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Abstract

Biological pathways or modules represent sets of interactions or func-
tional relationships occurring at the molecular level in living cells. A
large body of knowledge on pathways is organized in public databases
such as the KEGG, Reactome, or in more specialized repositories, such
as the Atlas of Cancer Signaling Network (ACSN). All these open biolog-
ical databases facilitate analyses, improving our understanding of cellular
systems. We hereby describe the R package ACSNMineR for calculation of
enrichment or depletion of lists of genes of interest in biological pathways.
ACSNMineR integrates ACSN molecular pathways, but can use any molec-
ular pathway encoded as a GMT �le, for instance sets of genes available
in the Molecular Signatures Database (MSigDB). We also present the R
package RNaviCell, that can be used in conjunction with ACSNMineR to
visualize di�erent data types on web-based, interactive ACSN maps. We
illustrate the functionalities of the two packages with biological data taken
from large-scale cancer datasets.

1 Introduction

Biological pathways and networks comprise sets of interactions or functional
relationships, occurring at the molecular level in living cells [1, 2]. A large
body of knowledge on cellular biochemistry is organized in publicly available
repositories such as the KEGG database [3], Reactome [4] and MINT [5]. All
these biological databases facilitate a large spectrum of analyses, improving our
understanding of cellular systems. For instance, it is a very common practice
to cross the output of high-throughput experiments, such as mRNA or protein
expression levels, with curated biological pathways in order to visualize the
changes, analyze their impact on a network and formulate new hypotheses about
biological processes. Many biologists and computational biologists establish list
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of genes of interest (e.g. a list of genes that are di�erentially expressed between
two conditions, such as normal vs disease) and then evaluate if known biological
pathways have signi�cant overlap with this list of genes.

We have recently released the Atlas of Cancer Signaling Network (ACSN),
a web-based database which describes signaling and regulatory molecular pro-
cesses that occur in a healthy mammalian cell but that are frequently deregu-
lated during cancerogenesis [6]. The ACSN atlas aims to be a comprehensive
description of cancer-related mechanisms retrieved from the most recent litera-
ture. The web interface for ACSN is using the NaviCell technology, a software
framework dedicated to web-based visualization and navigation for biological
pathway maps [7]. This environment is providing an easy navigation of maps
through the use of the Google Maps JavaScript library, a community interface
with a web blog system, and a comprehensive module for visualization and
analysis of high-throughput data [8].

In this article, we describe two R packages related to ACSN analysis and
data visualization. The package ACSNMineR is designed for the calculation
of gene enrichment and depletion in ACSN maps (or any user-de�ned gene
set via the import function), while RNaviCell is dedicated to data visualiza-
tion on ACSN maps. Both packages are available on the Comprehensive R
Archive Network (https://cran.r-project.org/web/packages/ACSNMineR/
and https://cran.r-project.org/web/packages/RNaviCell/), and on the
GitHub repository (https://github.com/sysbio-curie/ACSNMineR and https:
//github.com/sysbio-curie/RNaviCell). For the remainder of this article,
we describe the organization of each package and illustrate their capacities with
several concrete examples demonstrating their capabilities.

2 Packages organization

2.1 ACSNMineR

Currently, ACSN maps cover signaling pathways involved in DNA repair, cell cy-
cle, cell survival, cell death, epithelial-to-mesenchymal transition (EMT) and cell
motility. Each of these large-scale molecular maps is decomposed in a number of
functional modules. The maps themselves are merged into a global ACSN map.
Thus the information included in ACSN is organized in three hierarchical levels:
a global map, �ve individual maps, and several functional modules. Each ACSN
map covers hundreds of molecular players, biochemical reactions and causal re-
lationships between the molecular players and cellular phenotypes. ACSN rep-
resents a large-scale biochemical reaction network of 4,826 reactions involving
2,371 proteins (as of today), and is continuously updated and expanded. We
have included the three hierarchical levels in the ACSNMineR package, in order to
be able to calculate enrichments at all three levels. The calculations are made
by counting the number of occurences of gene symbols (HUGO gene names)
from a given list of genes of interest in all ACSN maps and modules. Table 1 is
detailling the number of gene symbols contained in all the ACSN maps.
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Table 1: ACSN maps included in the ACSNMineR package. Map: map name,
Total: total number of gene symbols (HUGO) used to construct the map, Nb
mod.: number of modules, Min: mimimum number of gene symbols in the mod-
ules, Max: maximum number of gene symbols in the modules, Mean: average
number of gene sybols per module. N.B.: one gene symbol may be present in
several modules of the map.

Map Total Nb mod. Min Max Mean
ACSN global 2243 63 2 629 83
Survival 1053 5 208 431 328
Apoptosis 667 7 19 382 136
EMT & Cell motility 634 9 18 629 136
DNA repair 345 21 3 171 45
Cell cycle 250 25 2 130 19

The statistical signi�cance of the counts in the modules is assessed by us-
ing either the Fisher exact test [9, 10] or the hypergeometric test, which are
equivalent for this purpose [11].

The current ACSN maps are included in the ACSNMineR package, as a list of
character matrices.

> length(ACSN_maps)

[1] 6

> names(ACSN_maps)

[1] "Apoptosis" "CellCycle" "DNA_repair" "EMT_motility" "Master"

[6] "Survival"

For each matrix, rows represent a module, with the name of the module in
the �rst column, followed by a description of the module (optional), and then
followed by all the gene symbols of the module. The maps will be updated
according to every ACSN major release.

The main function of the ACSNMineR package is the enrichment function,
which is calculating over-representation or depletion of genes in the ACSN maps
and modules. We have included a small list of 12 Cell Cycle related genes in
the package, named genes_test that can be used to test the main enrichment
function and to get familiar with its di�erent options.

> genes_test

[1] "ATM" "ATR" "CHEK2" "CREBBP" "TFDP1" "E2F1" "EP300"

[8] "HDAC1" "KAT2B" "GTF2H1" "GTF2H2" "GTF2H2B"

The example shown below is the simplest command that can be done to test
a gene list for over-representation on the six included ACSN maps. With the list
of 12 genes mentionned above and a default p-value cuto� of 0.05, we have a set
of 36 maps or modules that are signi�cantly enriched. The results are structured
as a data frame with nine columns displaying the module name, the module size,

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2016. ; https://doi.org/10.1101/064469doi: bioRxiv preprint 

https://doi.org/10.1101/064469
http://creativecommons.org/licenses/by/4.0/


the number of genes from the list in the module, the names of the genes that
are present in the module, the size of the reference universe, the number of
genes from the list that are present in the universe, the raw p-value, the p-value
corrected for multiple testing and the type of test performed. The module �eld
in the results data frame indicate the map name and the module name separated
by a column character. If a complete map is signi�cantly enriched or depleted,
then only the map name is shown, without any module or column character.
For instance, the third line of the results object below concern the E2F1 module
of the CellCycle map.

> library(ACSNMineR)

> results <- enrichment(genes_test)

> dim(results)

[1] 8 9

> results[3,]

module module_size nb_genes_in_module

V161 CellCycle:E2F1 19 12

genes_in_module

V161 ATM ATR CHEK2 CREBBP TFDP1 E2F1 EP300 HDAC1 KAT2B GTF2H1 GTF2H2 GTF2H2B

universe_size nb_genes_in_universe p.value p.value.corrected test

V161 2237 12 3.735018e-21 2.353061e-19 greater

The enrichment function can take up to eight arguments: the gene list (as
a character vector), the list of maps that will be used to calculate enrichment
or depletion, the type of statistical test (either the Fisher exact test or the
hypergeometric test), the module minimal size for which the calculations will
be done, the universe, the p-value threshold and the alternative ("greater" for
calculating over-representation, "less" for depletion and "both" for both tests).

Only the gene list is mandatory to call the enrichment function, all the
other arguments have default values. The maps argument can either be a
dataframe imported from a gmt �le with the format_from_gmt function or
a list of dataframes generated by the same procedure. By default, the function
uses the ACSN maps previously described. The correction for multiple test-
ing is set by default to use the method of Benjamini & Hochberg, but can be
changed to any of the usual correction methods (Bonferroni, Holm, Hochberg,
Holm, or Benjamini & Yekutieli [12]), or even disabled . The minimal module
size represents the smallest size value of a module that will be used to compute
enrichment or depletion. This is meant to remove results of low signi�cance for
module of small size. The universe in which the computation is made by default
is de�ned by all the gene symbols contained in the maps. All the genes that
were given as input and that are not present on the maps will be discarded. To
keep all genes, the user can change the universe to HUGO, and in that case, the
complete list of HUGO gene symbols will be used as the reference (> 39,000
genes). The threshold corresponds to the maximal value of the corrected p-value
(unless the user chose not to correct for multiple testing) that will be displayed
in the result table.
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It may be of interest to compare enrichment of pathways in di�erent cohorts
or experiments. For example, enrichment of highly expressed pathways can re-
veal di�erences between two cancer types or two cell lines. To facilitate such
comparisons, ACSNMineR provides a multisample_enrichment function. It re-
lies on the enrichment function but takes a list of character vector genes. The
name of each element of the list will be assumed to be the name of the sample for
further analysis. Most of the arguments given to multisample_enrichment are
the same as the ones passed to enrichment. However, the cohort_threshold

is designed to �lter out modules which would not pass the signi�cance threshold
in all samples.

Finally, to facilitate visualization of results, ACSNMineR integrates a repre-
sentation function based on ggplot2 syntax [13]. It allows representation of
results from enrichment or multisample_enrichment with a limited number
of parameters. Two types of display are available: heat-map tiles or bars. For
multiple samples using a barplot representation, the number of rows used can
be provided, otherwise all plots will be on the same row. For the heatmap,
the color of the non-signi�cant modules, and boundaries of the gradient for
signi�cant values can also be tuned.

We previously computed the p-value of the genes_test list with default
parameters. The number of modules which have a p-value below 0.05 was 36,
that can be compared to the 49 obtained without correction with the simple
command shown below (some of the results are displayed in table 2).

enrichment(genes_test,correction_multitest = FALSE)

Table 2: Overview of the results from enrichment analysis without correction.
Module : name of the module. Mod. size: size of the module. Genes in module:
genes from input which are found in the module. p-value: uncorrected p-value.
Test : null hypothesis used, greater is synonym of enrichment.
Module Mod. size Genes in module p-value Test
CellCycle 242 ATM ATR 5.36e-07 greater

CHEK2
CREBBP KAT2B
TFDP1 E2F1
EP300 HDAC1

GTF2H1 GTF2H2
GTF2H2B

CellCycle: APOPTOSIS ENTRY 10 ATM ATR 3.49e-07 greater
CHEK2 E2F1

CellCycle: CYCLINB 7 ATM 3.98e-02 greater

We can now plot the �rst six rows of the results obtained for corrected and
uncorrected �sher test with heatmap format (Figure 1) or barplot (Figure 2)
with the following commands:
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# heatmap

represent_enrichment(enrichment = list(Corrected = results[1:6,],

Uncorrected = results_uncorrected[1:6,]),

plot = "heatmap", scale = "reverselog",

low = "steelblue" , high ="white", na.value = "grey")

# barplot

represent_enrichment(enrichment = list(Corrected = results[1:6,],

Uncorrected = results_uncorrected[1:6,]),

plot = "heatmap", scale = "reverselog",

nrow = 1)

Figure 1: Representation of the enriched modules (�rst six rows), with either
Bonferroni correction or no correction. Grey tiles means that the data is not
available for this module in this sample. P-values of low signi�cance are in
white, whereas p-values of high signi�cance are represented in blue.
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Figure 2: Representation of the enriched modules (�rst six rows), with either
Bonferroni correction (left) or no correction (right). The modules are on the X
axis and the p-values are on the Y axis.
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2.2 RNaviCell

The NaviCell Web Service provides a server mode, which allows automating
visualization tasks and retrieving data from molecular maps via RESTful (stan-
dard http/https) calls. Bindings to di�erent programming languages are pro-
vided in order to facilitate the development of data visualization work�ows and
third-party applications [8]. RNaviCell is the R binding to the NaviCell Web
Service. It is implemented as a standard R package, using the R object-oriented
framework known as Reference Classes [14]. Most of the work done by the user
using graphical point-and-click operations on the NaviCell web interface are
encoded as functions in the library encapsulating http calls to the server with
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appropriate parameters and data. Calls to the NaviCell server are performed
using the library RCurl [15], while data encoding/decoding in JSON format is
performed with the RJSONIO library [16].

Once the RNaviCell library is installed and loaded, the �rst step is to create
a NaviCell object and launch the browser session. This will automatically create
a unique session ID with the NaviCell server. Once the session is established,
various functions can be called to send data to the web session, set graphical
options, visualize data on a map or get data from the map. There are 125
functions available in the current version of RNaviCell. All of them are described
with their di�erent options in the RNaviCell documentation, and we provide a
tutorial on the GitHub repository wiki (https://github.com/sysbio-curie/
RNaviCell/wiki/Tutorial).

In the simple example detailed below, we create a NaviCell session, then
load an expression data set from a local (tab-delimited) �le. The data represent
gene expression measured in a prostate cancer cell line resistant to hormonal
treatment (agressive), and is taken from the Cell Line Encyclopedia project [17].
We visualize the data values on the Cell Cycle map (the default map), using heat
maps. With this visualization mode, gene expression values are represented as
a color gradient (green to red) in squares positioned next to the entities where
the gene has been mapped (Figure 3).

# a short RNaviCell script example

# load RNaviCell library

library(RNaviCell)

# create a NaviCell object and launch a server session

# this will automatically open a browser on the client

navicell <- NaviCell()

navicell$launchBrowser()

# import a gene expression matrix and

# send the data to the NaviCell server

# NB: the data_matrix object is a regular R matrix

data_matrix <- navicell$readDatatable('DU145_data.txt')

navicell$importDatatable("mRNA expression data", "DU145", data_matrix)

# set data set and sample for heat map representation

navicell$heatmapEditorSelectSample('0','data')

navicell$heatmapEditorSelectDatatable('0','DU145')

navicell$heatmapEditorApply()
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Figure 3: Gene expression values from a prostate cancer cell line visualized on
the cell cycle map as heat map plots. The �gure is a screenshot of the NaviCell
map browser, with the map set at the top (the less detailed) zoom level. The
essential phases of the cell cycle are indicated on the map (G1/S/G2/M). Note
that on the web browser the map is interactive and the user can zoom in and out,
change the graphical parameters, import additional data and perform functional
analysis.

3 Case studies

3.1 Analysis of breast cancer expression data

In a study published in 2008, Schmidt and colleagues analyzed gene expression
patterns of 200 breast cancer patients not treated by systemic therapy after
surgery using discovery approach to reveal additional prognostic motifs [18]. Es-
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trogen receptor (ER) expression and proliferative activity of breast carcinomas
are well-known and described prognostic markers. Patients with ER-positive
carcinomas have a better prognosis than those with ER-negative carcinomas,
and rapidly proliferating carcinomas have an adverse prognosis. Knowledge
about the molecular mechanisms involved in the processes of estrogen-dependent
tumor growth and proliferative activity has led to the successful development
of therapeutic concepts, such as antiendocrine and cytotoxic chemotherapy.

The dataset corresponding to this study is available as a Bioconductor pack-
age. The code shown below is creating a list of di�erentially expressed genes
between ER positive and ER negative samples, and calculates the enrichment in
ACSN maps from this list of genes. As seen in Table 3, there is one map (Cell
Cycle) and six modules (belonging to the Cell Cycle, DNA repair and EMT
motility maps) enriched.

# load all necessary packages

library(breastCancerMAINZ)

library(Biobase)

library(limma)

library(ACSNMineR)

library(hgu133a.db)

library(RNaviCell)

# load data and extract expression and phenotype data

data(mainz)

eset <- exprs(mainz)

pdat <- pData(mainz)

# Create list of genes differentially expressed between ER positive and

# ER negative samples using moderated t-test statistics

design <- model.matrix(~factor(pdat$er == '1'))

lmFit(eset, design) -> fit

eBayes(fit) -> ebayes

toptable(ebayes, coef=2,n=25000) -> tt

which(tt$adj < 0.05) -> selection

rownames(tt[selection,]) -> probe_list

mget(probe_list, env=hgu133aSYMBOL) -> symbol_list

symbol_list <- as.character(symbol_list)

# calculate enrichment in ACSN maps

enrichment(symbol_list) -> results

dim(results)

[1] 7 9

The Molecular Signatures Database (MSigDB) is one of the most widely
used repository of well-annotated gene sets representing the universe of biolog-
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Table 3: ACSN maps enrichment for genes di�erentially expressed between ER
positive and ER negative samples in breast cancer. Module : name of the
module. Mod. size: size of the module. Nb genes: number of genes from input
which are found in the module. pval: raw p-value. Cor. pval: corrected p-value.
Module Mod. size Nb genes pval Cor. pval
CellCycle 242 20 1.70e-03 0.021
CellCycle:E2F1_TARGETS 130 14 6.26e-04 0.009
CellCycle:E2F2_TARGETS 35 8 4.70e-05 0.009
CellCycle:E2F3_TARGETS 51 11 3.82e-06 0.0002
CellCycle:E2F4_TARGETS 100 15 9.99e-06 0.0003
DNA_repair:SPINDLE_CHECKPOINT 28 5 3.82e-03 0.04
EMT_motility:ECM 147 13 5.09e-03 0.045

ical processes [19]. We downloaded the canonical pathways set, counting more
than 1,300 gene sets representing canonical pathways compiled by domain ex-
perts. The dataset is encoded with the 'gmt' format, and can be imported
within ACSNMineR with the format_from_gmt function. We calculate the en-
richment for the breast cancer di�erentially expressed gene list, simply specifying
the MSigDB data we just imported as the maps option. Table 4 is displaying
the pathways having a corrected p-value < 0.05. The pre�x is indicating the
database source, so we see that we have pathways from the KEGG, Reactome
and PID databases. Consistent with our previous results, most of the enriched
pathways are related to the cell cycle regulation.

# Import MSigDB canonical pathways and calculate enrichment on this database

mtsig <- format_from_gmt('c2.cp.v5.0.symbols.gmt')

enrichment(symbol_list, maps = mtsig)

At last, we visualize the mean expression values for ER negative samples
for all genes di�erentially expressed on the ACSN master (global) map using
ACSNMineR commands to create heatmaps.

# Select ER negative samples and calculate mean expression values

apply(eset[probe_list,pdat$er == 0],1,mean) -> er_minus_mean

names(er_minus_mean) <- symbol_list

er_minus_mean <- as.matrix(er_minus_mean)

colnames(er_minus_mean) <- c('exp')

# create a NaviCell session, import the expression matrix on the map and create

# heatmaps to represent the data points.

navicell <- NaviCell()
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Table 4: MSigDB canonical pathway database enrichment for genes di�eren-
tially expressed between ER positive and ER negative samples in breast cancer.
Module : name of the module. Mod. size: size of the module. Nb genes: num-
ber of genes from input which are found in the module. Cor. pval: corrected
p-value.
Pathway Mod. size Nb genes Cor. pval
KEGG_CELL_CYCLE 128 76 1.98e-07
REACTOME_CELL_CYCLE_MITOTIC 325 158 2.40e-07
REACTOME_DNA_REPLICATION 192 98 1.33e-05
PID_FOXM1_PATHWAY 40 29 5.05e-05
REACTOME_MITOTIC_M_M_G1_PHASES 172 87 7.38e-05
REACTOME_CELL_CYCLE 421 181 2.97e-04
PID_AURORA_B_PATHWAY 39 27 3.38e-04
REACTOME_MITOTIC_G1_G1_S_PHASES 137 70 3.83e-04
PID_SYNDECAN_1_PATHWAY 46 30 4.40e-04
REACTOME_S_PHASE 109 58 4.40e-04

navicell$proxy_url <- "https://acsn.curie.fr/cgi-bin/nv_proxy.php"

navicell$map_url <- "https://acsn.curie.fr/navicell/maps/acsn/master/index.php"

navicell$launchBrowser()

navicell$importDatatable("mRNA expression data", "GBM_exp", er_minus_mean)

navicell$heatmapEditorSelectSample('0','exp')

navicell$heatmapEditorSelectDatatable('0','GBM_exp')

navicell$heatmapEditorApply()

The Figure 4 is displaying the map for gene that having a corrected p-value
< 0.05 and a log fold-change > 1. we can see that the genes are concentrated in
the regions of the map corresponding to the cell cycle, cell motility, apoptosis
and survival.

3.2 Analysis of glioblastoma mutation frequencies

Recent years have witnessed a dramatic increase in new technologies for interro-
gating the activity levels of various cellular components on a genome-wide scale,
including genomic, epigenomic, transcriptomic, and proteomic information [20].
Integrating these heterogeneous datasets provides more biological insights than
performing separate analyses. For instance, international consortia such as The
Cancer Genome Atlas (TCGA) have launched large-scale initiatives to charac-
terize multiple types of cancer at di�erent levels on hundreds of samples. These
integrative studies have already led to the identi�cation of novel cancer genes
[21].

Malignant gliomas, the most common subtype of primary brain tumors, are
aggressive, highly invasive, and neurologically destructive tumors considered to
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Figure 4: Mean expression values for ER negative di�erentially expressed genes
in breast cancer visualized as heatmaps on the ACSN master map.

be among the deadliest of human cancers. In its most aggressive manifesta-
tion, glioblastoma (GBM), median survival ranges from 9 to 12 months, despite
maximum treatment e�orts [22]. In this study we have analyzed whole-genome
mutation data generated by the TCGA project on hundreds of patients. More
speci�cally, we parsed the MAF (Mutation Annotation Format) GBM �les pro-
duced by di�erent sequencing centers to count and calculate gene mutation
frequencies. We kept the mutations having a status likely to disturb the target
protein's function (i.e, Frame_Shift_Del, Nonstop_Mutation, In_Frame_Del,
In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Splice_Site, Trans-
lation_Start_Site). In total, we collected mutations for more than 13,000 genes
in a total of 379 mutated samples. In order to retain the most frequently mu-
tated genes, we calculated frequencies across all mutated samples, and kept
genes having a frequency greater than 1% (3,293 genes). We further labelled
genes having a frequency greater than 1% and less than 5% as "1" and genes
highly mutated (frequency higher than 5%) as "2".

We loaded the data as a matrix in R and calculated the enrichment in ACSN
maps with the ACSNMineR function enrichment. The results are displayed in
table 5. There are 6 modules signi�cantly enriched in the DNA repair and EMT
motility maps. Cell matrix adhesions and ECM (extra cellular matrix), part of
the EMT motility map, are the modules with highest signi�cance. The EMT
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motility map is signi�cantly enriched at the global map level (second line in the
table).

Table 5: ACSN maps enrichment for frequently mutated glioblastoma genes.
Module : name of the module. Mod. size: size of the module. Nb genes:
number of genes from input which are found in the module. Cor. pval: corrected
p-value.
module Mod. size Nb genes Cor. pval
DNA_repair:S_PHASE_CHECKPOINT 45 19 0.008
EMT_motility 635 181 0.0002
EMT_motility:CELL_MATRIX_ADHESIONS 73 45 3.73e-12
EMT_motility:CYTOSKELETON_POLARITY 154 47 0.022
EMT_motility:DESMOSOMES 29 15 0.002
EMT_motility:ECM 147 69 9.77e-11
EMT_motility:EMT_REGULATORS 629 178 0.0002

Visualization of the list of glioblastoma mutated genes is shown on �gure
5. This �gure was generated with the ACSNMineR commands detailed below.
Results of the enrichment test correlate well with the visualization on the map,
with a high density of low and high frequency mutated genes in the EMTmotility
and DNA repair regions (maps) of the global ACSN map. Although they are
not statistically signi�cant, quite high densities can also be seen in other regions
of the map.

library(RNaviCell)

# Create a NaviCell object, point it to the ACSN master map and launch

# a session.

navicell <- NaviCell()

navicell$proxy_url <- "https://acsn.curie.fr/cgi-bin/nv_proxy.php"

navicell$map_url <- "https://acsn.curie.fr/navicell/maps/acsn/master/index.php"

navicell$launchBrowser()

# Read the GBM data file and import it into the session.

mat <- navicell$readDatatable('gbm.txt')

navicell$importDatatable("Mutation data", "GBM", mat)

# set datatable and sample names for the glyph editor

navicell$drawingConfigSelectGlyph(1, TRUE)

navicell$glyphEditorSelectSample(1, "categ")

navicell$glyphEditorSelectShapeDatatable(1, "GBM")

navicell$glyphEditorSelectColorDatatable(1, "GBM")
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navicell$glyphEditorSelectSizeDatatable(1, "GBM")

navicell$glyphEditorApply(1)

# set color, shape and size parameters for glyphs

navicell$unorderedConfigSetDiscreteShape("GBM", "sample", 0, 1)

navicell$unorderedConfigSetDiscreteShape("GBM", "sample", 1, 5)

navicell$unorderedConfigApply("GBM", "shape")

navicell$unorderedConfigSetDiscreteColor("GBM", "sample", 0, "398BC3")

navicell$unorderedConfigSetDiscreteColor("GBM", "sample", 1, "CC5746")

navicell$unorderedConfigApply("GBM", "color")

navicell$unorderedConfigSetDiscreteSize("GBM", "sample", 0, 4)

navicell$unorderedConfigSetDiscreteSize("GBM", "sample", 1, 14)

navicell$unorderedConfigApply("GBM", "size")

Figure 5: Glioblastoma gene mutation frequency categories represented as
glyphs on the ACSN global cancer map. High frequency mutated genes are
pictured as large red circles, while low frequency mutated genes are depicted as
small blue squares.
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4 Summary and perspectives

In this work, we presented the R package ACSNMineR, a novel package for the
calculation of p-values for enrichment or depletion of genes in biological path-
ways. The package includes the six large-scale molecular maps and 55 functional
modules of the Atlas of Cancer Signaling Network (ACSN) . Enrichment can be
calculated for those maps and modules with several options to play with, but
can also be calculated for other databases of molecular pathways, that can be
imported from GMT formated �les.

We also describe in this work the RNaviCell package, a R package conve-
nient to use with ACSNMineR. This package is dedicated to create web-based
and interactive data visualization on ACSN maps. Users can use this tools to
represent genes of interest that have been shown to be related to the maps by
calculating enrichment with the ACSNMineR. Creating maps with the graphical
user interface of the ACSN website can be a tedious task if the user has multi-
ple samples or gene lists, and wants to compare their representations on ACSN
maps. The RNaviCell package can be used to automate the process of creating
the graphical representations automatically.

We have shown how the packages ACSNMineR and RNaviCell can be com-
bined to analyze expression data from breast cancer samples, and also to analyze
the frequency of mutated genes in glioblastoma cancer samples.

Of course, ACSNMineR is not the only R package for enrichment calculations.
For instance, GOstats [23] is probably one of the �rst packages that was cre-
ated to calculate enrichment for Gene Ontology categories. GOstats can also
be used to calculate enrichment for other biological pathways categories, such
as KEGG pathways (by using an instance of the class KEGGHyperGParams) or
PFAM protein families (using PFAMHyperGParams). However, its usage might
not be as straightforward as ACSNMineR, and it does not seem possible to test
user-de�ned biological pathways. Furthermore, other authors have pointed out
that the KEGG database used by this package has not been updated since 2012.
clusterProfiler is a recent R package released for enrichment analysis of Gene
Ontology and KEGG with either hypergeometric test or Gene Set Enrichment
Analysis (GSEA) [24]. Via other packages, support for analysis of Disease On-
tology and Reactome Pathways is possible. Interestingly, this package also o�ers
the possibility to import user-de�ned gene set, through tab-delimited pairwise
de�nition �les.

In order to improve ACSNMineR, we may in the near future try to improve
the speed of calculation, which might be a problem if a very large number of
samples or experiments have to be analyzed rapidly. For instance, we could use
the foreach and \%dopar\% operator to parallelize the most computationally
demanding operations. It could also be useful to implement more sensitive
methods of gene set enrichment measures, such as the Gene Set Enrichment
Analysis (GSEA) method.
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