± 0.22 trials; 341 

only 4 of 21 participants had any unsuccessful trials). 342 

In addition to event regressors, a total of 23 nuisance regressors were included to control 343 

for motion and physiological effects of no interest. First, to account for motion-related artefacts 344 

that had not been eliminated in rigid-body motion correction, the six motion regressors obtained 345 

during realignment were included. Second, to remove variance accounted for by cardiac and 346 

respiratory responses, a physiological noise model was constructed using an in-house Matlab 347 

toolbox (Hutton et al., 2011). Models for cardiac and respiratory phase and their aliased 348 

harmonics were based on RETROICOR (Glover et al., 2000). The model for changes in 349 

respiratory volume was based on (Birn et al., 2006). This resulted in 17 physiological regressors 350 

in total: ten for cardiac phase, six for respiratory phase, and one for respiratory volume.  351 

The parameters of the hemodynamic response function (HRF) were modified to obtain a 352 

double-gamma HRF, with the standard settings in Fmrib’s Software Library 353 

(http://fsl.fmrib.ox.ac.uk/): delay to response 6, delay to undershoot: 16, dispersion of response: 354 

2.5; dispersion of undershoot: 4; ratio of response to undershoot: 6, length of kernel: 32 (all in 355 

seconds).  356 

The second GLM (GLM2) was identical to the first, except that the four parametric 357 

regressors (reward magnitude and effort of the chosen and unchosen option) were replaced by the 358 

subjective model-derived values of the chosen and unchosen option. This allowed us to identify 359 

regions encoding the difference in subjective value between the offers. 360 
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Three further GLMs were fitted to the data to test whether the values derived from the 361 

sigmoidal model provide the best explanation of the measured BOLD signals. These GLMs were 362 

identical to GLM2 except that the parametric regressors for the values of the chosen and 363 

unchosen option derived from the sigmoidal model were replaced by either (a) the values derived 364 

from a hyperbolic model (GLM3), (b) the values derived from a parameter-free difference 365 

‘reward-effort’ (GLM4), or (c) the values derived from a parameter-free quotient ‘reward/effort’ 366 

(GLM5). 367 

Identifying signatures of choice computation 368 

Our first aim was to identify brain regions with BOLD signatures of choice computation 369 

(Figure 2A). Thus, we first identified brain regions that fulfilled the following two criteria 370 

(GLM1): (a) the BOLD signal correlated negatively with the difference in effort between chosen 371 

and unchosen options, and (b) the BOLD signal correlated positively with the difference in 372 

reward magnitude between chosen and unchosen options. Collectively, these two signals form the 373 

basis of a value difference signal because effort contributes negatively and reward magnitude 374 

contributes positively to overall value. Previous work has demonstrated, using predictions derived 375 

from a biophysical cortical attractor network, that at the level of large neural populations, as 376 

measured using human neuroimaging techniques such as fMRI or MEG, the characteristic 377 

signature of a choice comparison process is a value difference signal (Hunt et al., 2012). The 378 

responses predicted for harder and easier choices differ because the speed of the network 379 

computations varies as a function of choice difficulty (e.g., faster for high value difference). 380 

Thus, an area at the formal conjunction of the two contrasts described by (a) and (b) would carry 381 

the relevant signatures for computing a subjective value difference signal, a cardinal requirement 382 

for guiding choice. Importantly, while we reasoned that the choice computations in our specific 383 

task should follow similar principles as in Hunt et al. (2012), we expected this computation to 384 

occur in different regions because it would be based on the integration of a different type of 385 
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decision cost. In an additional analysis (Figure 5), for completeness, we also identified brain 386 

regions significant in the inverse contrast, i.e., a conjunction of positive effort and negative 387 

reward magnitude difference (Wunderlich et al., 2009; Hare et al., 2011).  388 

Regions of Interest and extraction of time courses 389 

For whole-brain analyses we used a FWE cluster-corrected threshold of p<0.05 (using a 390 

cluster-defining threshold of p<0.01 and a cluster threshold of 10 voxels). For a priori region of 391 

interest (ROI) analyses we used a small-volume corrected FWE cluster-level threshold of p<0.05 392 

in spheres of 5mm around previous coordinates, namely in left and right putamen ([±26, -8, -2] 393 

(Croxson et al., 2009)), SMA ([4 -6 58], (Croxson et al., 2009)) and vmPFC ([-6, 48, -8] 394 

(Boorman et al., 2009)).  395 

BOLD time series were extracted from the pre-processed data of the identified regions by 396 

averaging the time series of all voxels that were significant at p<0.001 (uncorrected). Time series 397 

were up-sampled with a resolution of 315ms (1/10*TR) and split into trials for visual illustration 398 

of the described effects (e.g., Figure 2B).  399 

At the suggestion of one reviewer, the two main analyses (conjunction of reward and 400 

inverse effort difference described above, and value difference contrast described below) were 401 

repeated in FSL using Flame1 because of differences between SPM and FSL in controlling for 402 

false positives when using cluster-level corrections (Eklund et al., 2015). For this control 403 

analysis, we imported the pre-processed (unsmoothed) images to FSL. We then used FSL’s 404 

default smoothing kernel of 5mm and a cluster-forming threshold of z>2.3 (corresponding to 405 

p<0.01; default in FSL). The obtained results are overlaid in Figure 2A and 2D. 406 

Encoding of subjective value 407 
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We next asked whether BOLD signal changes in the regions identified using the 408 

abovementioned conjunction could indeed be described by the subjective values derived from our 409 

custom-made behavioural model. We thus performed a whole-brain contrast identifying regions 410 

encoding the difference in subjective value between the chosen and unchosen option (GLM2; 411 

Figure 2D). To test whether the BOLD signal was better explained by subjective value as 412 

modelled using the sigmoidal function or three alternative models (hyperbolic; ‘difference’: 413 

reward-effort; ‘quotient’: reward/effort; GLM3-GLM5; Figure 3B), we calculated the difference 414 

between the value difference maps obtained on the first level for each participant (sigmoid vs 415 

hyperbolic; sigmoid vs difference; sigmoid vs quotient; Figure 3C). A standard second-level t-416 

test was performed on the three resulting difference images and statistical significance evaluated 417 

as usual.  418 

Relating neural and behavioural effects of value difference 419 

 If it was indeed the case that the regions identified to encode value difference are 420 

involved in choice computation and as a result, inform behaviour, the BOLD value signal should 421 

systematically relate to behavioural measures of choice performance (Jocham et al., 2012; 422 

Kolling et al., 2012). To test this, we used the behavioural measure of the effect of value 423 

difference, βV, as derived from the logistic regression analysis above (equation (2)). Importantly, 424 

before fitting βV, model-derived subjective values were scaled between [0,1] for all participants 425 

so that any difference in the fitted regression coefficient βV indicated how strongly value 426 

difference influenced behavioural choices in a given participant. βV reflects how consistently 427 

participants choose the subjectively more valuable option. In other words, this parameter captures 428 

how strongly value rather than noise determines choice behaviour. To examine whether the size 429 

of the neural value difference signal carried behavioural relevance, the behavioural weights βV 430 

were then used as a covariate for the value difference contrast in a second level group analysis. At 431 

the whole-brain level we thus identified regions where the encoding of value difference was 432 
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significantly modulated by how strongly participants’ choices were driven by subjective value 433 

(Figure 2F). This analysis was restricted to the regions that encoded value difference at the first 434 

level. For illustration of the effect, the neural signature of value difference (regression 435 

coefficients for chosen versus unchosen value at the peak time of 6s) was plotted against βV 436 

(Figure 2F). 437 

Reward maximization versus effort minimization 438 

In our task, reward maximization is in conflict with effort minimization in almost all trials 439 

because the option that has a higher reward value is also associated with a higher effort level. To 440 

capture the separate behavioural influences of reward and effort for each participant, another 441 

logistic regression analysis was conducted, but now both the difference in offer magnitudes and 442 

in efforts were entered into the design matrix, rather than just their combination into value as in 443 

equation (2): 444 

      [ 1 2 1 2 ]

1
1

1
M EM M E E

P choice
e

    



 (3)  

Here, βM is the weight or precision with which reward magnitude difference (M1-M2) 445 

influences choice, and βE is the weight (precision) with which effort difference (E1-E2) 446 

influences choice.  447 

Next, to identify which brain regions might bias the choice computation either towards 448 

reward or away from physical effort, we performed two independent tests. First, we used the 449 

behaviourally defined weights for effort, -βE, as a covariate on the second level, to identify 450 

regions where the encoding of effort difference scales with how “effort averse” participants were. 451 

In such regions, a larger difference between chosen and unchosen effort signals would indicate 452 
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that participants avoid efforts more strongly (Figure 4B). Based on prior work, we had a priori 453 

hypotheses about effort preferences being guided by SMA and putamen (e.g., Croxson et al., 454 

2009; Kurniawan et al., 2010, 2013; Burke et al., 2013). Therefore, we used a small-volume 455 

correction (p<0.05) around previously established coordinates (putamen [±26, -8, -2]; SMA [4 -6 456 

58], see (Croxson et al., 2009)). Secondly, in an analogous fashion, we used the behavioural 457 

weights for reward magnitude, βM, as a covariate on the second level to identify regions where the 458 

encoding of reward magnitude difference scales with how reward-seeking participants are. In 459 

brain regions thus identified, a larger BOLD signal difference between chosen and unchosen 460 

reward signals would imply that participants place a stronger weight on reward maximization in 461 

their choices (Figure 4A). Based on prior work, we expected reward magnitude comparisons to 462 

occur in vmPFC (e.g., Kable and Glimcher, 2007; Boorman et al., 2009; Philiastides et al., 2010). 463 

Therefore, we used a small-volume correction (p<0.05) around previously established coordinates 464 

[-6, 48, -8] (Boorman et al., 2009). 465 

We further characterized the relationship between participants’ effort sensitivity and 466 

BOLD signal changes by asking whether the neural encoding of effort difference relates to the 467 

individual distortions captured in the parameters k and p of the effort discounting function. For 468 

each trial, we compared the true effort difference between the chosen and unchosen option with 469 

the modelled subjective effort difference between the chosen and unchosen option. We took the 470 

sum of the absolute error from the best linear fit between these two variables as an index of how 471 

well our initial GLM captured subjective distortions in the evaluation of effort. We used this 472 

measure as an additional regressor for our second level analysis, in addition to βE (these two 473 

regressors are uncorrelated: r=-0.27, p=0.24). This approach had the advantage that it combined 474 

subjective effort distortions driven by both p and k into a single parameter relevant for the effort 475 

comparison (correlation of the summed errors with k: r=0.9646, p<0.001; with p: r=0.60, 476 

p=0.0043). 477 
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Results 478 

Human participants performed choices between options with varying rewards and 479 

physical efforts (force grips; Figure 1A). Our main aim was to identify areas carrying neural 480 

signatures of value comparison, which are sometimes absent on choices when all decision 481 

variables favour the same choice (Hunt et al., 2012). Therefore, for the majority of decisions, 482 

larger rewards were paired with larger efforts so that reward maximization competed with energy 483 

minimization, and the reward and effort of each option had to be combined into an integrated 484 

subjective value to derive a choice. We first tested whether both the size of reward and the 485 

associated effort of each choice option had an impact on participant’s choice behaviour. A 486 

logistic regression showed that participants' choices were indeed guided by the reward magnitude 487 

and effort of both options (left reward: t20=-9.71, Cohen's d=-4.34, p=4.28e-08; right reward: 488 

t20=8.89, Cohen's d=3.98, p=1.44e-07; left effort: t20=7.56, Cohen's d=3.38, p=2.79e-06; right 489 

effort: t20=-8.37, Cohen's d=-3.74, p=2.79e-06; Figure 1B). As expected, larger rewards and 490 

smaller effort costs attracted choices. Overall, participants chose the higher effort option on 48 ± 491 

2% of trials.  492 

Next we examined whether effort was weighed up against reward; if this was the case, the 493 

influence of effort (reward) on the participant’s choice would become stronger as the reward 494 

(effort) difference between the options becomes smaller. Indeed, effort had a bigger impact on 495 

choice in trials with a small compared to a large reward difference (median split; green panels in 496 

Figure 1D; difference in slopes: t20=-18.06, p=7.51e-14; small reward difference only: slope=-497 

1.23±0.11; t20=-11.51, p=2.82e-10; large reward difference only: slope=0.26±0.12, t20=-1.95, 498 

p=0.066). The same was true for reward: its impact on choice behaviour was greater in trials with 499 

a small compared to a large effort difference (blue panels in Figure 1D; difference in slopes: 500 

t20=11.95, p=1.46e-10; small effort difference only: slope=1.65±0.05, t20=36.03, p=1.14e-19; 501 
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large effort difference only: slope=0.38±0.12, t20=3.08, p=0.0059). This analysis also confirmed 502 

that effort and reward were treated as continuous variables. 503 

Given behaviour was guided by the costs as well as the benefits associated with the two 504 

choice options we next asked whether any brain region encoded both effort and reward in a 505 

reference frame consistent with choice. Our main aim was to identify neural signatures of the 506 

choice computation: any brain region comparing the values of the two choice options should be 507 

sensitive to information about both costs and benefits. Recent work using a biophysically realistic 508 

attractor network model (Wang, 2002) suggests that the mass activity of a region computing a 509 

choice should reflect the difference of the values of both choice options (Hunt et al., 2012). In our 510 

task, a region comparing the options should hence encode (1) the inverse difference between 511 

chosen and unchosen efforts, and (2) the (positive) difference between chosen and unchosen 512 

rewards. We therefore computed the formal conjunction of these two contrasts, which is a 513 

conservative test, asking whether any region is significant in both comparisons. This test focussed 514 

on the decision phase, which was separated in time from the motor response (Figure 1A). We 515 

identified a cluster of activation in the SMA and in the caudal portion of dorsal anterior cingulate 516 

cortex (dACC), on the border of the anterior and posterior rostral cingulate zones (RCZa, RCZp) 517 

and area 24 (Neubert et al., 2015)  (Figure 2A; p<0.05 cluster-level FWE-corr; peak coordinate: 518 

[-6, 11, 34], t1,40=4.02; SMA peak coordinate: [-9 -7 58], t1,40=5.29). No other regions reached 519 

FWE cluster-corrected significance (p<0.05). Notably, we did not identify any activations in the 520 

vmPFC, a region commonly identified in reward-related value computations, even at lenient 521 

statistical thresholds (p<0.01, uncorrected). Replication of this conjunction analysis in FSL, 522 

performed at the suggestion of one reviewer, obtained comparable results, with only dACC and 523 

SMA reaching cluster-level corrected significance (Figure 2A, green overlays). The two 524 

difference signals for effort and reward are illustrated for the BOLD time series extracted from 525 

the dACC cluster in Figure 2B. 526 
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These results raise the question of whether and how effort and reward are combined into 527 

an integrated value for each option – a prerequisite for testing whether any brain region encodes 528 

the comparison between subjective option values. While established models exist to examine how 529 

participants compute compound values for uncertain/risky rewards (prospect theory, (Kahneman 530 

and Tversky, 1979; Tversky and Kahneman, 1992)) and delayed rewards (hyperbolic, (Mazur, 531 

1987; Laibson, 1997; Frederick et al., 2002)), it remains unclear how efforts and rewards are 532 

combined into a subjective measure of value. We performed several behavioural experiments to 533 

develop a behavioural model that can formally describe the range of effort discounting 534 

behaviours observed in healthy populations (Klein-Flügge et al., 2015). One key feature of this 535 

model is that it can accommodate cases when increases in effort at lower effort levels have a 536 

comparatively small effect on value, compared to increases in effort at higher effort levels (i.e., 537 

concave discounting). 538 

When we fitted this model to the choices recorded during the scanning session, 539 

participants’ behaviour was indeed best captured by an initially concave discounting shape 540 

(initially concave in 16 of 21 participants; Figure 2C), consistent with previous work (Klein-541 

Flügge et al., 2015) and the intuition that effort increases are less noticeable at lower levels of 542 

effort compared to higher levels of effort.  543 

Using the individual model fits, we then directly tested for neural signatures consistent 544 

with a value comparison between the subjective values of the two choice options. This is a 545 

slightly less conservative test than the formal conjunction of effort and reward magnitude 546 

difference described above, but we note that this test revealed a highly consistent pattern of 547 

results. We found strong evidence for a network consisting of the SMA (peak: [-9 -7 58], 548 

t1,20=8.64), caudal portion of dACC (peak: [-3 11 34], t1,20=7.1) and bilateral putamen (several 549 

peaks: left [-33 -13 4], t1,20=4.96 and [-33 -10 -2], t1,20=5.28; right [33 -1 -2], t1,20=4.96) to encode 550 

the (positive) difference in subjective value between the chosen and unchosen options (Figure 551 
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2D; all cluster-level FWE-corr; p<0.05). Again, comparable results were obtained using FSL 552 

(green overlays in Figure 2D). This network resembled regions previously described for the 553 

evaluation of physical effort, but was clearly distinct from the neural system associated with 554 

decisions about goods involving the vmPFC (Kable and Glimcher, 2007; Boorman et al., 2009; 555 

Fitzgerald et al., 2009; Philiastides et al., 2010; Hunt et al., 2012; Kolling et al., 2012; Clithero 556 

and Rangel, 2014; Strait et al., 2014).  557 

To validate our choice of behavioural discounting model, we performed a formal model 558 

comparison and found that the sigmoidal model provided a better explanation of choice behaviour 559 

than (convex) hyperbolic discounting, previously proposed for effort discounting (Prévost et al., 560 

2010), and two parameter-free descriptions of value ‘reward minus effort’ and ‘reward divided by 561 

effort’ (model exceedance probability: xp=1; mean of posterior distribution: mp_sigm=0.75; 562 

mp_hyp=0.05; mp_diff=0.16; mp_div=0.04; Figure 3A). On average, the sigmoidal model 563 

correctly predicted 88 ± 1% of choices. To examine whether our measure of value derived from 564 

the sigmoidal model also best predicted the BOLD signal, we re-calculated the value difference 565 

contrasts in an analogous way, this time modelling value using a hyperbolic or one of the two 566 

parameter-free models. The resulting whole-brain maps similarly highlighted SMA and dACC 567 

(surviving cluster-level FWE-corr., p<0.05 for the hyperbolic and difference models, n.s. for the 568 

quotient model; Figure 3B). But importantly, direct statistical comparison showed that the neural 569 

signal in these regions was significantly better explained by the values derived from the 570 

sigmoidal model (cluster-level FWE-corr., p<0.05 for the difference and quotient models; 571 

sigmoidal versus hyperbolic: SMA peak [-3 -7 61], t1,19=3.95; sigmoidal versus difference: dACC 572 

peak [-6,11,34], t1,19=3.28; SMA peak [-6 -7 58], t1,19=5.33; sigmoidal versus quotient: dACC 573 

peak [-6,11,34], t1,19=4.77; SMA peak [-6 -7 61], t1,19=6.72; Figure 3C). This suggests that the 574 

BOLD signal aligns with the subjective experience of effort-discounted value which was best 575 

captured using the sigmoidal model.   576 
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A crucial question is whether the observed value difference signal bears any behavioural 577 

relevance for choice, rather than potentially being a mere bi-product of a choice computation 578 

elsewhere. In the former case, one would expect that the encoding of subjective value difference 579 

relates to the strength, or ‘weight’, with which subjective value difference influenced behaviour 580 

across participants (Jocham et al., 2012; Kolling et al., 2012; Khamassi et al., 2015). Such a 581 

behavioural weight was derived for each participant using a logistic regression on the normalized 582 

model-derived subjective values. The resulting parameter estimate is the same as the inverse 583 

softmax temperature or precision and reflects how consistently participants choose the 584 

subjectively more valuable option (see Methods: βV in equation 2). The only region that was 585 

significant in this second-level test and also encoded value difference at the first level was the 586 

dACC (Figure 2F; cluster-level FWE-corr., p<0.05; peak [-3 11 31], t1,19=3.71). In other words, 587 

dACC encoded value difference on average across the group, and participants who exhibited a 588 

larger BOLD value difference signal in the dACC were also more consistent in choosing the 589 

subjectively better option (larger βV); this relationship is illustrated in Figure 2F. 590 

To further probe whether the identified network of regions evaluates the choice options in 591 

a subjective manner, we examined the relationship between the subjective ‘distortion’ of effort 592 

described by the parameters k and p of the individual effort discount function, and the BOLD 593 

signal related to the effort difference across participants. We calculated a measure to describe 594 

how much the true effort difference deviated from the subjectively experienced effort difference 595 

overall across trials. This ‘distortion’ regressor correlated with k (r=0.9646, p<0.001) and p 596 

(r=0.60, p=0.0043), but not βE (r=-0.27, p=0.24), and was used as a second-level covariate for the 597 

effort difference contrast. GLM1 contained the efforts shown on the screen and thus should have 598 

captured the subjectively experienced effort better in participants who showed smaller effort 599 

distortions (i.e., with discounting closer to linear). Thus, in regions related to the comparison of 600 

subjective effort or effort-integrated value, we expected participants with less effort distortions to 601 

show a stronger negative effort difference signal. Indeed, we found such a positive second-level 602 
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correlation with the BOLD signal in dACC and SMA, supporting the notion that effort difference 603 

is encoded in these regions in the way it subjectively influences the choice (Figure 2G, cluster-604 

level FWE-corr., p<0.05; dACC peak [-3 14 31], t1,19=5.01, global maxima; SMA peak [-6, -7, 605 

61], t1,19=4.08). 606 

ACC has access to information from motor structures (Selemon and Goldman-Rakic, 607 

1985; Dum and Strick, 1991; Morecraft and Van Hoesen, 1992, 1998; Kunishio and Haber, 1994; 608 

Beckmann et al., 2009) previously linked to evaluating effort (Croxson et al., 2009; Kurniawan et 609 

al., 2010, 2013; Burke et al., 2013), and prefrontal regions known to be involved in reward 610 

processing, such as the vmPFC and OFC (Padoa-Schioppa and Assad, 2006; Kennerley and 611 

Wallis, 2009; Levy and Glimcher, 2011; Rudebeck and Murray, 2011; Klein-Flügge et al., 2013; 612 

Chau et al., 2015; Stalnaker et al., 2015). We thus reasoned that the ACC may be a key node for 613 

the type of effort-based choice assessed in the present task. To further test this hypothesis, we 614 

sought to identify regions that mediate between reward maximisation versus effort minimization 615 

in our task.  616 

To this end, we first extracted two separate behavioural weights reflecting participants’ 617 

tendency to seek reward and avoid effort. These behavioural parameters were derived from a 618 

logistic regression with two regressors explaining how much choices were guided by the 619 

difference in reward magnitude and the difference in effort level between options (see Methods: 620 

βM and βE in equation 3). This is distinct from using just one regressor for the combined 621 

subjective value difference as done above (βV). Across participants, we then first identified brain 622 

regions where the encoding of chosen versus unchosen reward magnitude correlated with the 623 

weight, βM, with which choices were influenced by the difference in reward between the chosen 624 

and unchosen option. Secondly, we performed the equivalent test for effort, i.e. we identified 625 

regions where the neural encoding of chosen versus unchosen effort correlated with the weight, -626 

βE, with which behaviour was guided by the difference in effort between the chosen and unchosen 627 
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option. The two tests revealed two distinct networks of regions. First, the vmPFC encoded reward 628 

magnitude difference across subjects as a function of how much participants’ choices were driven 629 

by the difference in reward between the options (SVC FWE-corr cluster-level p=0.037; peak [-6 630 

44 -8], t1,19=2.87; Figure 4A). Unlike in many other tasks (Kable and Glimcher, 2007; Boorman 631 

et al., 2009; Fitzgerald et al., 2009; Philiastides et al., 2010; Hunt et al., 2012; Kolling et al., 632 

2012; Clithero and Rangel, 2014; Strait et al., 2014), the vmPFC BOLD signal did not correlate 633 

with chosen reward or reward difference on average in the group. However, reward difference 634 

signals were on average positive for participants whose choices were more strongly driven by 635 

reward magnitudes (median split; Figure 4A). At the whole-brain level, the correlation of 636 

behavioural reward-weight, βM, and BOLD reward difference encoding did not reveal any 637 

activations using our FWE cluster-level corrected criterion of p<0.05. Using a lenient exploratory 638 

threshold (p=0.01, uncorr), we identified a small number of other regions including the posterior 639 

cingulate cortex (PCC) bilaterally and visual cortex (Figure 4A), but crucially no clusters in 640 

motor, supplementary motor or striatal regions. 641 

By contrast, a network of motor regions including SMA and putamen encoded effort 642 

difference as a function of the individual behavioural effort weight -βE (Figure 4B; SVC FWE-643 

corr cluster-level SMA: p=0.048, peak [3 -7 58], t1,19=2.59; left putamen: p=0.035, peak [-27 -4 -644 

5], t1,19=3.39; right putamen no supra-threshold voxels). In other words, these regions encoded the 645 

difference in effort between the chosen and unchosen options more strongly in participants whose 646 

choices were negatively influenced by large effort differences, i.e. participants who were more 647 

sensitive to effort costs. Using a whole-brain FWE cluster-level-corrected threshold (p<0.05), no 648 

regions were detected in this contrast. At an exploratory threshold (p=0.01, uncorr), this contrast 649 

also highlighted regions in the brainstem, primary motor cortex, thalamus and dorsal striatum 650 

(Figure 4B), and thus regions previously implicated in evaluating motor costs and in recruiting 651 

resources in anticipation of effort (Croxson et al., 2009; Burke et al., 2013; Kurniawan et al., 652 
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2013), but clearly distinct from the vmPFC/PCC network identified in the equivalent test for 653 

reward above.  654 

Taken together, our data thus show that two distinct networks centred on vmPFC versus 655 

SMA/putamen encode the reward versus effort difference as a function of how much these 656 

variables influence the final choice. Yet only the caudal portion of dACC encodes the difference 657 

in overall subjective value as a function of how much overall value influences choice. This region 658 

in dACC could therefore be a potential mediator between reward maximization and effort 659 

minimization which appear to occur in separate neural circuits. 660 

Functionally distinct sub-regions of medial PFC  661 

For completeness, we also tested if any areas encode an opposite value difference signal 662 

(i.e., the inverse of the conjunction analysis and of the subjective value difference contrast 663 

performed above), reflecting the evidence against the chosen option and thus one notion of 664 

decision difficulty. This did not reveal any regions at our conservative (cluster-level FWE-665 

corrected) threshold in either test. At a more lenient exploratory threshold (p=0.01 uncorr), a 666 

single common cluster in medial PFC (pre-SMA/area 9) was identified (Figure 5), in agreement 667 

with previous reports of negative value difference signals in this region (Wunderlich et al., 2009; 668 

Hare et al., 2011). Importantly, the location of this activation was clearly distinct from the caudal 669 

dACC region found to encode a positive value difference (Figure 2). Here, by contrast, value 670 

difference signals did not correlate with the strength with which subjective value difference 671 

influenced behaviour across participants (βV; no supra-threshold voxels at p=0.01 uncorr.), 672 

suggesting this region’s functions during choice are separate from those that bias behaviour. 673 
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Discussion 674 

Choices requiring the consideration of motor costs are ubiquitous in everyday life. Unlike 675 

other types of choices they require knowledge of the current state of the body and its available 676 

energy resources, to weight physical costs against potential benefits. How this trade-off might be 677 

implemented neurally remains largely unknown.  678 

Here, we identified a region in the caudal part of dorsal anterior cingulate cortex (dACC) 679 

as the key brain region that carried the requisite signatures for effort-based choice: dACC 680 

represented the costs and benefits of the chosen relative to the alternative option, integrated effort 681 

and reward into a combined subjective value signal, computed the subjective value difference 682 

between the chosen relative to the alternative option, and activity here correlated with the degree 683 

to which participants’ choices were driven by value.  684 

ACC integrates effort and reward information 685 

Work from several lines of research suggests ACC may be a key region for performing 686 

cost-benefit integration for effort-based choice. For example, lesions to ACC (but not OFC) result 687 

in fewer choices of a high effort/high reward compared to a low effort/low reward option: yet 688 

such animals still choose larger reward options when effort costs for both options are equated, 689 

implying ACC is not essential when decisions can be solved only by reward (Walton et al., 2003, 690 

2009; Schweimer and Hauber, 2005; Rudebeck et al., 2006; Floresco and Ghods-Sharifi, 2007). 691 

BOLD responses in human ACC reflect the integrated value of effort-based options in the 692 

absence of choice (Croxson et al., 2009). Further, single neuron recordings from ACC encode 693 

information about both effort and reward (Shidara and Richmond, 2002; Kennerley et al., 2009, 694 

2011), and integrate costs and benefits into a value signal (Hillman and Bilkey, 2010; Hosokawa 695 
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et al., 2013; Hunt et al., 2015). ACC thus appears to have a critical role in integrating effort and 696 

reward information to derive the subjective value of performing a particular action. 697 

ACC encodes a choice comparison signal 698 

However, from the aforementioned work it remained unclear whether cost-benefit values 699 

of different choice options are actually compared in ACC, or whether reward and effort may be 700 

compared in separate neural structures and the competition resolved between areas. When one 701 

choice option is kept constant, the value of the changing option correlates perfectly with the value 702 

difference between the options (Kurniawan et al., 2010; Prévost et al., 2010; Bonnelle et al., 703 

2016), which precludes distinguishing between valuation and value comparison processes. This is 704 

similarly true when only one option is offered and accepted/rejected (Bonnelle et al., 2016). We 705 

here varied both options’ values from trial to trial, which allowed us to identify a choice 706 

comparison signal in the ACC, and thus the essential neural signature implicating this area in 707 

decision making. Firstly we show a region in the caudal portion of dACC encodes separate 708 

difference signals for effort and reward. The direction of these difference signals aligns with their 709 

respective effect on value, with effort decreasing and reward increasing an option’s overall value. 710 

Secondly, we demonstrate a comparison signal between integrated option values. We used a 711 

novel behavioural model (Klein-Flügge et al., 2015) to characterize participants’ individual 712 

tendency to discount reward given the level of motor costs. Using the resultant model-derived 713 

subjective values, we identified the dACC as a region encoding a combined value difference 714 

signal. Indeed, our model provided a better characterization of the BOLD signal than other 715 

models of effort discounting, and dACC activity was related to individuals’ ‘distortions’ of effort. 716 

This resolves an important question showing that effort and reward information are indeed 717 

brought together within a single region to inform choice. 718 

Finally, this value comparison signal also varied as a function of how much value 719 

influenced choices across participants. This result further strengthens the idea that the dACC 720 
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plays a crucial role in guiding choice, rather than merely representing effort or reward 721 

information. In our task, no other region exhibited similar dynamics even at lenient thresholds. 722 

Influences from ‘effort’ and ‘reward’ circuits 723 

Nevertheless, an important question remains: do the regions that preferentially encode 724 

/reward or effort have any influence on choice? To examine this question, we looked for regions 725 

that explain participants’ tendency to avoid effort, or to seek reward. This analysis revealed two 726 

distinct circuits. Whereas signals in vmPFC reflected the relative benefits as a function of how 727 

reward-driven participants’ choices were, a network more commonly linked to action selection 728 

and effort evaluation (Croxson et al., 2009; Kurniawan et al., 2010, 2013; Prévost et al., 2010; 729 

Burke et al., 2013; Bonnelle et al., 2016) – including SMA and putamen – encoded relative effort 730 

as a function of how much participants tried to avoid energy expenditure. It will be of interest to 731 

examine in future work how these circuits interact, and how different modulatory systems 732 

contribute to this interplay (see e.g., Varazzani et al., 2015). This question should be extended to 733 

situations when different costs coincide or different strategies compete (see Burke et al., 2013 for 734 

one recent example), or when information about effort and reward has to be learnt (Skvortsova et 735 

al., 2014; Scholl et al., 2015). 736 

Converging evidence for multiple decision circuits 737 

Our results contribute to an emerging literature demonstrating the existence of multiple 738 

decision systems in the brain which are flexibly recruited based on the type of decision 739 

(Rushworth et al., 2012). One well-studied system concerns choices where costs are directly tied 740 

to outcomes (e.g., risk, delay). During this type of choice, vmPFC encodes the difference between 741 

the chosen and unchosen options’ cost-benefit value (Kable and Glimcher, 2007; Boorman et al., 742 

2009; Philiastides et al., 2010; Hunt et al., 2012; Kolling et al., 2012), consistent with the 743 

decision impairments observed after vmPFC lesions (Noonan et al., 2010; Camille et al., 2011a, 744 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 15, 2016. ; https://doi.org/10.1101/064105doi: bioRxiv preprint 

https://doi.org/10.1101/064105
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

2011c). Other types of choices, however, rely on other networks (Kolling et al., 2012; Hunt et al., 745 

2014; Wan et al., 2015). In the present study, decisions required the integration of motor costs 746 

and we show that for this dACC, rather than vmPFC, plays a more central role. VmPFC did not 747 

encode overall value or the difference in value between the options in our task; in our hands, 748 

vmPFC evidenced no information about effort costs, consistent with previous proposals (Prévost 749 

et al., 2010; Skvortsova et al., 2014).  750 

Functionally dissociable anatomical sub-regions of mPFC 751 

The location in the dACC identified here is distinct from a more anterior and dorsal 752 

region in medial frontal cortex (in or near pre-SMA) where BOLD encodes the opposite signal: a 753 

negative value difference (Wunderlich et al., 2009; Hare et al., 2011). It is also more posterior 754 

than a dACC region involved in foraging choices (Kolling et al., 2012). The cluster of activation 755 

identified here extends from the cingulate gyrus dorsally into the lower bank of the cingulate 756 

sulcus, and it is sometimes also referred to it as midcingulate cortex (MCC; Procyk et al., 2016) 757 

or rostral cingulate zone (Ridderinkhof et al., 2004). According to a recent connectivity-based 758 

parcellation, our activation is on the border of areas RCZa (34%), RCZp (33%) and area 24 759 

(48%) (Neubert et al., 2015). While it shares some voxels with the motor cingulate regions in 760 

humans (Amiez and Petrides, 2014), most parts of our cluster are more ventral and located in the 761 

gyral portion of ACC (see also Kolling et al., 2016 for a discussion of functionally dissociable 762 

activations in ACC).  763 

Relevance for disorders of motivation 764 

Our findings in the dACC speak to an important line of research showing deficits in 765 

effort-based decision making in a number of disorders including depression, negative symptom 766 

schizophrenia and apathy (Levy and Dubois, 2006; Cléry-Melin et al., 2011; Treadway et al., 767 

2012, 2015; Fervaha et al., 2013; Gold et al., 2013; Hartmann et al., 2014; Pizzagalli, 2014; Yang 768 
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et al., 2014; Bonnelle et al., 2015). Patients with these disorders often show a reduced ability to 769 

initiate effortful actions to obtain reward. Crucially, they also exhibit abnormalities in ACC and 770 

basal-ganglia circuits, as well as other regions processing information about the autonomic state, 771 

including the amygdala and some brainstem structures (Drevets et al., 1997; Botteron et al., 2002; 772 

Levy and Dubois, 2006). Furthermore, individuals with greater behavioural apathy scores show 773 

enhanced recruitment of precisely the circuits implicated in the present study, including SMA and 774 

cingulate cortex, when deciding to initiate effortful behaviour (Bonnelle et al., 2016). This is 775 

interesting because apathy correlates with increased effort sensitivity (βE; Bonnelle et al., 2016), 776 

and we found that individuals with increased effort sensitivity showed enhanced recruitment of 777 

SMA and brainstem regions for encoding the effort difference (Fig 3B). In other words, when 778 

committing to a larger (relative) effort, these circuits were more active in people who were more 779 

sensitive to effort. As discussed in Bonnelle et al. (2016), we cannot infer cause and effect but it 780 

is possible that the neural balance between activations in reward and effort systems might be 781 

different in individuals with greater sensitivity to efforts (such as apathetic individuals). This may 782 

be why these people avoid choosing effortful options more often than others. It also provides a 783 

possible connection between the network’s specific role in effort-based choice and its functional 784 

contribution to everyday life behaviours. 785 
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Figures & Figure Legends 1003 

Figure 1, Task and Behaviour 1004 
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A, Human participants chose between two options associated with varying reward 1006 

magnitude (numbers) and physical effort (bar height translates into force, ‘Offer’).  Once the 1007 

fixation cross turned red (‘Response’), participants were allowed to indicate their choice. Thus, 1008 

the time of choice computation was separable in time from the motor response. Following a 1009 

response, the effort had to be realised on an unpredictable 30% of trials (top). On these trials, 1010 

participants had to produce a 12s power grip at a strength proportional to the bar height of the 1011 

chosen option. Force levels were adjusted to individuals’ maximum force at the start of the 1012 

experiment. Participants received feedback about successful performance of the grip (99% 1013 

accuracy), and the rewards collected on successful trials were added to the total winnings. On 1014 

70% of trials (bottom), no effort was required and the next trial commenced (Inter-trial interval; 1015 

ITI). B, Participants’ choices were driven by both options’ reward magnitude and effort level 1016 

showing that all dimensions of the outcome were taken into account for computing a choice. 1017 

Benefits and costs had opposite effects: larger efforts discouraged and larger reward magnitudes 1018 

encouraged the choice of an option. Standard errors denote ± SEM.C, Correlations between left 1019 

(L), right (R), chosen (C), and unchosen (U) effort levels (e) and reward magnitudes (m) show 1020 

that the regressors of interest were sufficiently decorrelated in our design. D, Effort has a strong 1021 

effect on choice in trials with small reward differences, but no effect when the reward difference 1022 

is large (green panels; median split on reward difference; effort binned for visualization). 1023 

Similarly, reward has a stronger effect in trials with small effort differences compared to trials 1024 

with large effort differences (blue panels). This shows that participants indeed trade-off effort 1025 

against reward and confirms that reward has a stronger and opposite effect compared to effort 1026 

(red slope), as shown in B. The black lines correspond to individual participants and suggest that 1027 

reward and effort were treated as continuous variables. 1028 
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Figure 2, Neural signatures of effort choice comparison in SMA and dACC 1029 

 1030 
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A, As a marker of choice computation, we identified regions encoding (a) the difference 1031 

between the chosen and unchosen reward magnitudes and (b) the inverse difference between the 1032 

chosen and unchosen effort levels. The conjunction of both contrasts in SPM (shown at p<0.001 1033 

uncorr.) revealed the supplementary motor area (SMA) and a region in the caudal portion of 1034 

dorsal anterior cingulate cortex (dACC) (both survive FWE-corr p<0.05). Cluster-level corrected 1035 

results obtained from FSL’s Flame 1 (z>2.3, p<0.05) are overlaid in green to confirm this finding. 1036 

B, For illustration purposes, the two opposing difference signals are shown for the dACC cluster 1037 

on the right. Standard errors denote ± SEM. C, A custom-built sigmoidal model was fitted to 1038 

participants’ choices to obtain individual effort discounting curves (grey; red: group mean). In the 1039 

model, the subjective value of an option's reward (y-axis, represented in %) is discounted with 1040 

increasing effort levels (x-axis). This allowed inferring the subjective values ascribed to choice 1041 

options and modelling of subjective value in the BOLD data. D, The difference in subjective 1042 

value between the chosen and unchosen option, as derived from the behavioural effort 1043 

discounting model in C, was encoded in a similar network of regions as the combined difference 1044 

in reward magnitude and effort shown in A, including caudal dACC, SMA, bilateral putamen and 1045 

insula (shown at p<0.001 uncorr. as obtained with SPM; cluster-level corrected FSL results 1046 

overlaid in green for z>2.7, p<0.05). E, The subjective value difference signal extracted from the 1047 

dACC is shown for illustration (standard errors: ± SEM). F, Left: Regions encoding subjective 1048 

value as in D but where the strength of this signal additionally correlated with the extent to which 1049 

value difference guided behaviour (inverse softmax temperature βV; shown at p<0.01 uncorr.; 1050 

only the dACC survives cluster-level FWE-corr p<0.05). Right: Illustration of the correlation in 1051 

dACC for visual display purposes only. The stronger the BOLD difference between the chosen 1052 

and unchosen option in this region, the more precisely participants’ choices are guided by value 1053 

(βV). This suggests that the dACC’s value signal computed at the time of choice is relevant for 1054 

guiding choices. G, Regions where the encoding of effort difference correlates, across subjects, 1055 

with a marker for the individual level of ‘effort distortion’ as captured by the parameters k and p 1056 
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of the modelled discount function. The better an individual’s subjectively experienced effort was 1057 

captured in the GLM (i.e., the less distorted their discount function), the stronger the inverse 1058 

effort difference signal in caudal dACC and SMA (light blue: p<0.001 uncorr; dark blue: p<0.005 1059 

uncorr; dACC /SMA survive cluster-level FWE-corr p<0.05). This suggests dACC and SMA 1060 

encode effort difference in the way it subjectively influences the choice. 1061 

 1062 
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Figure 3, Model-derived value describes choice signals more accurately than model-free 1063 

value 1064 

 1065 
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 A, Bayesian model comparison for value modelled using the sigmoidal model, hyperbolic 1066 

model and two parameter-free descriptions of value – reward minus effort, and reward divided by 1067 

effort. The sigmoidal model captures choice behaviour best. B, Comparison of the BOLD 1068 

response to value difference for the behavioural sigmoidal model (red; like Figure 2D), the 1069 

hyperbolic model (purple), and the parameter-free descriptions of value (blue: reward-effort; 1070 

green: reward/effort; all shown at p<0.001 uncorr.). The three alternative contrasts reveal a 1071 

similar network albeit less strongly. C, Crucially, the sigmoidal model provides a significantly 1072 

better description of the BOLD signal in SMA, extending into caudal dACC, compared to all 1073 

other models. Purple: sigmoidal versus hyperbolic; blue: sigmoidal versus parameter-free 1074 

subtraction; green: sigmoidal versus parameter-free division (shown at p<0.001 uncorr.). 1075 
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Figure 4, Distinct circuits bias choices towards reward maximization or effort minimization 1077 
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A, Regions where the encoding of reward magnitude difference varied as a function of 1079 

the behavioural weight participants placed on reward (βM; top: shown at p<0.01 uncorr.). This 1080 

showed that the BOLD signal in vmPFC (SVC FWE-corr, p<0.05) reflected the difference 1081 

between chosen and unchosen reward more strongly in participants who also placed a stronger 1082 

weight on maximising reward (top and bottom left). While we could not identify an average 1083 

reward difference coding in vmPFC across the group, the subset of participants who placed a 1084 

stronger weight on reward (larger βM; median split, ellipse) did encode the difference between the 1085 

chosen and unchosen reward magnitudes (bottom right). This suggests that vmPFC might bias 1086 

choices towards reward-maximization. Standard errors denote ± SEM.B, A very distinct network 1087 

of regions including the SMA and putamen (both SVC FWE-corr, p<0.05) encoded effort 1088 

difference as a function of participants’ behavioural effort weight (βE; shown at p<0.01 uncorr.). 1089 

This system was active more strongly in participants who tried to more actively avoid higher 1090 

efforts and has often been associated with effort evaluation. It might counteract the vmPFC-1091 

circuit shown in A in order to achieve effort minimization, which is in constant conflict with 1092 

reward maximization in our task. Correlation plots (bottom) are only shown for visual illustration 1093 

of the effects for a priori regions of interest; no statistical analyses were performed on these data. 1094 

 1095 
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Figure 5, Opposite coding of relative choice value in dorsal medial frontal cortex 1097 

 1098 
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A, Regions where the BOLD signal encodes an inverse rather than a positive difference 1099 

between chosen and unchosen reward magnitudes and a positive rather than an inverse difference 1100 

between chosen and unchosen effort (i.e. the exact inverse of the conjunction shown in Figure 1101 

2A). The only region detected at a lenient threshold (p=0.01 uncorr.; no regions survive FWE 1102 

correction) is a nearby but anatomically distinct region in medial prefrontal cortex (mPFC) 1103 

previously suggested to serve as a choice comparator (Wunderlich et al., 2009; Hare et al., 2011). 1104 

B, However, in this region, the BOLD signal does not relate to behaviour as was the case for the 1105 

caudal portion of dACC (see Figure 2F). 1106 
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