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The genetic basis of histological phenotype is well known in molec-
ular pathology, such as CDH1 loss leading to a lobular rather than
ductal phenotype in breast cancer. Unfortunately, these phenotypes
are qualitative. Moreover, a single genetic alteration may evidence
multiple and non-unique histologic features, such as TMPRSS2-ERG
fusion giving rise to macronuclei, blue-tinged mucin, and cribriform
pattern. A quantitative model to genetically interpret the histology
is desirable to guide downstream immunohistochemistry, genomics,
and precision medicine. We constructed a statistical model that pre-
dicts whether or not SPOP is mutated in prostate cancer, given only
the digital whole slide after standard hematoxylin and eosin [H&E]
staining. Using a cohort of 177 prostate cancer patients where 20
had mutant SPOP, we trained multiple ensembles of residual net-
works, accurately distinguishing SPOP mutant from SPOP wild type
patients. To our knowledge, this is the first statistical model to pre-
dict a genetic mutation in cancer directly from the patient’s digitized
H&E-stained whole microscope slide.
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Genetic drivers of cancer morphology, such as CDH1 loss
promoting lobular rather than ductal phenotypes in

breast, are well known. SPOP mutation in prostate can-
cer has a number of known morphological traits, including
blue-tinged mucin, cribriform pattern, and macronuclei [1].
Computational pathology methods [2] typically predict clinical
or genetic features as a function of histological imagery, e.g.
whole slide images. Our central hypothesis is that the morphol-
ogy shown in these whole slide images, having nothing more
than standard hematoxylin and eosin staining, is a function
of the underlying genetic drivers. To test this hypothesis, we
gathered a cohort of 499 prostate adenocarcinoma patients
from The Cancer Genome Atlas [TCGA]1, 177 of which were
suitable for analysis, with 20 of those having mutant SPOP
(Fig 1). We then used ensembles of deep convolutional neural
networks to accurately predict whether or not SPOP was mu-
tated in the patient, given only the patient’s whole slide image.
Our classifier’s generalization error bounds and receiver oper-
ating characteristic support our hypothesis, in agreement with
earlier work suggesting SPOP mutants are a distinct subtype
of prostate cancer [3].

Prior analyses have manually derived morphological fea-
tures from slide images with the help of trained pathologists,
then correlated these features to molecular aberrations, such
as mutations and copy number alterations in a variety of
genes [4, 5]. In contrast, our deep learning approach learns
features automatically and analyzes the images directly, with-
out a pathologist, using a single mutation from whole exome

1TCGA data courtesy the TCGA Research Network http://cancergenome.nih.gov/

sequencing as a class label for a frozen section image, in a
completely automated pipeline that predicts a 95% confidence
interval of the mutation probability, representing both the
mutation prediction and its uncertainty.

Others used support vector machine techniques to predict
molecular subtypes in a bag-of-features approach over Gabor
filters [6]. The authors note the similarity to convolutional
features in deep learning methods, such as ours, but did not
pursue deep learning due to limited data available. Gabor
filters are similar to the first layer in a deep convolutional
neural network, with more complex features learned in deeper
layers of the network, and each of our networks is at least 50
layers deep. We address limited data through pre-training,
Monte Carlo cross validation, and ensemble methods to sup-
port deep learning. Our method also predicts the state of a
single mutation, which we believe to be more clinically action-
able for precision medicine, rather than predicting broad gene
expression subtypes.

Support vectors machines, Gaussian mixture modeling, and
principal component analyses have predicted PTEN deletion
and copy number variation in cancer, but relied on fluores-
cence in situ hybridization [FISH], a very specific stain [7].
Our approach uses standard hematoxylin and eosin, a non-
specific stain that we believe could be utilized to predict more
molecular aberrations than only the SPOP mutation that is
our focus here. However, our method does not quantify tumor
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Fig. 1. Twenty SPOP mutants shown in left column. Remaining right are 157 SPOP
wild type patients, where 25 patients had 2 and 6 patients had 3 acceptable slides
available. Unacceptable slides discarded by Algorithm 1. Images are frozen sections.

heterogeneity.
Tumor heterogeneity has been analyzed statistically by

other groups [8], as a spatial analysis of cell type entropy
cluster counts in H&E-stained whole slides. A high count,
when combined with genetic mutations such as TP53, im-
proves patient survival prediction. This count is shown to
be independent of underlying genetic characteristics, whereas
our method predicts a genetic characteristic (SPOP mutation)
from convolutional features of the imaging.

Histological review to identify patients having a specific
genetic mutation for the development of targeted inhibitors
has been previously proposed in the context of fibroblast
growth factor receptor 3 [FGFR3] mutations in bladder cancer
[9]. FGFR3 mutants revealed unique histological features,
this represents a potential therapeutic target, and follow-up
confirmatory genotyping is suggested. Our approach with
SPOP mutants in prostate cancer is similar, with deep learning
ensembles in place of pathologists to analyze the slide.

Results

Molecular information as labels of pathology images opens a
new field of molecular pathology. Rather than correlating or
combining genetic and histologic data, we predict a gene mu-
tation directly from a whole slide image having unbiased H&E
stains. This not only opens the door to systematic investiga-
tion of other genotype and phenotype relationships on the basis
of deep learning models such as ours, but serves as a new su-
pervised learning paradigm for molecular targets, independent
of clinician-supplied labels of the histology. Epigenetic, copy
number alteration, gene expression, and post-translational
modification data may all be brought to bear as labels for
histology. Deep learning ensemble approaches such as ours
may then learn to predict these labels from images. Future
work may refine these predictions to single-cell resolution,
combined with single-cell sequencing, immunohistochemistry,
fluorescence in situ hybridization, or other technologies to
label corresponding H&E images. We suggest focusing on
labels that are clinically actionable, such as gains or losses
of function. Soon we hope to interpret our deep network’s
predictions through DeepVis or a similar tool [10].

SPOP mutation state prediction is learnable from whole
slides stained with hematoxylin and eosin. Our pipeline learns
to predict SPOP mutations, separating true positives from false
positives at an efficiency well above chance (AUROC=0.7128,
p=0.000122, Fig 2). To our knowledge this is the first time a
mutation in cancer has been predicted through deep learning
on whole slides with standard H&E staining.

SPOP mutation state prediction is accurate and the predic-
tion uncertainty is bounded within a confidence interval. Our
pipeline’s accuracy in SPOP mutation state prediction is sta-
tistically significant (mean=0.7, 95% CI 0.5785-0.8241, Fig 3).
The confidence interval calculated using five resnet ensembles
allows every prediction to be evaluated statistically: is there
significant evidence for SPOP mutation in the patient, is there
significant evidence for SPOP wild type in the patient, or is
the patient’s SPOP mutation state inconclusive.

SPOP mutation state prediction is fully automated and does
not rely on human interpretation. Unlike Gleason score, which
relies on a clinician’s interpretation of the histology, our
pipeline is fully automated (Fig 4). The pipeline’s input
is simply the whole digital slide and the output is the prob-
ability that SPOP is mutated. Moreover, our pipeline does
not require a human to identify a representative region in the
slide, as is done to create tissue microarrays from slides.

Molecular pathology, such as characterizing histology in
terms of SPOP mutation state, leads directly to precision
medicine. Predictions of the underlying genetic state proceeds
directly to precision medicine. For instance, wild type SPOP
ubiquitinylates androgen receptor [AR], to mark AR for degra-
dation, but mutant SPOP does not. Antiandrogen drugs, such
as flutamide, promote degradation of AR to treat the cancer,
though mutant AR confers resistance [15, 16].

SPOP mutation state prediction provides information regard-
ing other mutational states. SPOP mutation is mutually ex-
clusive with TMPRSS2-ERG gene fusion [3], so our SPOP
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Fig. 2. Receiver operating characteristic curves, AUROC converted to p-values via
normal approximation of Mann-Whitney U [11]. Each trial, an ensemble of eleven
residual networks is learned to distinguish SPOP mutant from SPOP wild type, with
low area under the receiver operating characteristic [AUROC] usually indicating this
ensemble is a weak learner, in addition to p-values > 0.05. Each residual network is
trained only on 10 SPOP mutants and 10 SPOP wild types. However, the ensemble
of all five trials, a metaensemble, has an AUROC that is on average better that the
individual trials, showing the metaensemble is a strong learner [12, 13]. Average ROC
curve calculated in ROCR [14].
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Fig. 3. For each Monte Carlo cross validation run within each trial, the distribution
of validation and test set accuracies is plotted. At farthest right, for each ensemble
composed of all eleven classifiers learned through all cross validation runs there is a
test accuracy, and the distribution of all five ensemble test accuracies is plotted. The
95% CI for ensemble test accuracy is 0.5785-0.8241, Student’s T, df=4, chance=0.5.

mutation predictor provides indirect information regarding
the TMPRSS2-ERG state.

Discussion

In this work, we summarize a whole histology slide with a
maximally abnormal subregion within the dominant tumor,
such that the vast majority of the slide is not used for deep
learning. Tissue microarrays take a similar although manual
approach, by using a small representative circle of tissue to
characterize a patient’s cancer. In a sense, our patch extrac-
tion, saliency prediction, and TMARKER-based cell counting
pipeline stages together model how a representative patch may
be selected to describe the slide overall. By using a high mag-
nification abnormal subregion, we aim to capture cellular-level
image features driven by the underlying molecular change,
such as SPOP mutation. This subregion has many desirable
properties:

1. it is diagnostically relevant at low power to a pathologist
at the microscope making a diagnosis (saliency) [17],

2. it is taken from the dominant tumor (maximum number
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Fig. 4. Pipeline: a whole slide image is split into patches (bottom) at low magnification.
Salient patches are identified. The salient patch with the most cancer cells is deemed
the “dominant tumor” patch and further analyzed. At high magnification, a sliding
window within the dominant tumor patch finds the region with maximum abnormal
cells. Deep neural networks then predict SPOP mutation and a confidence interval is
calculated over these predictions.
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of cancer cells at low power),

3. it has the most nuanced cellular appearance (maximum
number of abnormal cells at high power), and

4. it is large enough at high power to capture histology, such
as gland structure (800x800 pixel [px] patch).

A holistic approach that considers for deep learning more
patches than this one subregion could improve performance
and provide further insight. Gleason grading involves such a
holistic approach, identifying first and second most prevalent
cancer morphologies in a whole slide. We leave for future
work the complexities of multiple representatives per slide,
varying numbers of representatives per slide, and considering
simultaneously multiple slides per patient.

Rather than use a single classifier, we use multiple classifier
ensembles to predict the SPOP mutation state. Though each
classifier, a residual network [18], tends to predict SPOP
mutation probability in a bimodal distribution – being either
close to 0 or close to 1, averaging these classifiers within an
ensemble provides a more uniform distribution (Table S1).
Each of five ensembles then emits the uniform-distributed
probability SPOP is mutated, and from these five probabilities
a 95% confidence interval is calculated, following a Student’s
T distribution. We believe statistical confidence in predictions
is especially important in medical decision-making. Thus our
pipeline, in addition to predicting SPOP mutation probability,
indicates one of three outcomes: (i) confident SPOP mutation
in patient, (ii) confident SPOP wild type in patient, (iii)
inconclusive SPOP mutation state in patient.

Deep learning typically requires large sets of training data,
yet we have only 20 patients with SPOP mutation, nearly an
order of magnitude fewer than the 157 patients with SPOP wild
type. Deep learning in small data is a challenging setting. Our
metaensemble approach confronts this challenge by training
many residual networks on small draws of the data, in equal
proportions of SPOP mutants and SPOP wild type, then
combining the residual networks as weak learners, to produce
strong learners [12, 13]. In practice, the great depth of residual
networks appears to be important because CaffeNet [19] – a
shallower 8-layer neural network based on AlexNet [20] – rarely
achieved validation accuracy of 0.6 or more predicting SPOP
mutation state.

Pretraining the deep networks is essential in small data
regimes such as ours, and we use the ResNet-50 model pre-
trained on ImageNet [18]. We used both the published ResNet-
50 and our customized ResNet-50 that included an additional
50% dropout [21] layer and a 1024-neuron fully-connected layer.
In practice, for difficult training sets, at least one of these archi-
tectures would often converge to validation accuracy of 0.6 or
more. For data augmentation, the 800x800px images at high
power are trimmed to the centermost 512x512px in 6 degree
rotations, scaled to 256x256px, flipped and unflipped, then
randomly cropped to 224x224 within Caffe [19] for training.
Learning rates varied from 0.001 to 0.007, and momentums
from 0.3 to 0.99. Test error tended to be worse with momen-
tum less than 0.8, though low momentum allowed convergence
for difficult training sets. Learning rates of 0.001, 0.0015, or
0.002 with momentum of 0.9 was typical. We used nVidia
Titan-X GPUs with 12GB RAM for training. At 12GB, one
GPU could train either resnet architecture using a minibatch
size of 32 images.

Though most genetic aberrations effect a single Cul3 bind-
ing pocket in SPOP (Figs 5 and 6), our method’s performance
appears robust to two of 20 patients having genetic changes
outside this pocket. In future work, for loss of function muta-
tions like those that appear in SPOP, we may also consider
copy number loss. Gene silencing through epigenetic changes
may also be used to increase the number of positive training
examples. The prediction target is then whether or not the
function of the gene, such as SPOP, is lost. We believe this
remains clinically actionable. Gain of function may similarly
leverage epigenetics, and perhaps copy number amplification.
By restricting ourselves to only consider mutations, our pre-
dictions are focused to a specific function loss mechanism
(mutation) and our methods must overcome “deep learning in
small data” issues, potentially increasing the applicability of
our method to study other genetic drivers of histology with
little available data.

Algorithm 1 Preprocessing: Each patient’s SPOP mutation
state is paired with the whole slide image patch having the
maximum number of abnormal cells, where abnormal is ei-
ther cancer or unknown cell type, rather than healthy cell
type. This patch is taken from the dominant tumor patch.
The dominant tumor patch is both salient and has the max-
imum number of cancer cells. The dominant tumor patch
is at low magnification, while the abnormal patch is at high
magnification within the dominant.

for all prostate adenocarcinoma patients do
spop← SP OP normal/mutated state as 0/1
slide← whole slide image of cancer biopsy
patches← 75% overlap 800x800px images← slide
salient_patches← predict_saliency(patches)
pri_tumor_patch← max_cancer(salient_patches)
abn_patch← max_abnormal(pri_tumor_patch)
if abn_patch < 50% blurred then

if abn_patch < 50% background then
append (abn_patch, spop) to data_set

return data_set

Materials and Methods

We studied a TCGA cohort of 499 prostate adenocarcinoma
patients, in particular the 177 patients that had both acceptable
pathology images and SPOP mutation state available (Fig 1, Alg
1). SPOP mutation state was downloaded from cBioportal [24, 25].
In future work, we plan to extend our analysis to data sets, for
example MSK IMPACT or Cornell EXaCT-1 [26, 27].

Microscope slides were scanned at 0.25 ± 0.003 microns per
pixel [mpp], using an Aperio AT2 scanner. The resulting SVS data
file consists of multiple levels, where level 0 is not downsampled,
level 1 is downsampled by a factor of 4, level 2 by a factor of 16,
and level 3 by a factor of 32. From each level, 800x800px patches
were extracted via the OpenSlide software library [28]. We refer
to level 2 as low magnification and level 0 as high magnification.
Level 2 approximately corresponds to a 10x eyepiece lens and 10x
objective lens at the microscope when the scan is 0.5mpp. Our
saliency predictor assumed 0.5mpp scans, though the scans here
were 0.25mpp, but appeared robust.

Algorithm 1 describes data preprocessing for training. In prior
work, we developed a patch saliency predictor [17]. A TMARKER
classifier was trained to determine cell types [29]. We define the dom-
inant tumor patch as having the maximum number of cancer cells
amount all 800x800px salient patches at low magnification. Within
the 800x800px dominant tumor patch, we select an 800x800px patch
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SPOP
RefSeq Genes
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TCGA-EJ-A8FS-01
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TCGA-G9-7510-01
TCGA-J4-A6G3-01
TCGA-KK-A59Z-01
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TCGA-VN-A88R-01
TCGA-VP-A878-01
TCGA-VP-A87B-01
TCGA-VP-A87H-01
TCGA-XJ-A83G-01
TCGA-Y6-A8TL-01
TCGA-YL-A8HM-01
TCGA-YL-A8S8-01
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24 kb
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p13.3 p13.2 p13.1 p12 p11.2 p11.1 q11.2 q12 q21.1 q21.31 q21.32 q21.33 q22 q23.1 q23.3 q24.2 q24.3 q25.1 q25.2 q25.3

MATH domain BTB/POZ domain

0 39 87 121 163 190 297 368 392

Fig. 5. SPOP mutations in the Integrated Genomics Viewer [22, 23], with lollipop plot showing mutations in most frequently mutated domain.

Algorithm 2 Training: Train a residual network on the
abnormal patch representing each patient, labeled with SPOP
mutation state. The final predictor is an ensemble of eleven of
such resnets. After drawing a test set, training and validation
sets are drawn from the remaining patients in the preprocessed
data set (1). Within a Monte Carlo cross validation run,
training and validation sets do not overlap. All draws are
without replacement. Thirteen Monte Carlo cross validation
runs are attempted in parallel, where training stops after
eleven have validation accuracy of 0.6 or more. Some runs do
not achieve 0.6 after many attempts. See Fig 7 for architecture
details of r50 as “ResNet-50” and drp5 as “Drop50”.

for trial in 0, 1, 2, 3, 4 do
test_set← draw(5 SP OP mutants, 5 SP OP normal)
for monte in 1, 2, ..., 13 in parallel do

train_set← draw(10 mutants, 10 normal)
valid_set← draw(5 mutants, 5 normal)
testable_model← null
repeat

r50_model← train_r50(train_set, valid_set)
drp5_model← train_drp5(train_set, valid_set)
r50_acc← accuracy(valid_set, r50_model)
drp5_acc← accuracy(valid_set, drp5_model)
if r50_acc >= 0.6 then

testable_model← r50_model
else if drp5_acc >= 0.6 then

testable_model← drp5_model

until 11 testable models or testable_model 6= null
append testable_model to testable_models

ensemble← testable_models with ensemble averaging
ensemble_acc← accuracy(test_set, ensemble)
append ensemble_acc to ensemble_accs
append ensemble to ensembles

return (ensembles, ensemble_accs)

Fig. 6. SPOP tertiary structure with mutated residues labeled, common to one site.
Mutation chr17:47677762 R368H in patient TCGA-EJ-7782-01 not shown and not in
site. Deletion chr17:47699392 in patient TCGA-VP-A878 not shown and not in site.

Algorithm 3 Prediction: Use each of 5 ensembles to predict
SPOP mutation state, then compute a 95% confidence interval
of SPOP mutation state given these predictions. Each predic-
tion is a probability of SPOP mutation in the patient. If the
95% CI lower bound is > 0.5, there is significant confidence
that the patient has SPOP mutation. If the 95% CI upper
bound is < 0.5, there is significant confidence that the patient
does not have SPOP mutation. Otherwise, the patient’s SPOP
mutation state cannot be confidently predicted.

slide← whole slide image of cancer biopsy
patches← 75% overlap 800x800px images← slide
salient_patches← predict_saliency(patches)
pri_tumor_patch← max_cancer(salient_patches)
abn_patch← max_abnormal(pri_tumor_patch)
for ensemble in ensembles do

spop_prediction← predict(abn_patch, ensemble)
append spop_prediction to spop_predictions

return confidence_interval(spop_predictions)
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Fig. 7. ResNet-50 architecture [18], at right. Customized Drop50 networks supports ResNet-50 pretraining, but has additional dropout [21] and fully connected neuron layers. In
practice at least one of these architectures converges to a validation accuracy of 0.6 or more. Convolutional layers “conv”, fully-connected layers “fc”, 50% dropout layer “drop”.

at high mgnification having the maximum number of abnormal cells.
Cancer cells count 1 towards the maximum abnormal cell count,
unknown cells count 0.5, and healthy cells count 0. The dominant
tumor is explored in increments of 10 pixels, until the bounding box
with the maximum number of abnormal cells is found. Whereas our
saliency predictor operated on low-power tissue-level details of a
patch, our SPOP predictor operates on high-power cell-level details
of a patch. A patient is discarded from the study if the abnormal
patch is > 50% blurred or > 50% background, as determined by
visual inspection.

Algorithm 2 describes neural network ensemble for training.
This procedure allows learning to occur despite a mere 20 patients
having an SPOP mutation, compared to 157 not having an SPOP
mutation. Additionally, having 5 ensembles – each trial yielding one
ensemble of 11 resnets – allows a 95% confidence interval in predicted
SPOP mutation state to be calculated for both the generalization
error estimate during training and any future patient (Algorithm
3). Moreover, such a large number of resnets can fully sample the
SPOP wild type patients, while each resnet is still trained with an
equal proportion of SPOP mutants and wild types. Two different
neural network architectures are used, both the published ResNet-50
architecture (r50 in Alg 2) and our custom ResNet-50 with a 50%
dropout [21] layer with an additional 1024 fully-connected layer as
the top layer (drp5 in 2, and shown as Drop50 in Fig 7). In practice,
at least one architecture tended to have validation accuracy > 0.6.
A variety of architectures may increase the variance among the
neural networks within the ensemble, and the variance in errors
should average out in the ensemble. Trials 0, 2, and 3 used two
Drop50 learners and nine ResNet-50 classifiers (Fig 7, Table S1).

Trial 1 had six Drop50 and five ResNet-50 classifiers. Trial 4 had
three Drop50 and eight ResNet-50 classifiers. Trials 1 and 4 had
the worst performance by AUROC (Fig 2), both had at least one
ResNet-50 predictor with 0.3 or worse test set accuracy (Table S1),
and both had more than two Drop50 learners in the final ensemble
for the trial. For challenging draws of training, validation, and test
sets, Drop50 learners may slightly outperform ResNet-50 learners,
though generalization accuracy may remain low due to the clustering
of the data in the draws and limited sample sizes.

There is remarkable variability in test accuracy among the
testable models from each Monte Carlo cross validation run (Table
S1). If the test set is drawn from approximately the same distri-
bution as the validation set, where resnet validation accuracy is
0.6+ and resnets are uncorrelated, then we can expect 6 of the
11 resnets (6/11 < 0.6) in an ensemble to correctly predict SPOP
mutation state on average. In this way the ensemble is a strong
learner based on resnet weak learners [12, 13]. Through ensemble
averaging, the mean SPOP mutation probability is computed over
all 11 constituent resnets, to provide the final probability from the
ensemble. Finally, learning rate and momentum are tuned between
attempts within a Monte Carlo cross validation run until acceptable
validation accuracy is achieved.
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