New Results
H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer
View ORCID ProfileAndrew J. Schaumberg, View ORCID ProfileMark A. Rubin, View ORCID ProfileThomas J. Fuchs
doi: https://doi.org/10.1101/064279
Andrew J. Schaumberg
aMemorial Sloan Kettering Cancer Center and the Tri-Institutional Training Program in Computational Biology and Medicine;
bWeill Cornell Graduate School of Medical Sciences;
Mark A. Rubin
cCaryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital–Weill Cornell Medicine;
dSandra and Edward Meyer Cancer Center at Weill Cornell Medicine;
eDepartment of Pathology and Laboratory Medicine, Weill Cornell Medicine;
Thomas J. Fuchs
fDepartment of Medical Physics, Memorial Sloan Kettering Cancer Center;
gDepartment of Pathology, Memorial Sloan Kettering Cancer Center

Article usage
Posted October 01, 2018.
H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer
Andrew J. Schaumberg, Mark A. Rubin, Thomas J. Fuchs
bioRxiv 064279; doi: https://doi.org/10.1101/064279
Subject Area
Subject Areas
- Biochemistry (8825)
- Bioengineering (6529)
- Bioinformatics (23481)
- Biophysics (11800)
- Cancer Biology (9221)
- Cell Biology (13334)
- Clinical Trials (138)
- Developmental Biology (7442)
- Ecology (11421)
- Epidemiology (2066)
- Evolutionary Biology (15169)
- Genetics (10448)
- Genomics (14054)
- Immunology (9183)
- Microbiology (22186)
- Molecular Biology (8821)
- Neuroscience (47614)
- Paleontology (350)
- Pathology (1430)
- Pharmacology and Toxicology (2492)
- Physiology (3736)
- Plant Biology (8085)
- Synthetic Biology (2222)
- Systems Biology (6042)
- Zoology (1254)