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A quantitative model to genetically interpret the histology in whole

microscopy slide images is desirable to guide downstream immuno-

histochemistry, genomics, and precision medicine. We constructed

a statistical model that predicts whether or not SPOP is mutated in

prostate cancer, given only the digital whole slide after standard

hematoxylin and eosin [H&E] staining. Using a TCGA cohort of

177 prostate cancer patients where 20 had mutant SPOP, we trained

multiple ensembles of residual networks, accurately distinguishing

SPOP mutant from SPOP non-mutant patients (test AUROC=0.74,

p=0.0007). We further validated our full metaensemble classifier on

an independent test cohort from MSK-IMPACT of 152 patients where

19 had mutant SPOP. Mutants and non-mutants were accurately dis-

tinguished despite TCGA slides being frozen sections and MSK-

IMPACT slides being formalin-fixed paraffin-embedded sections (AU-

ROC=0.86, p=0.0038). Moreover, we scanned an additional 36 MSK-

IMPACT patient having mutant SPOP, trained on this expanded MSK-

IMPACT cohort (test AUROC=0.75, p=0.0002), tested on the TCGA

cohort (AUROC=0.64, p=0.0306), and again accurately distinguished

mutants from non-mutants using the same pipeline. Importantly, our

method demonstrates tractable deep learning in this “small data” set-

ting of 20-55 positive examples and quantifies each prediction’s un-

certainty with confidence intervals. To our knowledge, this is the

first statistical model to predict a genetic mutation in cancer directly

from the patient’s digitized H&E-stained whole microscopy slide, and

is the first time quantitative features learned from patient genetics

and histology have been used for content-based image retrieval, find-

ing similar patients for a given patient where the histology appears

to share the same genetic driver of disease (Bonferoni-corrected

p-value=0.0203).
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Genetic drivers of cancer morphology, such as E-Cadherin
[CDH1] loss promoting lobular rather than ductal phe-

notypes in breast, are well known. TMPRSS2-ERG fusion in
prostate cancer has a number of known morphological traits,
including blue-tinged mucin, cribriform pattern, and macronu-
clei [5]. Computational pathology methods [6] typically predict
clinical or genetic features as a function of histological imagery,
e.g. whole slide images. Our central hypothesis is that the
morphology shown in these whole slide images, having nothing
more than standard hematoxylin and eosin [H&E] staining,
is a function of the underlying genetic drivers. To test this
hypothesis, we gathered a cohort of 499 prostate adenocarci-
noma patients from The Cancer Genome Atlas [TCGA]1, 177
of which were suitable for analysis, with 20 of those having mu-
tant SPOP (Figs 1, 2, and S1). We then used ensembles of deep
convolutional neural networks to accurately predict whether or
not SPOP was mutated in the patient, given only the patient’s

1
TCGA data courtesy the TCGA Research Network http://cancergenome.nih.gov/
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Fig. 1. Panel A: TCGA cohort of frozen section images. Top row shows 20 SPOP

mutants. Bottom rows are 157 SPOP non-mutants, where 25 patients had 2 and 6

patients had 3 acceptable slides available. Panel B: MSK-IMPACT cohort of formalin-

fixed paraffin-embedded sections, providing higher image quality than frozens. Top

row shows 19 SPOP mutants. Middle rows show 36 SPOP mutants scanned as

added training data for TCGA testing. Bottom rows are 133 SPOP non-mutants.
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This is the first pipeline predicting gene mutation probability

in cancer from digitized H&E-stained microscopy slides. To
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gene is mutated in prostate cancer, the pipeline (i) identifies

diagnostically salient slide regions, (ii) identifies the salient re-

gion having the dominant tumor, and (iii) trains ensembles of

binary classifiers that together predict a confidence interval of

mutation probability. Through deep learning on small datasets,

this enables automated histologic diagnoses based on probabil-

ities of underlying molecular aberrations and finds histologically

similar patients by learned genetic-histologic relationships.
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Fig. 2. SPOP mutations in the Integrated Genomics Viewer [1, 2], with lollipop plot showing mutations in most frequently mutated domain. For two of twenty patients, somatic

SPOP mutations fall outside the MATH domain, responsible for recruiting substrates for ubiquitinylation.

whole slide image (Figs 3 and 4 panel A), leveraging spatial
localization of SPOP mutation evidence in the histology im-
agery (Fig 4 panels B and C) for statistically significant SPOP
mutation prediction accuracy when training on TCGA but
testing on the MSK-IMPACT[7] cohort (Fig 5). Further, we
scanned 36 additional SPOP mutant MSK-IMPACT slides,
training on this expanded MSK-IMPACT cohort and testing
on the TCGA cohort. Our classifier’s generalization error
bounds (Fig 5 panels A and B), receiver operating charac-
teristic (Fig 5 panels C1 and D1), and independent dataset
performance (Fig 5 panels C2 and D2) support our hypothesis,
in agreement with earlier work suggesting SPOP mutants are a
distinct subtype of prostate cancer [8]. Finally, we applied our
metaensemble classifier to the content-based image retrieval
[CBIR] task of finding similar patients to a given query patient
(Fig 6), according to SPOP morphology features evident in
the patient slide dominant tumor morphology.

Previously, pathologists described slide image morphologies,
then correlated these to molecular aberrations, e.g. mutations
and copy number alterations [9, 10]. Our deep learning ap-
proach instead learns features from the images without a
pathologist, using one mutation as a class label, and quantifies
prediction uncertainty with confidence intervals [CIs] (Fig 3).

Others used support vector machines to predict molecular
subtypes in a bag-of-features approach over Gabor filters [11].
The authors avoided deep learning due to limited data available.
Gabor filters resemble first layer features in a convolutional
network. A main contribution of ours is using pre-training,
Monte Carlo cross validation, and heterogeneous ensembles
to enable deep learning despite limited data. We believe our
method’s prediction of a single mutation is more clinically
actionable than predicting broad gene expression subtypes.

Support vector machines, Gaussian mixture modeling, and
principal component analyses have predicted PTEN deletion
and copy number variation in cancer, but relied on fluorescence
in situ hybridization [FISH], a very specific stain [12]. Our
approach uses standard H&E, a non-specific stain that we
believe could be utilized to predict more molecular aberrations
than only the SPOP mutation that is our focus here. However,
our method does not quantify tumor heterogeneity.

Tumor heterogeneity has been analyzed statistically by
other groups [13], as a spatial analysis of cell type entropy
cluster counts in H&E-stained whole slides. A high count,
when combined with genetic mutations such as TP53, im-

proves patient survival prediction. This count is shown to be
independent of underlying genetic characteristics, whereas our
method predicts a genetic characteristic, i.e. SPOP mutation,
from convolutional features of the imaging.

Clustering patients according to hand-engineered features
has been prior practice in histopathology CBIR, with multiple
pathologists providing search relevancy annotations to tune
the search algorithm [14]. Our approach relies on neither
pathologists nor feature engineers, and instead learns discrim-
inative genetic-histologic relationships in the dominant tumor
to find similar patients. We also do not require a pathologist
to identify the dominant tumor, so our CBIR search is au-
tomated on a whole slide basis. Because the entire slide is
the query, we do not require human judgement to formulate
a search query, so CBIR search results may be precalculated
and stored for fast lookup.

Results

Molecular information as labels of pathology images opens

a new field of molecular pathology. Rather than correlating
or combining genetic and histologic data, we predict a gene
mutation directly from a whole slide image with unbiased
H&E stain. Our methods enable systematic investigation of
other genotype and phenotype relationships, and serve as a
new supervised learning paradigm for clinically actionable
molecular targets, independent of clinician-supplied labels
of the histology. Epigenetic, copy number alteration, gene
expression, and post-translational modification data may all
label histology images for supervised learning. Future work
may refine these predictions to single-cell resolution, combined
with single-cell sequencing, immunohistochemistry, FISH, mass
cytometry[15], or other technologies to label corresponding
H&E images or regions therein. We suggest focusing on labels
that are clinically actionable, such as gains or losses of function.

SPOP mutation state prediction is learnable from a small set

of whole slides stained with hematoxylin and eosin. Despite
SPOP being one of the most frequently mutated genes in
prostate adenocarcinomas[8], from a TCGA cohort of 499
patients only 177 passed our quality control (Alg S1) and only
20 of these had SPOP mutation. Meanwhile in the 152-patient
MSK-IMPACT cohort there were only 19 SPOP mutants, and
though we could scan an additional 36 SPOP mutant archived
slides, there are difficulties in practice acquiring large cohorts of
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Fig. 3. Pipeline: a whole slide image is split into patches (bottom) at low magnification.

Salient patches are identified. The salient patch with the most cancer cells is deemed

the “dominant tumor” patch and further analyzed. At high magnification, a sliding

window within the dominant tumor patch finds the region with maximum abnormal

cells. Deep neural networks then predict SPOP mutation and a confidence interval is

calculated over these predictions.

patients with both quality whole slide cancer pathology images
and genetic sequencing represented. This challenge increases
for rare genetic variants. Moreover, different cohorts may have
different slide preparations and appearances, such as TCGA
being frozen sections and MSK-IMPACT being higher quality
formalin-fixed paraffin embedded sections (Fig 1). Nonetheless,
our pipeline (Fig 3) accurately predicts whether or not SPOP
is mutated in the MSK-IMPACT cohort when trained on
the TCGA cohort (Fig 5), and vice versa. We leverage pre-
trained neural networks, Monte Carlo cross validation, class-
balanced stratified sampling, and architecturally heterogeneous
ensembles for deep learning in this “small data” setting of only
20 positive examples, which may remain relevant for rare
variants as more patient histologies and sequences become
available in the future.

SPOP mutation state prediction is accurate and the predic-

tion uncertainty is bounded within a confidence interval. Our
pipeline’s accuracy in SPOP mutation state prediction is statis-
tically significant: (i) within held-out test datasets in TCGA,
(ii) within held-out test datasets in MSK-IMPACT, (iii) from
TCGA against the independent MSK-IMPACT cohort (Fig 5),
and (iv) vice versa. The confidence interval [CI] calculated
using seven ResNet ensembles allows every prediction to be
evaluated statistically: is there significant evidence for SPOP
mutation in the patient, is there significant evidence for SPOP
non-mutation in the patient, or is the patient’s SPOP muta-
tion state inconclusive. Clinicians may choose to follow the
mutation prediction only if the histological imagery provides
acceptably low uncertainty.

SPOP mutation state prediction is automated and does not

rely on human interpretation. Unlike Gleason score, which re-
lies on a clinician’s interpretation of the histology, our pipeline
is automated (Fig 3) – though detecting overstain, blur, and
mostly background in the slide are not yet automated (Alg S1).
The pipeline’s input is the whole digital slide and the output
is the SPOP mutation prediction bounded within 95% and
99% CIs. Moreover, our pipeline does not require a human
to identify a representative region in the slide, as is done to
create tissue microarrays [TMAs] from slides.

SPOP mutation state prediction finds patients that appear

to share the same genetic driver of disease. Each ensemble
(Fig 3) may be used as a feature to predict patient similarity,
where similar patients on average share the same ensemble-
predicted SPOP mutation probability (Fig 6). A patient’s
histology may be studied in the context of similar patients’
for diagnostic, prognostic, and theragnostic considerations.

Molecular pathology, such as characterizing histology in

terms of SPOP mutation state, leads directly to precision

medicine. For instance, non-mutant SPOP ubiquitinylates an-
drogen receptor [AR], to mark AR for degradation, but mutant
SPOP does not. Antiandrogen drugs, such as flutamide and
enzalutamide, promote degradation of AR to treat the cancer,
though mutant AR confers resistance [16, 17].

SPOP mutation state prediction provides information regard-

ing other molecular states. SPOP mutation is mutually ex-
clusive with TMPRSS2-ERG gene fusion [8], so our SPOP
mutation predictor provides indirect information regarding
the TMPRSS2-ERG state and potentially others.
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Fig. 4. Panel A: ResNet-50 architecture [3], top. Customized Drop50 architecture supports ResNet-50 pretraining, but has additional dropout [4] and fully connected neuron

layers. In practice at least one of these architectures converges to a validation accuracy of 0.6 or more. Convolutional layers “conv”, fully-connected layers “fc”, 50% dropout layer

“drop”. ResNet-50 has 26,560 neurons and Drop50 has 28,574. All seven trials, each trial being a multiarchitectural ensemble of eleven residual networks, is 2,138,630 neurons

total for TCGA training and MSK-IMPACT testing, and 2,132,858 neurons total for MSK-IMPACT training and TCGA testing. Panel B: Region of interest and surrounding

octagon patches, each from an 800x800 pixel [px] patch cropped to 512x512px and scaled to 256x256px. At upper left, histological imagery leads to strong SPOP mutation

predictions shown in red. At lower right, no such evidence exists and SPOP mutation is not predicted here, indicated in heatmaps as white rather than red. For each of the nine

patches, the weighted mean prediction is calculated, shown in the heatmaps as the µ column at right. Each classifier in the ensemble makes a prediction for a patch, and

classifiers having greater prediction variance among the nine patches are more weighted in the means for the patches. The metaensemble’s SPOP mutation prediction is

0.6244, with 95% CI of 0.5218-0.7211 and 99% CI of 0.4949-0.7489, so this patient’s tumor is predicted to have an SPOP mutation at 95% confidence but not 99% confidence.

Panel C: Another MSK-IMPACT patient shown for the TCGA-trained metaensemble, suggesting there is greater SPOP mutation histological evidence in the lower right. The

metaensemble’s SPOP mutation prediction is 0.5528, with 95% CI of 0.5219-0.5867 and 99% CI of 0.5128-0.5962, so there is 99% confidence of SPOP mutation.

Discussion

We summarize a whole slide with a maximally abnormal sub-
region within the dominant tumor, such that the vast majority
of the slide is not used for deep learning. Tissue microarrays
take a similar though manual approach, using a small circle
of tissue to represent a patient’s cancer. In a sense, our patch
extraction, saliency prediction, and TMARKER-based cell
counting pipeline stages together model how a representative
patch may be selected to identify the dominant cancer subtype
in the slide overall, ignoring other regions that may not have
the same genetic drivers. This subregion has many desirable
properties: (i) it is salient at low magnification, i.e. diagnos-
tically relevant to a pathologist at the microscope [18], (ii)
it has the maximum number of malignant cells at low mag-
nification, which is a heuristic to locate the dominant tumor,
presumably enriched for cells with driver mutations such as
SPOP due to conferred growth advantages and reflected in
the bulk genetic sequencing we use as mutation ground truth,
(iii) it has the maximum number of abnormal cells at high
magnification, which is a heuristic to locate a subregion with
most nuanced cellular appearance, presumably concentrated
with cellular-level visual features that can discriminate be-
tween cancers driven by SPOP versus other mutations, and
(iv) at 800x800 pixels, it is large enough at high magnification
to capture histology, e.g. gland structure.

A holistic approach that considers for deep learning patches
spatially distributed widely throughout the slide, rather than
only the dominant tumor, could improve performance and pro-
vide further insight. Gleason grading involves such a holistic
approach, identifying first and second most prevalent cancer
morphologies in a whole slide. The complexities of multiple

and varying counts of representatives per slide are future work.

We use multiple classifier ensembles to predict the SPOP
mutation state. Though each residual network [3] classifier
tends to predict SPOP mutation probability in a bimodal
distribution, i.e. being either close to 0 or close to 1, averaging
these classifiers within an ensemble provides a uniform distri-
bution representing the SPOP mutation probability (Fig S2).

Deep learning typically requires large sets of training data,
yet we have only 20 patients with SPOP mutation, nearly
an order of magnitude fewer than the 157 patients without
somatic SPOP mutation in the TCGA cohort. Deep learning in
small data is a challenging setting. We confront this challenge
by training many residual networks [ResNets] on small draws
of the data (Alg S2), in equal proportions of SPOP mutants
and SPOP non-mutants, then combining the ResNets as weak
learners, to produce a strong learner ensemble [19, 20], similar
in principle to a random forest ensemble of decision trees
[21]. Empirically, the great depth of ResNets appears to be
important because CaffeNet [22] – a shallower 8-layer neural
network based on AlexNet [23] – so rarely achieved validation
accuracy of 0.6 or more predicting SPOP mutation state than
an ensemble could not be formed.

Pretraining the deep networks is essential in small data
regimes such as ours, and we use the ResNet-50 model pre-
trained on ImageNet [3]. We used both the published ResNet-
50 and our customized ResNet-50 that included an additional
50% dropout [4] layer and a 1024-neuron fully-connected layer.
In practice, for difficult training set draws, often at least one
of these architectures converged to validation accuracy of 0.6
or more. For data augmentation, the 800x800px images at
high magnification were trimmed to the centermost 512x512px
in 6 degree rotations, scaled to 256x256px, flipped and un-
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Fig. 5. Stricter CIs reduce false negatives and maintain significant Fisher’s Exact p-values, but ignore more predictions as inconclusive (panels C2, C3, D2, D3 – and

Alg S3). The metaensemble in panel C1 consists of seven ensembles, with Receiver Operating Characteristics for each shown in Fig S3. The MSK-IMPACT training to

TCGA testing performance (0.01 < p < 0.05, panels D2 and D3) is expected due to MSK-IMPACT fixed sections being higher quality than TCGA frozen sections (Fig 1).

Freezing distorts the slide by effecting watery and fatty tissues differently. Training on distorted data (TCGA) but testing on undistorted data (MSK-IMPACT) appears robust

(0.001 < p < 0.01, panels C2 and C3) as expected, due to the classifiers learning SPOP-discriminative features despite distortions in the data. This is similar in principle to

de-noising autoencoders learning to be robust to noise in their data.

flipped, then randomly cropped to 224x224 within Caffe [22]
for training. Learning rates varied from 0.001 to 0.007, and
momentums from 0.3 to 0.99. Test error tended to be worse
with momentum less than 0.8, though low momentum allowed
convergence for difficult training sets. Learning rates of 0.001,
0.0015, or 0.002 with momentum of 0.9 was typical. We
used nVidia Titan-X GPUs with 12GB RAM for training. At
12GB, one GPU could train either ResNet architecture using
a minibatch size of 32 images.

Materials and Methods

Please see Section S1 for discussion of (i) digital slide acquisition

and quality control, (ii) region of interest identification, (iii) data
augmentation, (iv) deep learning, and (v) cross validation.

Ensemble aggregation: To estimate generalization error, the
11 classifiers in a trial were selected by highest validation accuracy
to form an ensemble, and a metaensemble from 7 independent trial
ensembles. A 95% basic bootstrapped CI2 indicated generalization
accuracy from these 7 trials was 0.58-0.86 on TCGA (Fig 5 panel
A) and 0.61-0.83 on MSK-IMPACT (Fig 5 panel B), – both signifi-
cantly better than 0.5 chance. On TCGA, metaensemble AUROC
was 0.74 (p=0.00024), accuracy was 0.70, and Fisher’s Exact Test
p=0.00070 (Fig 5 panel C1). On MSK-IMPACT, metaensemble
AUROC was 0.75 (p=0.00017), accuracy was 0.73, and Fisher’s
Exact Test p=0.00010 (Fig 5 panel D1). These two single-dataset

2
We used the R boot library for basic bootstrap CIs. Canty and Ripley 2016:

https://cran.r-project.org/web/packages/boot/index.html
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Fig. 6. SPOP mutant query image at top left for CBIR using TCGA-trained metaensemble on MSK-IMPACT dataset, showing most similar images in top row, with most similar

image leftmost. Less similar images in lower rows, ordered left to right by similarity. One image patch per patient shown. Though the full octagon of patches (Fig 4 panel B, for

query) is considered for the query and each retrieved patient, only the center patch is shown here, with a blue surrounding box and star indicating SPOP mutation, while

an orange box and circle indicates this retrieved patient’s predicted SPOP mutation 95% CI overlaps with that of the query patient. A 95% CI may in practice usefully limit

the number of retrieved results. The most similar patient (top row, leftmost), second most, third, fourth, and fifth have dissimilarity scores of 0.073936, 0.092472, 0.107029,

0.108397, and 0.109131, respectively. The least similar patient (bottom right) has dissimilarity score 0.452150. Mean dissimilarity is 0.219295 with standard deviation 0.075968.

Similarity is 1 - dissimilarity. The second most similar patient (top row, second from left) is a mutant, like the query. There are 5 mutants in the top row, 3 in the second, etc, with

zero in the bottom row. Patients with SPOP mutation are more similar than patients without SPOP mutation for this query (p=0.02032, one-tailed Mann-Whitney U test).

estimates indicate the method performs significantly better than
chance on unseen data. We formed tuned ensembles (Fig S4), where
11 classifiers in a trial were selected by highest ensemble test accu-
racy, which no longer estimates generalization error but promotes
correct classification on average across ensembled classifiers for each
test example (Fig 5, panels A and B, white versus gray at right).

Independent evaluation: We tested the TCGA-trained meta-
ensemble of 7 tuned 11-classifier ensembles on the MSK-IMPACT
cohort, and vice-versa. Each patient had one slide. For each slide,
a central region of interest and surrounding octagon of patches
were found, for nine patches per slide (Fig 4 panels B and C). We
hypothesized that SPOP mutation leads to 1-2 nine-patch-localized
lesions, meaning adjacent patches have similar classifier-predicted
SPOP mutation probability. Therefore, we first calculated the
SPOP mutation prediction weighted mean over all classifiers in
an ensemble, with classifiers having greater nine-patch prediction
variance being more weighted in the mean. Second, of the nine
patches we formed all possible groups of three adjacent patches
and assigned to a group the minimum SPOP mutation prediction
weighted mean of any patch in the grouped three, then took the
second-greatest group as a classifier’s overall patient cancer SPOP
mutation prediction. Within an ensemble, we weighted a classifier’s
overall prediction by the classifier’s nine-patch mutation predic-
tion variance, because classifiers with high variance (e.g. mostly
mutant, but 1-3 of nine non-mutant) reflect the lesion hypothesis
better than classifiers that predict all non-mutant (0) or all mutant
(1). Thus on MSK-IMPACT, the TCGA metaensemble assigned
stochastically greater scores to mutants than non-mutants (AU-
ROC 0.86) and accurately distinguished mutants from non-mutants
(Fisher’s Exact p=0.00379) (Fig 5 panel C2). Moreover on TCGA,
the MSK-IMPACT metaensemble assigned stochastically greater
scores to mutants than non-mutants (AUROC 0.64) and accurately
distinguished mutants from non-mutants (Fisher’s Exact p=0.03056)
(Fig 5 panel D2).

CBIR evaluation: The metaensemble consists of seven en-

sembles. Each ensemble predicts SPOP mutation probability as a

uniformly distributed random variable (Fig S2). Each ensemble is

tuned to a different test set (Sec S2 and Table S1), so we treat each

ensemble’s prediction as a feature, for seven 32-bit SPOP CBIR

features total. For CBIR, a patient’s dissimilarity to the query

patient is the mean of absolute differences in these seven features,

e.g. a dissimilarity of 0.2 means on average an ensemble predicts

the patient’s SPOP mutation probability is 0.2 different than the

query. A similarity score is 1 minus dissimilarity. We evaluated the

TCGA-trained metaensemble on each of the 19 SPOP mutants in

MSK-IMPACT (Fig 1), for each mutant calculating a CBIR p-value,

with a low p-value indicating it is not due to chance alone that

dissimilarities of mutants were lower than non-mutant dissimilar-

ities (Fig 6). Though Brown’s method [24] would be desirable to

calculate an overall p-value of these 19 dependent p-values, Brown’s

method requires 100 p-values for convergence, so we resorted to

Fisher’s method [25] with Bonferoni correction. Fisher’s method

gave an overall fused p-value=0.001068, with a Bonferoni-corrected

q-value=0.020292, so it is not due to chance alone that our CBIR

returns SPOP mutant patients with lower dissimilarity scores than

non-mutants for an SPOP mutant patient query. Similarly, using our

CBIR tool we expected each of the 133 non-mutant MSK-IMPACT

patients would return non-mutant patients with lower dissimilar-

ity scores than SPOP mutants. Fusing these 133 p-values with

Fisher’s method as p-value=9.925e-13, with Bonferoni-corrected

q-value=1.320e-10, we concluded our CBIR tool likewise returned

non-mutant patients with lower dissimilarity scores than mutant

patients for non-SPOP-mutant patient queries.
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Supporting Information

S1. Supplementary materials and methods

Digital slide acquisition and quality control: TCGA slides
and SPOP mutation state was downloaded from cBioPortal [26].
The MSK-IMPACT cohort was available internally. We discarded
slide regions that were not diagnostically salient [18]. We discarded
slide regions that were (i) over-stained eosin blue, (ii) > 50% ery-
throcytes, (iii) > 50% empty, or (iv) > 50% blurred, by inspection
(Alg S1). Patients having no regions remaining were discarded. A
region is a 800x800 pixel [px] patch at 8 microns per pixel [µpp],
~100x magnification.

Region of interest identification: For each region, we used
TMARKER[27] to identify cell nuclei and classify them as benign,
malignant, or unknown – using a corresponding 12750x12750px
patch at level 0 of the slide SVS file (0.25 µpp) for the 800x800px
region passing quality control (Fig 3). The 12750x12750px patch
having the most malignant cells in this slide was deemed the “domi-
nant tumor” after searching in a 10px grid for an 800x800px region
of interest patch (at 4 µpp) having maximal abnormal cells. A ma-
lignant cell is 1 abnormal cell while an unknown cell is 0.5 abnormal
cell and 0.5 normal cell. We expected a mutant driver gene, such as
SPOP, to confer a growth advantage evident in the region of interest
and show histological features, such as ducts. By maximizing abnor-
mal cell counts, we intended to find as many discriminative image
textures based on SPOP-mutation-driven cancer cells as possible.

Data augmentation: In an 800x800px region of interest patch,
the centermost 512x512px patch was selected, rotated in six degree
increments for rotational invariance, and scaled to 256x256px. Eight
800x800px patches were also selected in a surrounding octagon
formation around the region of interest, offset 115 and 200px away
from the central region of interest, so two adjacent octagon patches
were 230px away from each other and 230px away from the central
patch (Fig 4 panels B and C). These patches were rotated and
scaled. This integrates a circular area to summarize the slide, akin
to circular tissue cuts for TMA spots.

Deep learning: We used Caffe [22] for deep learning a binary
classification model given the 256x256px patches labeled by SPOP
mutation state. We adapted the ResNet-50 [3] model pre-trained on
ImageNet [28] data by re-initializing the last layer’s weights (Fig 4
panel A), then trained on pathology images. Classifier predictions
followed a sharply bimodal distribution of 0 or 1, but ensemble
predictions followed a uniform distribution suitable for CIs (Fig S2).

Cross validation: For a trial, a test set of 5 positive and 5
negative [5+/5-] examples was used, where a positive example is a
patient with SPOP mutation (Table S1). If a patient had multiple
slides that passed quality control, at most one was used in the
trial, taken at random. With the test set held out, we ran Monte
Carlo cross validation 13 times, each time (i) drawing without
replacement a training set of 10+/10- examples and validation
set of 5+/5- examples, and (ii) training both a ResNet-50 and
Drop50 classifier (Fig 4 panel A). Our convergence criterion was
classifier validation accuracy >= 0.6 with 10000 − 100000 training
iterations. An ensemble was 11 classifiers, one per Monte Carlo
cross validation, allowing 2 of 13 Monte Carlo cross validation runs
to converge poorly or not at all (Alg S2). Empirically, this class-
balanced stratified-sampling ensemble approach reduces classifier
bias towards the majority class and broadly samples both classes.
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Algorithm S1 Preprocessing: Each patient’s SPOP mutation
state is paired with the whole slide image patch having the max-
imum number of abnormal cells, where abnormal is either cancer
or unknown cell type, rather than healthy cell type. This patch is
taken from the dominant tumor patch. The dominant tumor patch
is both salient and has the maximum number of cancer cells. The
dominant tumor patch is at low magnification, while the abnormal
patch is at high magnification within the dominant.

for all prostate adenocarcinoma patients do
spop← SP OP normal/mutated state as 0/1
slide← whole slide image of cancer biopsy
patches← 75% overlap 800x800px images← slide
salient_patches← predict_saliency(patches)
pri_tumor_patch← max_cancer(salient_patches)
abn_patch← max_abnormal(pri_tumor_patch)
if abn_patch < 50% blurred then

if abn_patch < 50% background then
if abn_patch < 50% erythrocytes then

if abn_patch not eosin overstained then
append (abn_patch, spop) to data_set

return data_set

Algorithm S2 Training: Train a residual network on the abnor-
mal patch representing each patient, labeled with SPOP mutation
state. The final predictor is an ensemble of eleven of such ResNets.
After drawing a test set, training and validation sets are drawn
from the remaining patients in the preprocessed data set (Alg S1).
Within a Monte Carlo cross validation run, training and validation
sets do not overlap. All draws are without replacement. Thirteen
Monte Carlo cross validation runs are attempted in parallel, where
training stops after eleven have validation accuracy of 0.6 or more.
Some runs do not achieve 0.6 after many attempts. See Fig 4 for
architecture details of r50 as “ResNet-50” and drp5 as “Drop50”.

for trial in 0, 1, 2, 3, 4 do
test_set← draw(5 SP OP mutants, 5 SP OP normal)
for monte in 1, 2, ..., 13 in parallel do

train_set← draw(10 mutants, 10 normal)
valid_set← draw(5 mutants, 5 normal)
testable_model← null
repeat

r50_model← train_r50(train_set, valid_set)
drp5_model← train_drp5(train_set, valid_set)
r50_acc← accuracy(valid_set, r50_model)
drp5_acc← accuracy(valid_set, drp5_model)
if r50_acc >= 0.6 then

testable_model← r50_model
else if drp5_acc >= 0.6 then

testable_model← drp5_model

until 11 testable models or testable_model 6= null
append testable_model to testable_models

ensemble← testable_models with ensemble averaging
ensemble_acc← accuracy(test_set, ensemble)
append ensemble_acc to ensemble_accs
append ensemble to ensembles

return (ensembles, ensemble_accs)

Algorithm S3 Prediction: Use each of 7 ensembles to predict
SPOP mutation state, then compute a bootstrapped CI of SPOP
mutation state given these predictions. Each prediction is a prob-
ability of SPOP mutation in the patient. If this probability is
sufficiently high to surpass a defined threshold, the patient’s cancer
is predicted to have an SPOP mutation. Likewise, if this probability
is sufficiently low to fall below a defined threshold, the patient’s
cancer is predicted to not have an SPOP mutation relative patient
germline. Probabilities between these upper and lower thresholds
are inconclusive predictions. Threshold calibration depends both on
the dataset and the cost of false positives/negatives. For instance,
if the CI lower bound is > 0.5, there is significant confidence that
the patient has SPOP mutation. If the CI upper bound is < 0.5,
there is significant confidence that the patient does not have SPOP
mutation. Otherwise, the patient’s SPOP mutation state cannot
be confidently predicted. When training on TCGA and testing on
MSK-IMPACT with a 99% CI (Fig 5 panel C3), the metaensemble
did not commit any false negatives at a 0.5 cutoff, so we calibrated
the cutoff to 0.495 to make one more true positive while still not
committing false negatives. Thus SPOP mutation was predicted
when the lower CI bound was above 0.495, and SPOP was pre-
dicted to not be mutated when the upper CI bound was below
0.495, with the remaining cases being inconclusive (Fig 5 panels C2
and C3). When training on MSK-IMPACT and testing on TCGA,
false positives were an issue, presumably because TCGA frozen
sections are poorer image quality than MSK-IMPACT fixed sections
(Fig 1), so we changed the lower threshold to the mean, converting
many false positives to true negatives. Thus SPOP mutation was
predicted when the lower CI bound was above 0.495, and SPOP
was predicted to not be mutated when the metaensemble mean was
below 0.495 (Fig 5 panels D2 and D3), with the remaining cases
being inconclusive. In this way, the CI bounds or mean served as
thresholds in a calibrated dataset-dependent manner, and we rec-
ommend such calibration when testing on a new dataset. Section S3
defines Pindep(X|I0, I1, ..., I8, C1, C2, ..., C11), which calculates an
overall SPOP mutation prediction for the patient given the central
patch, surrounding octagon of patches (Fig 4 panels B and C), and
11 classifiers in an ensemble.

slide← whole slide image of cancer biopsy
patches← 75% overlap 800x800px images← slide
salient_patches← predict_saliency(patches)
pri_tumor_patch← max_cancer(salient_patches)
abn_patch← max_abnormal(pri_tumor_patch)
for ensemble in ensembles do

I0, I1, ..., I8 ← abn_patch and surrounding octagon
spop_prediction← Pindep(X|I0, I1, ..., I8, C1, C2, ..., C11)
append spop_prediction to spop_predictions

return confidence_interval(spop_predictions)
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S2. TCGA dataset learning

See Fig 5 panel C1 for TCGA testing of the TCGA-trained metaen-
semble, with Fig S4 showing TCGA-trained tuned metaensemble
performance. Training was as follows:

1. Plearn(X = Mutant) = Plearn(X = Normal) = 0.5. Each
classifier is trained on twenty patients, with ten having mutant
SPOP with respect to the patient germline. With this balanced
dataset for training, the probability that a training example is
a mutant is the same as the probability that a training example
is normal, 0.5. This differs from the proportion of patients
having a somatic SPOP mutation, ~10% in the TCGA dataset.
Classifiers that learn on unbalanced datasets may simply learn
to predict the predominant class.

2. Learning Plearn(X|I, C1, C2, ..., C11) for each patient represen-
tative histology image I and eleven classifiers C. This learns the
probability that a classifier will predict the patient is mutated,
given the representative histology image of the patient. An
ensemble of an infinite number of classifiers would give the ex-
pected value of this probability. We use eleven classifiers. Each
classifier tends to emit either a zero or one, predicting mutant or
normal, i.e. Plearn(X|I, C) tends to be 0 or 1. We take the en-
semble average to be the probability Plearn, which tends to be
uniformly distributed rather than bimodal (Fig S2): Plearn =

Plearn(X|I, C1, C2, ..., C11) = (1/11) ∗
∑11

i=1
Plearn(X|I, Ci).

3. Training and validation sets consist of a central image patch
and eight surrounding image patches in an octagon formation,
where the distance between the central patch and a surrounding
patch is the same as the distance between any two adjacent
surrounding patches. All patches had the same label, either
1 for patients with somatic SPOP mutation or 0 for patients
without somatic SPOP mutation. This approximately circular
region of nine patches per patient provides more information
for training, more closely resembles the region available from a
circle of tissue in a TMA, and does not sample far away tissues
that may have different molecular drivers of disease.

4. The test set consists of a single patch per patient, without
a surrounding octagon of eight patches. Test accuracy and
squared loss were optimized from the converged trained models
having at least 0.6 validation accuracy, i.e. the “sel” ensembles
in Fig S4. This optimization selected at most one model from
11 of 13 Monte Carlo cross validation runs, where the selection
of 11 models for the ensemble had the highest accuracy and
lowest squared loss on the test set. This (a) ensures on unseen
data the ensemble has both the discriminative power and
diversity to correctly predict Plearn, which is a function of a
single image, and (b) optimizes each ensemble according to a
different test set, with the aim of decorrelating ensembles for
a more general metaensemble, much like how decision trees
should be decorrelated for a more general random forest [21].

S3. MSK-IMPACT dataset testing

See Fig 5 panels C2 and C3 for MSK-IMPACT testing of the TCGA-
trained metaensemble. Testing was as follows, and the analogous
procedure holds for TCGA testing of the MSK-IMPACT-trained
metaensemble (Fig 5 panels D2 and D3):

1. 9∗Pindep(X = Mutant) ≈ Pindep(X = Normal). The ensem-
bles learned on the TCGA dataset are tested on an independent
MSK-IMPACT dataset 152 patients, 19 having somatic SPOP
mutation, so the probability that one of these MSK-IMPACTed
patients is mutated is only ~10%. This is in sharp contrast
to the TCGA training set, where the probabilities of mutant
and non-mutant patients are equal, due to the stratified sam-
pling for training. Because Plearn(X = mutant) = 0.5 is
greater than Pindep(X = mutant) ≈ 0.1, additional scaling or
stringency is required to avoid false positives from the learned
classifier applied to the independent dataset.

2. Evaluating Pindep(X|I0, I1, ...I8, C1, C2, ..., C11) for each pa-
tient. Each of the eleven classifiers are evaluated on the pa-
tient’s central representative histology image and the octagon
of eight surrounding images (Fig 4 panels B and C), to predict

SPOP mutation. Because each classifier has been trained on
only 10 mutants and 10 non-mutants, many classifiers will emit
a biased prediction of 0 for all nine images or 1 for all nine
images, lacking power to discriminate among the nine images.
Empirically however, 1-3 classifiers tend to have greater vari-
ance in their predictions for each of the nine images of the
patient. The classifiers with greater variance tend to correctly
predict SPOP mutation state, presumably because the fea-
tures learned from similar training data can distinguish image
regions showing mutant image textures from regions showing
non-mutant image textures. Such mutant and non-mutant re-
gions should spatially cluster, i.e. a classifier should make the
same SPOP mutation state prediction for adjacent images in a
patient, otherwise the classifier is predicting noise. Moreover,
classifiers with greater variance should agree which patches
have high evidence of mutation and which patches have low
evidence of mutation. Therefore, we take the classifier mean
prediction, for all 11 classifiers in the ensemble, weighting
more highly in this mean the predictions from classifiers with
higher interpatch prediction variance. We define the weighted
ensemble average as Pindep(X|I, C1, C2, ..., C11) =

(
∑11

i=1
V ari ∗ Plearn(X|I, Ci))/

∑11

i=1
V ari, where we define

V ari = (
∑8

j=0
(Plearn(X|Ij , Ci) − µi)

2) +
(1−µi)2+(0−µi)2

8

and µi = (1/11)
∑11

k=1
Plearn(X|Ik, Ci), so that even clas-

sifiers that predict 0 for all images or 1 for all images still
have some small weight. If, for instance, the mean pre-
dictions (Pindep(X|I, C1, C2, ..., C11)) suggest SPOP is mu-
tated in each of 4 adjacent images, there is significant ev-
idence for SPOP mutation at α = 0.05: of 9 images, 16
possibilities exist of 4 adjacent images being SPOP mutants
and the other images being non-mutants, and 29 = 512
mutant/non-mutant configurations possible, so probability of
4 adjacent images is 16/512 = 0.03125 < 0.05 = α. Thus
for added stringency, one may take as the overall corrected
Pindep the maximum of all adjacent 4-image cluster mean
prediction minima: Pindep4(X|I0, I1, ...I8, C1, C2, ..., C11) =
max(mini∈a,b,c,d(Pindep(X|Ii, C1, C2, ..., C11))). However,
due to the noisy nature of the mean predictions from clas-
sifiers trained on little data, a mutant 4-cluster may not occur,
but additional adjacent images indicating mutation may offer
supporting evidence. From the observation that a 4-cluster
is two overlapping 3-clusters, we slightly loosen the correc-
tion stringency to Pindep3pen(X|I0, I1, ...I8, C1, C2, ..., C11) =
pen(min(Pindep(X|Ia, C1, C2, ..., C11),
Pindep(X|Ib, C1, C2, ..., C11), Pindep(X|Ic, C1, C2, ..., C11))),
∀{Ia, Ib, Ic} ∈ {I0, I1, ..., I8} s.t Ia adjacent Ib, Ib adjacent Ic,
where pen(...) returns the second-greatest value, or penulti-
mate. In this way, Pindep3pen is identical to Pindep4 for a
4-cluster, but additionally allows partially- or non-overlapping
3-clusters to suggest SPOP mutation. Pindep3pen is strictly
greater than or equal to Pindep4.

S4. Implementation Details

We studied a TCGA cohort of 499 prostate adenocarcinoma patients,
in particular the 177 patients that had both acceptable pathology
images and SPOP mutation state available (Fig 1, Alg S1). SPOP
mutation state was downloaded from cBioPortal [26]. After learning
on TCGA data, we tested on an MSK-IMPACT dataset of 19 SPOP
mutant patients and 119 non-mutant patients.

Microscope slides were scanned at 0.25 ± 0.003 microns per
pixel [µpp], using an Aperio AT2 scanner. The resulting SVS data
file consists of multiple levels, where level 0 is not downsampled,
level 1 is downsampled by a factor of 4, level 2 by a factor of 16,
and level 3 by a factor of 32. From each level, 800x800px patches
were extracted via the OpenSlide software library [29]. We refer
to level 2 as low magnification and level 0 as high magnification.
Level 2 approximately corresponds to a 10x eyepiece lens and 10x
objective lens at the microscope when the scan is 0.5µpp. Our
saliency predictor assumed 0.5µpp scans, though the scans here
were 0.25µpp, but appeared robust.

Algorithm S1 describes data preprocessing for training. In prior
work, we developed a patch saliency predictor [18]. A TMARKER
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Fig. S1. SPOP tertiary structure with mutated residues labeled, common to one

site. Though most genetic aberrations affect the substrate-binding MATH domain

in SPOP, our method’s performance appears robust to two of 20 patients having

genetic changes outside this pocket. Mutation chr17:47677762 R368H in patient

TCGA-EJ-7782-01 not shown and not in site. Deletion chr17:47699392 in patient

TCGA-VP-A878 not shown and not in site. PDB structure 3HQI.

classifier was trained to determine cell types [27]. We define the
dominant tumor patch as having the maximum number of cancer
cells of all 800x800px salient patches at low magnification. Within
the 800x800px dominant tumor patch, we select an 800x800px patch
at high magnification having the maximum number of abnormal
cells. Malignant cells count 1 towards the maximum abnormal cell
count, unknown cells count 0.5, and healthy cells count 0. The
dominant tumor is explored in increments of 10 pixels, until the
bounding box with the maximum number of abnormal cells is found.
Whereas our saliency predictor operated on low-power tissue-level
details of a patch, our SPOP predictor operates on high-power
cell-level details of a patch. A patient is discarded from the study if
the abnormal patch over-stained eosin blue, or is > 50% blurred, or
is > 50% background, or is > 50% blood – as determined by visual
inspection.

Algorithm S2 describes the neural network ensemble for training.
This procedure allows learning to occur despite a mere 20 patients

having an SPOP mutation, compared to 157 not having an SPOP
mutation. Additionally, having 5 ensembles – each trial yielding one
ensemble of 11 ResNets – allows a CI in predicted SPOP mutation
state to be calculated for both the generalization error estimate
during training and any future patient (Algorithm S3). Moreover,
such a large number of ResNets can fully sample the SPOP non-
mutant patients, while each ResNet is still trained with an equal
proportion of SPOP mutants and non-mutants. We use two neural
network architectures, both the published ResNet-50 architecture
(r50 in Alg S2) and our custom ResNet-50 with a 50% dropout [4]
layer with an additional 1024 fully-connected layer as the top layer
(drp5 in S2, and shown as Drop50 in Fig 4). In practice, at least one
architecture tended to have validation accuracy ≥ 0.6. Architecture
diversity may increase intra-ensemble ResNet variance, and the
decorrelation in errors should average out in the ensemble. Trials 0,
2, and 3 used two Drop50 learners and nine ResNet-50 classifiers (Fig
4, Table S1). Trial 1 had six and five, respectively. Trial 4 had three
and eight. Trials 1 and 4 had the worst performance by AUROC
(Fig 5), both had at least one ResNet-50 predictor with 0.3 or worse
test set accuracy (Table S1)), and both had more than two Drop50
learners in the final ensemble for the trial. For challenging draws
of training, validation, and test sets, Drop50 learners may slightly
outperform ResNet-50 learners, though generalization accuracy may
remain low due to the clustering of the data in the draws and limited
sample sizes.

ResNets (both ResNet-50 and Drop50 architectures) were trained
on 10 mutant and 10 non-mutant patients, so with data augmen-
tation each ResNet was trained on 21600 images total. For each
training set, a validation set of 5 mutant and 5 non-mutant patients
was used and did not overlap with the training set, so with data
augmentation each ResNet was validated against 10800 images. The
test set for an ensemble consistent of 5 mutant and 5 non-mutant
patients which were not augmented and did not overlap with any
training or validation set for any classifier in the ensemble, so each
ensemble was tested against 10 images.

There is remarkable variability in test accuracy among the
testable models from each Monte Carlo cross validation run (Table
S1). If the test set is drawn from approximately the same distri-
bution as the validation set, where ResNet validation accuracy is
0.6+ and ResNets are uncorrelated, then we can expect 6 of the
11 ResNets (6/11 < 0.6) in an ensemble to correctly predict SPOP
mutation state on average. In this way the ensemble is a strong
learner based on ResNet weak learners [19, 20]. Through ensemble
averaging, the mean SPOP mutation probability is computed over
all 11 constituent ResNets, to provide the final probability from the
ensemble.
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Fig. S2. TCGA classifier and ensemble mutation prediction scores, showing ensemble scores are uniform random variables representing the mutation probability when the

mutant and non-mutant classes are equally sampled, despite the sharply bimodal score distribution of individual classifiers (Table S1). Compared to the bimodal distribution of

single classifiers, this uniform random distribution enables valid confidence interval calculation over ensemble mutation prediction scores and additionally does not suffer

confounds such as p-value inflation, e.g. a disproportionate number of ensemble mutation prediction scores being close to zero. Panel A: Normal distribution of scores with

mean and stdev of TCGA-trained ensemble prediction scores, showing the distribution domain extends beyond the valid [0,1] domain of mutation prediction scores. Panel B:

Uniform distribution of scores, with all scores in the valid [0,1] domain and none outside. Panel C: TCGA-trained ensemble scores, following Uniform distribution (KS Test

p=0.9792). Corresponds to Fig 4 panel A, second from right. Panel D: TCGA-trained tuned ensemble scores, following a Uniform distribution (KS Test p=0.4687). Corresponds

to Fig 4 panel A, far right. The excess of predictions around 0.5 is an artifact of the tuning process, which tends to select classifiers for the ensemble such that the ensemble

prediction is at least 0.5 for mutants and less than 0.5 for non-mutants if the ensemble prediction was incorrect before tuning. See also Fig S4 for tuned ensemble performance.

Panel E: TCGA-trained classifier scores, following sharply bimodal distribution of 0 (non-mutant) or 1 (mutant) predictions. Panel F: TCGA-trained classifiers selected for the

tuned ensemble are also bimodal. Panel G: Q-Q plot showing outliers, indicating TCGA-trained ensemble scores do closely follow a Normal distribution. Panel H: Q-Q plot

showing close linear relationship, indicating TCGA-trained ensemble scores follow a Uniform distribution. Panel I: Q-Q plot showing outliers, indicating TCGA-trained tuned

ensemble scores do not closely follow a Normal distribution. Panel J: Q-Q plot showing close linear relationship, indicating TCGA-trained tuned ensemble scores follow a

Uniform distribution.
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Fig. S3. Ensemble performance, for comparison to ensemble performance in Fig 5 panel C1. Classifiers in ensemble selected by highest validation accuracy. This estimates

performance on unseen data. Performance for the classifiers instead selected by highest test set accuracy is shown in Fig S4.
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Fig. S4. Tuned ensemble performance, for comparison to ensemble performance in Fig 5 panel C. The tuned ensembles are used for prediction on the independent

MSK-IMPACT cohort (Fig 5 panels C2 and C3). Tuning provides limited additional training for each ensemble via model selection on the corresponding TCGA test set. Tuned

ensemble mutation prediction distributions shown in Fig S2.
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Table S1. TCGA test set images and accuracies, with prediction errors from single residual networks highlighted in red and prediction errors
from residual network ensembles highlighted in magenta. New 20-patient training and 10-patient validation sets are drawn for each Monte
Carlo cross validation run against the trial’s 10-patient test set. The far right column is used to calculate the mean classifier prediction, which
is used as the trial’s ensemble prediction. The Receiver Operating Characteristic of these ensembles in shown in Fig S3. The seven ensemble
predictions are used to calculate a confidence interval of generalization accuracy, shown in Fig 4 panel A second from right in gray and red.
Individual classifier predictions follow a sharply bimodal distribution of 0 (non-mutant) or 1 (mutant), while the ensemble predictions follow a
uniform random distribution (Fig S2). Table S1 is continued in Table S2, showing the final two enembles in the seven ensemble metaensemble
trained on TCGA data.

Trial0 Test # : SPOPMonte1Monte2Monte3Monte4Monte5 Monte6Monte7Monte8Monte9Monte10Monte11 Mean

5 6

3 4

7 8

1 2

9 10

1 : 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9988 0.0000 0.0000 0.9987 0.1816

2 : 1 1.0000 1.0000 1.0000 0.8637 0.0613 1.0000 0.1741 0.1386 1.0000 1.0000 0.9647 0.7457

3 : 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 1.0000 0.0000 0.9892 0.0000 0.1808

4 : 1 0.3284 0.0000 0.0000 0.7208 1.0000 1.0000 1.0000 1.0000 1.0000 0.9691 1.0000 0.7289

5 : 0 1.0000 0.0006 0.0001 0.0020 1.0000 1.0000 1.0000 1.0000 0.9845 0.0001 0.0114 0.5453

6 : 1 0.0124 1.0000 0.9970 0.2412 0.9999 0.9982 0.0000 0.0001 0.0017 0.0000 0.9990 0.4772

7 : 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0750 0.0000 0.9931 0.0001 0.0000 0.0000 0.0971

8 : 1 0.1069 1.0000 0.9992 0.8635 0.0054 1.0000 0.9991 1.0000 0.6994 0.9997 0.0036 0.6979

9 : 0 0.9990 0.0156 0.9989 0.0005 0.9978 0.9844 1.0000 0.1079 0.4288 0.0000 0.0000 0.5030

10 : 1 0.0013 0.2339 0.9962 0.0001 0.9978 0.0000 1.0000 1.0000 0.8206 0.9975 0.0197 0.5516

Trial1 Test # : SPOPMonte1Monte2Monte3Monte4Monte5 Monte6Monte7Monte8Monte9Monte10Monte11 Mean

5 6

3 4

7 8

1 2

9 10

1 : 0 0.1674 0.0007 0.0041 0.0005 0.6145 0.0001 0.0002 0.0016 0.3730 0.9999 0.0000 0.1813

2 : 1 0.9580 1.0000 1.0000 1.0000 1.0000 1.0000 0.9973 1.0000 1.0000 1.0000 1.0000 0.9542

3 : 0 0.0839 0.0000 0.0001 0.0000 0.0000 0.0048 0.0000 0.0022 0.0000 1.0000 0.0000 0.0916

4 : 1 0.0845 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0114 0.0000 1.0000 0.0000 0.0920

5 : 0 0.6265 0.9999 1.0000 0.9998 0.9747 0.9933 0.0001 1.0000 0.0000 0.3829 0.1641 0.5925

6 : 1 0.4271 0.1278 1.0000 0.0008 0.0010 0.0000 0.0000 1.0000 0.8001 1.0000 0.0003 0.3750

7 : 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 : 1 0.4438 0.0000 1.0000 0.0002 0.4147 0.0000 0.9095 0.0011 1.0000 1.0000 0.0000 0.3932

9 : 0 0.4236 0.0000 0.3012 0.0004 1.0000 0.9998 0.0000 0.0001 0.8132 1.0000 0.0000 0.4621

10 : 1 0.8278 0.9999 1.0000 1.0000 1.0000 0.9312 1.0000 1.0000 0.9999 0.9729 1.0000 0.9030

Trial2 Test # : SPOPMonte1Monte2Monte3Monte4Monte5 Monte6Monte7Monte8Monte9Monte10Monte11 Mean

5 6

3 4

7 8

1 2

9 10

1 : 0 0.0744 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0077 0.0075

2 : 1 0.9993 0.0022 0.9999 0.1242 1.0000 0.0000 0.0412 1.0000 0.9674 0.9995 0.9880 0.6474

3 : 0 0.2742 0.0000 0.8778 0.0000 1.0000 0.0044 1.0000 0.1288 0.0040 0.0000 0.0000 0.2990

4 : 1 1.0000 0.9989 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0008 1.0000 0.9091

5 : 0 0.0000 0.0057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0002 0.0000 0.0000 0.0007

6 : 1 0.9904 0.0003 1.0000 1.0000 1.0000 1.0000 0.9994 1.0000 1.0000 1.0000 1.0000 0.9082

7 : 0 0.9971 0.0002 0.0001 0.9961 1.0000 0.0000 0.9309 0.0000 0.0000 0.0019 0.9975 0.4476

8 : 1 0.9968 0.0001 0.2478 0.0057 1.0000 0.0000 1.0000 0.0037 0.0000 0.9858 0.2014 0.4038

9 : 0 0.9628 0.4937 0.3145 0.0126 0.9987 0.6667 0.0002 0.0721 0.0000 0.0000 0.6324 0.3776

10 : 1 1.0000 0.0000 1.0000 0.7263 1.0000 1.0000 0.9654 1.0000 0.0043 1.0000 0.4465 0.7402

Trial3 Test # : SPOPMonte1Monte2Monte3Monte4Monte5 Monte6Monte7Monte8Monte9Monte10Monte11 Mean

5 6

3 4

7 8

1 2

9 10

1 : 0 0.9820 0.0000 0.0000 0.0000 0.9999 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2711

2 : 1 0.0703 0.3796 0.0034 1.0000 0.0007 1.0000 1.0000 0.0000 0.9955 0.9872 0.0364 0.4976

3 : 0 0.9994 1.0000 0.1613 0.0000 0.9959 0.2808 1.0000 1.0000 0.0010 0.0003 0.0000 0.4944

4 : 1 1.0000 0.0002 1.0000 0.3774 0.9294 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8461

5 : 0 0.0000 0.0419 0.0016 0.0009 0.0000 1.0000 1.0000 1.0000 0.0003 0.8270 1.0000 0.4429

6 : 1 1.0000 1.0000 0.0104 1.0000 1.0000 1.0000 1.0000 0.0989 1.0000 1.0000 0.0011 0.7373

7 : 0 0.0688 0.9645 0.0434 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.9813 0.0009 0.3690

8 : 1 0.9998 1.0000 0.8986 1.0000 1.0000 1.0000 1.0000 0.9981 1.0000 0.0004 0.0000 0.8088

9 : 0 0.0002 0.0147 1.0000 0.0000 0.5648 0.0002 0.0000 0.0000 0.0006 0.0000 0.9010 0.2256

10 : 1 0.0000 1.0000 0.0003 0.9888 0.8783 0.0040 1.0000 1.0000 1.0000 0.9989 0.0000 0.6246

Trial4 Test #: SPOP Monte1Monte2Monte3Monte4Monte5 Monte6Monte7Monte8Monte9Monte10Monte11 Mean

5 6

3 4

7 8

1 2

9 10

1 : 0 1.0000 0.0167 1.0000 0.9963 1.0000 0.9630 0.8542 0.0000 0.0011 0.9922 1.0000 0.7112

2 : 1 0.0000 0.0001 0.0000 0.0000 0.0086 0.9996 0.0001 0.0073 0.1754 0.0000 0.0001 0.1083

3 : 0 1.0000 1.0000 1.0000 0.9972 0.0000 1.0000 0.9999 1.0000 1.0000 1.0000 0.0003 0.8179

4 : 1 0.3789 1.0000 0.3241 0.0000 0.9964 1.0000 1.0000 0.9993 1.0000 0.9718 0.0078 0.6980

5 : 0 0.0000 0.9928 0.9998 0.8345 0.0000 1.0000 0.9999 0.0000 0.9993 1.0000 0.9997 0.7115

6 : 1 0.0039 1.0000 1.0000 0.9746 0.9988 0.9970 0.0001 0.0000 0.0038 1.0000 0.9988 0.6343

7 : 0 0.0000 0.0065 0.0000 0.1120 0.0000 1.0000 0.9833 1.0000 0.0000 0.0000 0.0057 0.2825

8 : 1 1.0000 1.0000 1.0000 1.0000 0.9983 1.0000 1.0000 1.0000 0.8101 1.0000 0.9926 0.9819

9 : 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 : 1 0.1585 0.9483 0.2321 0.8237 0.9974 1.0000 1.0000 0.0000 1.0000 0.0134 0.0000 0.5612
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Table S2. Continuation of Table S1, for trials 5 and 6, the final two ensembles in the TCGA-trained metaensemble.

Trial5 Test # : SPOPMonte1Monte2Monte3Monte4Monte5Monte6Monte7Monte8Monte9Monte10Monte11 Mean

5 6

3 4

7 8

1 2

9 10

1 : 0 0.0000 0.9732 1.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0000 0.0000 0.9951 0.2699

2 : 1 0.9999 1.0000 1.0000 0.9998 0.0033 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9094

3 : 0 0.0000 0.0000 0.0033 0.0000 0.0000 1.0000 0.0000 0.9999 1.0000 1.0000 0.0007 0.3640

4 : 1 0.0000 1.0000 0.9997 0.0068 0.0003 0.0008 0.4298 0.0000 0.0001 0.0000 0.0000 0.2216

5 : 0 1.0000 0.0000 0.6263 0.0000 0.0000 0.9763 0.0000 0.0215 0.0002 0.5638 0.9029 0.3719

6 : 1 1.0000 1.0000 0.9967 0.9997 1.0000 1.0000 0.0000 1.0000 0.6760 1.0000 1.0000 0.8793

7 : 0 1.0000 1.0000 1.0000 0.9991 1.0000 0.9998 1.0000 0.0624 0.0100 1.0000 1.0000 0.8247

8 : 1 0.0471 1.0000 1.0000 0.0008 0.0001 0.0052 1.0000 1.0000 1.0000 1.0000 0.9977 0.6410

9 : 0 0.0442 0.0199 0.0000 0.0000 0.0000 0.0000 0.0000 0.0313 0.0000 0.0000 0.7992 0.0813

10 : 1 0.0000 1.0000 0.4090 1.0000 0.0008 0.0129 0.0013 0.0000 0.0001 0.9782 1.0000 0.4002

Trial6 Test # : SPOPMonte1Monte2Monte3Monte4Monte5Monte6Monte7Monte8Monte9Monte10Monte11 Mean

5 6

3 4

7 8

1 2

9 10

1 : 0 0.0000 0.0755 0.0001 0.0001 0.0000 0.0002 0.9998 0.0000 0.0000 0.0000 0.0000 0.0978

2 : 1 1.0000 0.9999 0.0736 0.0494 0.0039 0.9867 1.0000 0.0003 0.9948 0.1567 0.0000 0.4787

3 : 0 1.0000 1.0000 1.0000 1.0000 0.9729 1.0000 1.0000 1.0000 0.2159 1.0000 1.0000 0.9263

4 : 1 0.8195 0.0009 0.2068 0.9985 0.0008 1.0000 1.0000 0.9998 0.9972 0.9983 0.9961 0.7289

5 : 0 1.0000 1.0000 0.0000 1.0000 0.8761 1.0000 0.0061 0.0006 0.0000 0.9992 0.9335 0.6196

6 : 1 1.0000 1.0000 0.9995 1.0000 0.0000 1.0000 0.9854 1.0000 1.0000 1.0000 1.0000 0.9077

7 : 0 0.0000 0.0000 1.0000 0.3800 0.0000 0.0041 0.0000 0.0012 0.0000 0.0000 0.0000 0.1259

8 : 1 0.0000 0.0179 0.9757 0.9564 0.0000 1.0000 0.0010 0.4151 1.0000 0.0003 0.0004 0.3970

9 : 0 0.9971 0.2266 0.0038 0.4729 0.0000 1.0000 1.0000 0.1839 1.0000 0.9996 0.0002 0.5349

10 : 1 0.0000 0.0000 0.9995 0.0000 0.0000 0.0000 0.0103 0.0150 0.9993 0.0000 0.9712 0.2723
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