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Abstract

Gompertz empirical law of mortality is often used in practical research to
parametrize survival fraction as a function of age with the help of just two
quantities: the Initial Mortality Rate (IMR) and the Gompertz exponent, in-
versely proportional to the Mortality Rate Doubling Time (MRDT). The IMR
is often found to be inversely related to the Gompertz exponent, which is the
dependence commonly referred to as Strehler-Mildvan (SM) correlation. In this
paper, we address fundamental uncertainties of the Gompertz parameters infer-
ence from experimental Kaplan-Meier plots and show, that a least squares fit
often leads to an ill-defined non-linear optimization problem, which is extremely
sensitive to sampling errors and the smallest systematic demographic variations.
Therefore, an analysis of consequent repeats of the same experiments in the same
biological conditions yields the whole degenerate manifold of possible Gompertz
parameters. We find that whenever the average lifespan of species greatly ex-
ceeds MRDT, small random variations in the survival records produce large
deviations in the identified Gompertz parameters along the line, correspond-
ing to the set of all possible IMR and MRDT values, roughly compatible with
the properly determined value of average lifespan in experiment. The best fit
parameters in this case turn out to be related by a form of SM correlation.
Therefore, we have to conclude that the combined property, such as the average
lifespan in the group, rather than IMR and MRDT values separately, may often
only be reliably determined via experiments, even in a perfectly homogeneous
animal cohort due to its finite size and/or low age-sampling frequency, typi-
cal for modern high-throughput settings. We support our findings with careful
analysis of experimental survival records obtained in cohorts of C. elegans of dif-
ferent sizes, in control groups and under the influence of experimental therapies
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or environmental conditions. We argue that since, SM correlation may show
up as a consequence of the fitting degeneracy, its appearance is not limited to
homogeneous cohorts. In fact, the problem persists even beyond the simple
Gompertz mortality law. We show that the same degeneracy occurs exactly in
the same way, if a more advanced Gompertz-Makeham aging model is employed
to improve the modeling. We explain how SM type of relation between the
demographic parameters may still be observed even in extremely large cohorts
with immense statistical power, such as in human census datasets, provided that
systematic historical changes are weak in nature and lead to a gradual change
in the mean lifespan.

Keywords: aging parameters, Gompertz law, Gompertz-Makeham law,
Strehler-Mildvan correlation, fitting parameters degeneracy, biostatistics

1. Introduction

In most animals, including humans, aging leads to exponential increase of
mortality M(t) = M0 exp(↵t) where t is age, the dependence commonly referred
to as the Gompertz law [4]. It has been long assumed, based on both empirical
evidence and theoretical arguments, that the Initial Mortality Rate, M0 or IMR,
and the Gompertz exponent slope, ↵, are universally related by Strehler-Mildvan
(SM) correlation

logM0 � lnK = �↵/B, (1)

where K and B are constants introduced in [9], and ↵ is inversely propor-
tional to the Mortality Rate Doubling Time (MRDT). SM correlation is not a
trivial fact and may not be universal. For instance, it is inconsistent with a
recently observed scaling law in [10], which implies that the surviving fractions
of C. elegans worms under different environmental conditions or mutants with
different lifespans can be cast into a universal function of a properly rescaled
dimensionless age. This is indeed remarkable, since the experiment establishes
proportionality between IMR and ↵, rather than that of logM0 and ↵, as would
be predicted by Strehler and Mildvan. To make sense of the apparent con-
tradiction, we reviewed the problem of Gompertz parameters inference from
experimental survival fraction curves (lifetables).

We started by addressing the performance of least squares fit method and
immediately found that it may easily lead to an ill-defined non-linear optimiza-
tion problem, which is extremely sensitive to sampling errors and the smallest
systematic demographic variations. We found that whenever the average lifes-
pan of species greatly exceeds MRDT, small variations in survival records are
amplified and produce large deviations in the identified Gompertz parameters
along the line, corresponding to the set of all possible IMR and MRDT values,
roughly compatible with the properly determined value of an average lifespan
in the experiment. The best fit estimates in this case turn out to be related
by a form of SM correlation. Therefore, we have to conclude that under most
common circumstances combined property, such as the average lifespan, rather
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than IMR and MRDT values separately, can only be reliably determined in ex-
periments with a homogeneous animal cohort due to its finite size and/or a low
age-sampling frequency, typical for modern high-throughput settings.

We support our theoretical findings by careful analysis of experimental sur-
vival records obtained in a recent series of experiments with C. elegans under the
influence of lifespan modifying treatments or environmental conditions [13, 10].
The data provides a unique opportunity since, in contrast to similar human
mortality records, the laboratory experiments are well controlled for genetic
and environmental variations. We start by sampling the worms life histories
from the control groups into cohorts of various size and show that the imme-
diately apparent SM correlation in such perfectly homogeneous cohorts is the
direct consequence of the hyper-sensitivity of the least squares fit procedure
exacerbated by a large sampling error due to insufficiently large number of the
animals in the cohorts. In agreement with our theoretical considerations, we
find that it is easy to produce a reliable estimate for the average lifespan of such
small and homogeneous cohorts, yet it is considerably more difficult to yield
reliable estimates of the Gompertz parameters unless a Kaplan-Meier plot is
extremely smooth to infer a unique solution.

We conclude observing, that since SM correlation may show up as a conse-
quence of the Gompertz fit degeneracy, which is closely related to the extreme
exponential nature of mortality, its appearance may not be limited to homoge-
neous cohorts only. We show that the same degeneracy along with the extreme
dependence of the parameter estimates remains to be an issue with more ad-
vanced, such as e.g. the Gompertz-Makeham, models. Finally, we explain how
the SM type of relation between the demographic parameters may persist even
in extremely large cohorts with immense statistical power, such as in human
census datasets, provided that the systematic historical changes are weak in
nature and lead to a gradual change in the mean lifespan.

2. Strehler-Mildvan correlation is a degenerate manifold of Gompertz

fit

To investigate the influence of a factor, such as therapy or a mutation,
on aging, one may want to estimate the effects of the experimental design
conditions on aging model parameters, such as, for example, commonly used
quantities M0 and ↵ of Gompertz law. A natural way to achieve the goal is
to analyze Kaplan-Meier plots and fit an experimentally observed fraction of
animals surviving by age t, N(t), onto the model prediction. According to
Gompertz law, mortality at a given age, t, is the exponential function of age,
M(t) = M0 exp (↵t). The fraction of the animals alive by the same age is given
by the expression N

G

(t|↵,M0) = exp

⇥
M0
↵

(1� e↵t)
⇤

= exp

⇥
e�⇤

�
1� eT

�⇤
,

where T = ↵t is the dimensionless age and the Gompertz logarithm or curva-
ture, ⇤ = log (↵/M0) = log (1/M), is expected to be large. For human patients,
for example, we have ↵¯t ⇡ ⇤ ⇡ 10 and hence the average lifespan, ¯t, greatly
exceeds the MRDT. In this case survival fraction as a function of age drops
from 1 to 0 in a short age interval, 4t ⇠ ↵�1 ⌧ ¯t, around the mean lifespan
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A. B.

C.

Figure 1: A. Kaplan-Meier survival fraction for a wild-type control cohort from Stroustrup
et al. [10]. The function drops from 1 to 0 in a short age-interval, �t, usually considerably
shorter than the average lifespan t̄; B. A graphic solution of Eqs. (3) in lnM and ↵ plain.
The thick and the thin lines correspond to the vanishing derivatives of the objective function
J with respect to the parameters M and ↵, see Eq. (3); C. The Gompertz parameters M0 and
↵ obtained from the least-squares fit (2) for the sub-groups of the wild-type control animals
(the data from 768 control cohorts from [13]). Here the number of randomly chosen cohorts
in sub-groups is N

coh

= 5, 20, 50 and 300 (approximately 10 worms in each cohort). The
colours mark the numbers of cohorts. For each randomly selected sub-group, a Kaplan-Meier
survival curve is obtained and a random realization of the Gompertz parameters is defined
from it. Each dot represents a fitting result obtained using data from a particular randomly
selected sub-group of the wild-type control animals. Black line represents the iso-average-
lifespan curve for the average lifespan calculated for all wild-type control experiments. The
variations in determination of M0 and ↵ for different random selections of sub-groups allow
us to estimate their fitting uncertainty, which is represented graphically by the characteristic
guide-to-eye ellipses in M0 versus ↵ plane.
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¯t, so that N (

¯t) ⇠ 0.5 and ¯t = t1/2 [1 +O (4t/¯t)]. Hereinafter we refer to this
parameter range as the extreme Gompertizian limit. A typical behavior of the
survival fraction is qualitatively depicted in Fig. 1A.

One way to fit an experimentally observed dependence N(t) to its Gom-
pertz law estimate is to minimize the mean squared error between expected
and observed values of the surviving fraction. Normally, the values of N(t) are
known at a series of discrete age-points. To simplify the analysis we will assume
that the number of the observation and the experimental cohorts size are large
enough, so that the discrete set of observations N(t) can be viewed as conse-
quent measurements of a smooth function of age. Under the circumstances, the
objective function can be represented as the integral

J (↵,M) =

1̂

0

dt [N
G

(t|↵,M)�N (t)]
2
, (2)

instead of the sum over all observations, to be minimized with respect to the val-
ues of ↵ and M . The procedure can be understood as a standard log-likelihood
minimization. The full analysis of the optimization problem is presented in Ap-
pendix A. Let us summarize briefly in this section the most important results
for the discussion below.

First of all, the best fit Gompertz parameters are solutions of the system of
equations

@J

@↵
(↵,M) =

@J

@M
(↵,M) = 0. (3)

A graphical solution is represented in Fig. 1B. The slopes of the lines, repre-
senting the solutions of Eqs. (3) at the intersection point differ by a mere factor
C2/⇤

2, with C2 = O(1) being a constant. For sufficiently long lived species,
⇤ � 1, hence the solutions are practically indistinguishable from each other
near the intersection point, defining the extremum.

The near collinearity of the directions defined by Eqs. (3) is established in
Appendix A, is a consequence of the step-wise nature of the Gompertz survival
curve and thus is a signature of a degeneracy of the original inference prob-
lem. In Appendix B we show in sufficient details, that the degeneracy of the
minimization problem leads to instability of Gompertz fit estimates: should the
observed values of N(t) change a little, N(t) ! N(t)+�N(t), either due to sam-
pling errors or to minor systematic biological effects, the estimated quantities
will also change, but very strongly,

�↵ ⇡ ⇤

2

¯t
�N(

¯t), �⇤ ⇡ ⇤

2�N(

¯t), (4)

respectively. Remarkably, even though the demographic parameters are subject
to a large uncertainty separately, the resulting estimates can only vary in a
tightly correlated way

�↵ ⇡ 1

¯t
�⇤+O(

1

⇤

2
). (5)
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Eqs. (4) and (5) are the central result of the presented study and highlight
extreme sensitivity of the Gompertz fit to the slightest variations of the survival
fraction in Eq. (2). Therefore, instead of a single and well-defined solution, under
most common circumstances one rather gets the whole degenerate manifold of
possible values, even in the most idealistic case, when the biological conditions
are exactly the same for all experimental replicates and the animal groups under
investigation are biologically homogeneous. Any minor survival curve variations
lead to the estimates deviations, which are strongly amplified along the line in
the (↵,⇤) plane, defined by Eq. (5) close to the pair of the optimal values, while
the fluctuations of the determined parameters were greatly suppressed in the
orthogonal direction. The appearance of the SM correlation and the instability
of Gompertz parameters estimates are demonstrated by numerical analysis of
simulated cohorts of different size, see Fig. A.4 in the Appendix.

The established degeneracy of the fit has a surprising and unintended con-
sequence. Let us assume that the experiments are repeated in exactly the same
conditions. Then the sampling error is the only source of the uncertainty in the
survival records, and, therefore, each of the possible fits corresponds to the cor-
rect value of the average lifespan of the demographically homogeneous cohort,
t
exp

=

´
dtN(t). Since, in this case, ¯t ⇡ t

exp

is the same in every calculation,
Eq. (5) can be integrated to yield

t
G

(↵,M) ⇡ t
exp

, (6)

where t
G

(↵,M) is the Gompertz law prediction for the mean lifespan. This
means that every pair of M = M0/↵ and ↵ values, satisfying Eq. (6) can, in
principle, be obtained from the analysis of different realizations of the same ex-
periment. To support our conclusion, we checked this sensitivity in a numerical
simulation (Fig. A.4). Since t

exp

⇡ ⇤/↵ in the Gompertz model in ⇤ � 1 limit,
the degeneracy manifold is approximately defined by logM0 � log↵ = �↵t

exp

,
which is nothing else but a form of SM correlation, defined by Eq. (1)! We
propose that the “canonical” form of SM relation (1) can be viewed as an ap-
proximation to the “exact” form (6) in the extreme Gompertz limit, ⇤ � 1. The
restriction on ⇤ is totally unnecessary, although it leads to a more tractable form
of Eq. (6). A more accurate, but somewhat cumbersome, approximation for the
average lifespan t

G

(↵,M) from the Gompertz law for an arbitrary value of ⇤ and
therefore a more precise form of the expected SM correlation in homogeneous
cohorts is derived in the appendix, see Eq. (C.1).

3. Gompertz fit examples in homogeneous populations

To support our theoretical arguments and back up the conclusions below, we
turn to a set of relevant experimental data. We choose to investigate the Kaplan-
Meier plots from two recent high-throughput experiments, addressing effects of a
series of pro- [13] and anti- [10] longevity environments or interventions. All the
data are obtained in the fully controllable settings in the studies with genetically
homogeneous cohorts. The level of control is, of course, totally unmatched in
any kind of studies of human mortality.
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The first data set [13] describes life histories of 1416 experimental cohorts of
the same animals, living in various laboratory conditions. Typically, each of the
cohorts consists of about 10 worms. A few of the experiments were repeated to
achieve higher significance. 768 or almost half of the cohorts are control ones.
We used the data to estimate uncertainty of Gompertz fit parameters in the
ideal case of a genetically homogeneous population in identical experimental
conditions in a particular laboratory. The data let us simulate results of Gom-
pertz fit in a typical demographic study of an aging population. To do this, we
choose a subset of N

coh

cohorts at random from all 768 available aging control
cohorts. We used N

coh

= 5, 20, 50 and 300 and calculated the Kaplan-Meier
survival plots each time using a subset of the animals and fed it to the least
squares fit. The procedure was repeated enough times to get a reliable estimate
of the fitting parameters uncertainty for every chosen value of N

coh

. The results
of the computational experiment are presented in Fig. 1C. Every simulated co-
hort is represented by a dot in the (↵, logM0) plain. The uncertainty of the
estimates is larger for smaller cohorts. To support our conclusion, the obtained
result was checked on a numerically simulated data set (Fig. A.4, Appendix A).
This is totally expected, if the sampling error is due to the finite number of
animals in the group and is therefore smaller in the larger groups. Even though
Gompertz logarithm ⇤ ⇡ 1.3 is not particularly large, the uncertainty of the fit
is amplified along SM correlation line, according to Eq. (5). Therefore, we are
able to show that SM correlation may show up even under such an ideal study
protocol, when by definition there is no underlying biological difference between
the subsequent repeats of the same experiment.

In addition to the life histories of control cohorts, the data set provides
information on life-prolonging effects of a large number of currently used and
experimental drugs. We selected the cohorts under the treatments, with the
largest number of experimental replicates and, hence, with the least expected
degeneracy of the Gompertz parameters. We can assume that for each of the
treatments the corresponding cohorts are homogeneous, since all other experi-
mental and genetic conditions are controllable and are exactly the same in all
the replicates. We estimated the effects of the fitting degeneracy by selecting
2/3 of the animals in each treatment group at random, and producing Gom-
pertz parameters from the corresponding simulated Kaplan-Mayer plots. The
procedure lets us estimate the uncertainty of the fit and represent it graphically
by the characteristic ellipses in M0 versus ↵ plane in Fig. 2. To compare, we
also plotted a red black-edged ellipse corresponding to the same kind of estimate
for the largest control group, corresponding to N

coh

= 300 (⇠ 3000 animals).
Remarkably, the degeneracy of the fit is still pretty profound, even for such a
reasonably large group. We estimate the relative error in the determination of
Gompertz parameters in the control groups to be about 15%, and hence the
Gompertz exponent estimate ↵

wt

= 0.07 ± 0.01 days�1 for the wild type ani-
mals. The iso-average-lifespan curves (SM correlation curves) are plotted and
coloured according to the average lifespan in the cohorts as shown in the inset.
In agreement with Eq. (4), the calculations demonstrate, using the real world
data, that small fluctuations of a survival curve even for homogeneous cohorts,
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Figure 2: IMR (M0) versus Gompertz exponent slope ↵ estimates obtained with the least-
squares fitting procedure using lifetables from the pro-longevity C. elegans experiment [13].
To obtain uncertainty of the Gompertz parameters (depicted by the sizes of ellipses) for each of
these drug-treatments, the same random selection procedure as in Fig. 1C was employed, but
for each drug-treatment 2/3 of all the available cohorts (roughly 20 cohorts, 10 worms in each)
were randomly selected to calculate a particular random realization of Kaplan-Meier plot and
the corresponding random realizations for the Gompertz parameters. The coloured solid lines
correspond to analytical, asymptotic expressions representing the iso-average-lifespan mani-
folds defined by Eq. (C.2), where the colours mark the corresponding average lifespans. The
position and size of the red black-edged ellipse indicate the best estimates for the Gompertz fit
parameters and their uncertainty for the control wild-type experiment with 300 cohorts (⇠ 10
worms in each), which corresponds to the red dots in Fig. 1C. The coloured ellipses (from
green to red) represent typical Gompertz parameters with their uncertainty for pro-longevity
treatments [13], each of them corresponds to a particular drug-treatment experiment with
roughly 30 cohorts (⇠ 10 worms in each) on average which is 10 times smaller than for the
wild-type control case with 300 cohorts of roughly 10 worms in each, thus it leads to a much
larger uncertainty in Gompertz parameters estimation (larger ellipses).
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due to a finite number of animals in them or a low age-sampling rate, lead
to the strong fluctuations of the fitting parameters along SM curves, whereas
fluctuations orthogonal to these SM curves are substantially suppressed.

Life histories from the experiment reported in [10], represent another inter-
esting limit, since death events are now sampled at a very high frequency (almost
every second for several thousand animals in a single cohort), and therefore the
resulting Kaplan-Meier survival plots are extremely smooth and Gompertz pa-
rameter estimates are perfectly reliable. Figs. 3A and B summarize analysis of
the two experiments, [13] and [10]; all the data points are plotted on the same
graphs and recoloured according to the new global age-pseudocolour scale. Once
again, the figures demonstrate that Gompertz parameters determination uncer-
tainty in every homogeneous cohort manifests itself as fluctuations amplified
along the iso-average-lifespan curves, although the error margins are now much
smaller due to a dramatically higher precision of the Kaplan-Meier plots. IMR
and Gompertz slope values estimated from [10] appear to be very reliable rep-
resentations of the underlying biology. Therefore, independence of IMR from ↵,
is significant and hence is the experimental proof of a very non-SM-like relation
between the parameters.

4. Conclusions and Discussion

Throughout the paper we employ the least squares fit of survival fraction
in the form of Eq. (2) as a practical and mathematically tractable way of the
Gompertz parameters inference. A commonly accepted alternative is to produce
the fit using the log-transformed values of empirical mortality rate in a data set.
The latter possibility looks more attractive from a conceptual viewpoint, but
its practical applications may be hindered by the following considerations. The
mortality rate needs to be estimated by numerical differentiation of experimental
survival lifetables, which are by no means continuous and differentiable, espe-
cially late in life. On top of that, the empirical mortality does not necessarily
follow Gompertz law. For example, the risk of death may grow exponentially
first and then saturate at a constant level at extreme ages (phenomenon known
as mortality deceleration, see e.g. [11]). Whenever this happens to be the case in
the data, an extra assumption is required to specify the age range, where Gom-
pertz fit is to be performed. Normally, one restricts the analysis to a reasonable
vicinity of age, corresponding to average lifespan of animals in the experiment.
The procedure suggested here may not be necessarily better, but it is easier to
understand using analytical tools, requires only raw experimental data points,
a survival curve, and produces a unique answer without extra assumptions. In
Appendix A we show that minimization of Eq. (2) yields the best Gompertz
approximation of the data, using the data points mostly close to the average
lifespan in the cohort, and therefore is consistent with the “standard” definition,
whenever the Gompertz fit works well.

The immediate and somewhat surprising conclusion from the presented study
is that even the two-parametric Gompertz fit may easily turn out to be an ill-
defined mathematical procedure. Not to mention proportional hazards models
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A.

B.

Figure 3: A. A combined IMR (M0) versus the Gompertz exponent slope ↵ plot, summa-
rizing the estimates obtained by the least-squares procedure using C. elegans lifetables from
experiments [13, 10]. The colours denote the average lifespans in days. Each pair (colour,
marker) corresponds to a single realisation of an experimental cohort, to estimate variation
of Gompertz parameters inside the homogeneous cohorts, the replicates are obtained by the
same reshuffling procedure as for Fig. 1 and 2. The coloured curves are analytical asymptotic
expressions corresponding to the iso-average-lifespan manifolds defined by Eq. (C.2). The
black curves are iso-average-lifespan curves within a narrow interval of lifespans 21 ± 3 days
B. A zoom into ↵ 2 [0, 1] interval in Fig. 3A. The points from Fig. 2 are also shown, recoloured
according to the new age-pseudocolour scale.
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and accelerated failure time models with quite a few extra variables, which
might obfuscate researchers with miscellaneous degenerate manifolds of their
numerous parameters. We demonstrated that a form of SM correlation occurs
every time when the survival fraction is changed, even by a small bit, either
due to sampling errors or true biological reasons. The coordinated change of
IMR and ↵ values, amplified along the line of SM correlation, corresponding
to the expected value of the mean experimental lifespan, is a property of a fit
involving Gompertz survival function in the extreme Gompertz limit, when the
mean lifespan exceeds MRDT. This should be, of course, especially true in hu-
man demographic data analysis, where SM correlation was identified first in [9].
The lifespans in the cohorts representing the countries in the original work were
pretty close, 59 ± 9 and 62 ± 9 years for males and females, respectively, not
to mention that the set of countries was rather unrepresentative, since the pe-
riod mortality data were restricted to a very narrow time interval 1947 � 53

for 32 relatively well-developed countries. Nevertheless, Gompertz parameter
estimations ended up distributed in a vast range of ↵ = 0.08 ± 0.04 years�1

and exhibiting a very high degree of correlation between ↵ and logM0. We
believe that the dependence is then nothing but the narrow stripe enclosing
a degenerate manifold of Gompertz parameters corresponding to the average
lifespans.

A possibility of superficial nature of SM correlation has been already high-
lighted by L. and N. Gavrilovs in [2, 3], where a more sophisticated aging model,
Gompertz-Makeham version of the mortality law, was invoked to produce a more
stable fit. In Appendix D we show that inclusion of Makeham term into the
model may help fit the experimental data in a different aging regime with a sig-
nificant age-independent component in mortality rate, whenever it is required.
However, we observe that the more advanced version of the survival model can-
not help improve considerably the fit performance in a situation, when an ex-
perimental Kaplan-Meier plot is insufficiently sampled due to a limited number
of animals in a cohort or a low age-sampling rate.

Aging in humans is an extreme case, corresponding to ⇤ ⇡ 10 in our calcu-
lations. It should thus be not surprising that more than half a century after the
publication of the original work [9], the idea of SM correlation and biological
picture behind it are deeply rooted in aging studies (see ex. [14, 12, 1, 6, 7]
as examples of recent works) but there is still no consensus explanation of its
origin. Most notably, heterogeneity of aging populations was recently investi-
gated and proposed to explain SM correlation [12, 14, 5]. For example, [14]
observed SM correlation in human mortality data from 1955 to 2003 showed
that its parameters evolve over time. This goes well along with our expecta-
tions, since we believe that human demography changes rather slowly over time
and for every period of several years any human population can be considered
nearly homogeneous with a constant lifespan. Therefore, there must exist an
approximate form of SM correlation as was shown in the present study. Need-
less to say, the lifespan and the quality of environmental conditions, such as the
available achievements of medicine, progress steadily in nearly all countries and
their effect on the shape of survival curve and hence on Gompertz parameters
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can be observed on a larger timescale as a gradual change of SM correlation
parameters. For example, [6] observes a breakdown of the long-term SM trend
in the mid-1950s, as a result in the recent years the literature on SM correla-
tion has shifted to the reasoning behind this breakdown. To provide our own
interpretation of this phenomenon, we show analytically in Appendix B and
via illustrative human mortality analysis in Appendix E how a gradual demo-
graphic change produces distortion to the SM correlation plot, which is usually
a collection of familiar iso-average-lifespan manifolds, corresponding to practi-
cally homogeneous sub-populations born in the interval of several adjacent years
with neither appreciable lifespan, nor the outer environment differences. The
intra-group differences are greatly amplified along the tangent lines, described
by Eq. (5), followed eventually by a fundamental trend in improving quality
of life (see Fig. E.5 for the illustration of period female human mortality data
analysis for France and Sweden in 1860-2000). We conclude our analysis having
observed that the peculiar breakdown of global linear trend in 1950s is probably
associated with Makeham age-independent mortality, since there is a 10-fold
sharp drop in its value in the vicinity of mid-1950s, which is marked by the sud-
den colour-change of the ellipses in Fig. E.5 for two parts of the “broken” SM
correlation. Human mortality is by no means a two- or three-parameter process,
hence all our considerations are limited to Gompertz and Gompertz-Makeham
aging regimes, whereas there might exist other higher dimensional changes in
mortality for particular time periods, analysis of which is out of scope of the
present paper.

A number of theories suggesting some physical or biological background
behind SM correlation have been proposed since its discovery. In our work,
we come to the conclusion that any biological interpretations should be used
cautiously, especially those based on experimental data sets with poor quality
of experimental Kaplan-Meier survival plot, due to a limited number of animals
in a cohort or a low age-sampling rate. To establish variation in lifespan with
sufficient accuracy is not a small feat, requiring large cohorts of aging and dying
specimens in an experiment. The analysis leading to Eq. (4) demonstrates
that one would need at least a ⇤

4 times larger cohort to produce separate
estimates of Gompertz parameters with the same precision. Otherwise, one
might misinterpret the iso-average-lifespan manifold in Gompertz parameters
plane as a totally spurious SM correlation between Gompertz parameters even
in homogeneous cohorts. The presented analysis is very technical in nature,
we were only concerned with statistical properties and robustness of Gompertz
parameters inference from experimental data. It still may be the case that
IMR and MRDT are indeed mechanistically related by nature of underlying
biology of aging. We believe that the question can eventually be settled as more
high quality lifetables are collected in very well controlled studies and are made
available for researchers. We are leaving these considerations for future research.
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Appendix A. SM correlation is a degenerate manifold of Gompertz

fit in homogenous cohorts

Let us start with the solution for regression problem in Eq. (2), which
can be found from the minimum conditions, @J/@↵ = 0 and @J/@M = 0,
where M = M0/↵, ⇤ = log (↵/M0) = log (1/M). Using the relations N

G

=

exp (M (1� e↵t)), @N
G

/@↵ = (t/↵)@N
G

/@t, and @N
G

/@M ⇡ (↵M)

�1@N
G

/@t,
we obtain

@J

@↵
=

1̂

0

dt [N
G

(t)�N (t)]
t

↵

@N
G

@t
, (A.1)

and
@J

@M
=

1

↵M

1̂

0

dt [N
G

(t)�N (t)]
@N

G

@t
. (A.2)

In the extreme Gompertz limit N (t) and N
G

(t) are step-like functions and
hence we can use the approximations N (t) ⇡ ✓ (¯t� t) and N

G

(t) ⇡ ✓ (t
G

� t).
It follows immediately from Eqs. (A.1) and (A.2) that up to terms with a relative
error ⇠ 4t/¯t, both conditions are equivalent and yield t

G

⇡ ¯t. This is a form
of correlation between Gompertz fit parameters:

↵¯t ⇡ ⇤.

Of course, the equation holds only if ⇤ = ln (↵/M0) � 1. In Appendix C we
propose a simple and yet an accurate generalization

↵¯t = ln

�
1 + C1e

⇤
�
, (A.3)

applicable for ⇤ ⇠ 1 with C1 ⇠ 1 being a numerical constant.
Both expressions in the square brackets, Eqs. (A.1), (A.2) and also the

derivative @N
G

/@t behave as sharp peaks located at t ⇡ ¯t. Let us note that
next to the intersection point A both curves corresponding to the zero deriva-
tives Eqs. (A.1), (A.2), i = 1, 2 behave as ↵� ↵

A

⇡ k
i

(M �M
A

). To estimate
the difference between the slopes, it is sufficient to approximate N(t) by a steep
survival function N (t) = ✓ (¯t� t). The first equation for the derivative of the
objective function with respect to ↵ Eq. (A.1) can be rewritten as

J1 + ¯t

1̂

0

dt [N
G

(t)�N (t)]
@N

G

@t
= 0,
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where

J1 =

1̂

0

dt [N
G

(t)�N (t)] (t� ¯t)
@N

G

@t
=

= �1

2

� 1

2

1̂

0

dtN
G

+

t̄ˆ
0

dtN2
G

.

Having collected all terms at most of the order of 1/⇤2, we find

↵ ⇡ 1

¯t
ln

✓
1 +

ln 2

M
+

0.86

M lnM

◆
⇡

⇡ 1

¯t
lnF ·

✓
1� 1.2

⇤

2

◆
,

where the approximate relation ¯t
G

=

1
↵

(⇤� �) from Appendix C was employed.
The second equation for the derivative of the objective function with respect

to M Eq. (A.2) takes the form N
G

(

¯t) = 1/2 that gives the relation similar to
Eq. (A.3):

↵ =

1

¯t
lnF, (A.4)

with F = 1 + ln(2)/M .
Therefore, the two solutions of the optimization problem in Eqs. (A.1), (A.2)

are nearly equal and the difference between the slopes at the intersection point
is as small as O(1/⇤2

). It means that graphical solutions logM (↵) of Eqs. (3)
go very close to each other near an intersection point as qualitatively depicted
in Fig. 1B. In Appendix B we show how this degeneracy of the solutions ampli-
fies any small perturbations to the survival function into large fluctuations of
Gompertz parameters estimates.

Appendix B. Extreme sensitivity of Gompertz fit estimates with re-

spect to survival plots variations

To see how the Gompertz fit degeneracy in the extreme Gompertz limit
of large ⇤ translates into large uncertainties of inferred Gompertz parameters,
let us consider how the model estimates depend on small variations of survival
plots. Eq. (A.2) for the derivative of the objective function with respect to M
can be transformed into

�1

2

�
1̂

0

dtN (t)
@N

G

@t
= 0. (B.1)

For infinitesimally small changes in the survival fraction 4N (t),

N (t) = N0 (t) +4N (t) , (B.2)
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Figure A.4: Gompertz parameters M0 and ↵ estimates obtained from the least-squares fit (2)
for simulated cohorts with sizes N = 10, 20, 50 and 300. The colours differentiate the sizes of
cohorts. For each simulated cohort, a Kaplan-Meier survival curve is obtained and a random
realization of Gompertz parameters is defined from it. Each dot represents a particular real-
ization. The black line represents the iso-average-lifespan curve for the average lifespan used
in this numerical simulation. The variations in determination of M0 and ↵ for different ran-
dom realizations of noise is represented graphically by the characteristic guide-to-eye ellipses
in M0 versus ↵ plane.
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the average lifespan also changes slightly. As usual in this study, we approximate
the survival fraction by the step function N0 (t) = ✓ (¯t� t) and, from Eq. (B.1),
we obtain

N
G

(

¯t) ⇡ 1

2

� ⌘, (B.3)

where ⌘ =

´1
0 dt4N (t) @NG

@t

, |⌘| ⌧ 1. Note that since the function @NG
@t

is
a narrow peak of the width �t ⇠ ↵�1 residing next to the average lifespan
¯t = t0 ⇡ ⇤

↵

, for any slowly varying 4N (t) we expect ⌘ ⇡ 4N (t0).
From Eq. (B.3) with the help of the approximation (A.3) for the average

lifespan we transform the relation @J/@M = 0 into

↵ =

1

¯t
ln

�
1 + C1e

⇤
�
⇡ 1

¯t
ln

�
C1e

⇤
�
, (B.4)

where C1 = ln

⇣
2

1�2⌘

⌘
⇡ C

(0)
1 + 2⌘ and C

(0)
1 = ln 2. Similarly, the derivative of

the objective function with respect to ↵ from Eq. (A.1) can be approximately
solved as

↵ ⇡ 1 + �
¯t

ln

�
C2e

⇤
�
, (B.5)

where |�| ⇠ 1/⇤2 ⌧ 1, C2 = C
(0)
2 + A⌘, and C

(0)
2 ⇠ 1, |A| ⇠ 1 are numerical

constants.
To find new values of Gompertz parameters ↵ and ⇤ after the perturbation

�N(t) to the survival curve, one should solve Eqs. (B.4) and (B.5). The solution
can be represented as

⇤ ⇡ 1

�
ln

✓
C1

C2

◆
⇡ ⇤0 +4⇤, (B.6)

↵ ⇡ 1

¯t�
ln

✓
C1

C2

◆
= ↵0 +4↵, (B.7)

where ⇤0 =

1
�

ln

✓
C

(0)
1

C

(0)
2

◆
, ↵0 ⇡ 1

t̄�

ln

✓
C

(0)
1

C

(0)
2

◆
, and 4⇤ =

B

�

⌘, 4↵ =

B

t̄�

⌘ are the

”reference” and the perturbed values of the optimization variables. Here |B| ⇠ 1

is another constant factor. Eqs. (4) can be obtained from Eqs. (B.6) and (B.7)
using the relation ⌘ ⇡ 4N (t0).

From the definition of average lifespan, ¯t =
´1
0 dtN (t) , it follows that the

average lifespan variation after the perturbation is given by

4¯t =

1̂

0

dt4N (t) . (B.8)

Two important situations should be considered here. Let us study first a
consequent realization of the experiment involving homogeneous cohorts. Here
N (t) = N0(t) +�N(t), so that it is natural to assume 4N (t) being a random
measurement noise, or sampling error, different from one cohort to another.
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Since �

¯t = 0 in this case, Eqs. (B.6) and (B.7) immediately yield the linear
relation between variations

4↵ =

1

¯t
4⇤, (B.9)

which is the same as Eq. (5) of the manuscript. Importantly, here the sampling
error is the only reason for the variations in ↵ and ⇤. Nevertheless, the inferred
values appear to be correlated, the apparent relation coincides with SM correla-
tion. According to Eqs. (4), the errors of Gompertz parameters determination
are large, compared to variations in the measurements of average lifespans.

The appearance of SM correlation and the instability of Gompertz parame-
ters estimates can be demonstrated by numerical optimization of the proposed
objective function using lifetables of simulated cohorts of different sizes. The
results of such a calculation are represented in Fig. A.4. As expected, the sam-
pling error decreases as the cohort size increases. In agreement with Eq. (B.9)
the identified Gompertz parameters are distributed in a highly anisotropic way,
the direction of maximum variation coincides with SM correlation.

Survival curves may also change systematically in such a manner that the
average lifespan is not constant. This can be observed, for example, if the
average lifespan is studied in human cohorts collected over sufficiently large
periods of time. The human lifespan has been growing slowly over decades and
centuries following a fundamental trend in improving quality of life and available
medicine. Therefore, one cannot consider such a population as biologically
homogeneous on large timescales. Technically, such a systematic change in
survival functions produces a net change 4¯t 6= 0, and hence the combined
system of Eqs. (B.6), (B.7) and (B.8) should be used to obtain the proper
solution. As Gompertz parameters follow variations in biological conditions,
the slope 1/¯t in Eq. (B.9) also changes and hence the point, representing the
solution, may depart from the linear SM relation in ↵ and ⇤ plane.

If lifespan variations are sufficiently small, |4¯t| ⌧ ¯t0, then from Eq. (B.9)
it follows immediately that ↵ ⇡ ⇤/¯t and hence Strehler-Mildvan correlation
approximately holds. Conversely, significant changes in lifespan |4¯t| & ¯t break
Strehler-Mildvan correlation, which is clearly the case, for example, in Fig. 3A
of the present work, summarizing the Gompertz fit results of the experimental
data for C. elegans from Stroustrup et al. [10], where the change in the average
lifespans is significant enough. It is important to ascertain that the value of
¯t and its modifications are specific to particular experimental conditions. It is
impossible to calculate these values explicitly without a rigorous mathematical
description of these conditions. In Appendix E we show how a SM-like correla-
tion may show up in a research of human demographics over time in response
to gradual decrease of a biological factor, such as age-independent mortality.

Appendix C. Gompertz iso-average-lifespan curves

We have proven above that the only parameter which can be reliably inferred
by a gradient descent method in a finite homogeneous cohort is average lifespan.
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If mortality in an experimental cohort at hand can be accurately described by
Gompertz law, the average life expectancy is

¯t
G

=

1̂

0

dtN
G

=

exp e�⇤

↵
�

�
0, e�⇤

�
, (C.1)

where ⇤ = ln (↵/M0) and �(0, e�⇤
) = E1(e

�⇤
) is the upper incomplete gamma

function (or the special function commonly referred to as the exponential inte-
gral) which has an expansion

E1(e
�⇤

) = �(0, e�⇤
) = �� + ⇤�

1X

k=1

(�e�⇤
)

k

k(k!)
,

where � ⇡ 0.577 is the Euler-Mascheroni constant.
The fit requires that the experimental average lifespan should be equal to

the Gompertz average lifespan:

¯t = ¯t
G

=

exp e�⇤

↵

 
�� + ⇤�

1X

k=1

(�e�⇤
)

k

k(k!)

!
. (C.2)

In the extreme Gompertz limit, ⇤ � 1, the solution is rather simple

¯t
G

(⇤ � 1) =

1

↵
(⇤� �) .

Although the convergence of the series on the right side of Eq. (C.2) is known
to be poor for ⇤ . 1, we still can obtain a divergent series approximation

¯t
G

(⇤ . 1) =

exp e�⇤

↵

"
1� e⇤ +

N�1X

n=2

�
�e⇤

�
n

n!

#
. (C.3)

For practical applications, there is a simple and yet an accurate approximation
for ↵¯t, suitable for all possible values of ⇤:

↵¯t = ⇤� � + exp (�⇤/e�)


e�

3

+ �

�
⇡ ⇤� 0.58 + 1.18 exp (�⇤/1.8) . (C.4)

Depending on the value of ⇤ we obtain: ⇤ = ↵¯t + ln (↵¯t) for ⇤ . 5 and
⇤ = ↵¯t + � for ⇤ � 5, respectively. The two asymptotes produce Strehler-
Mildvan correlation in the form

lnM0 (↵ ! 0) = �↵¯t+ ln (1/¯t) , (C.5)

lnM0 (↵ � 0) = �↵¯t+ ln↵� �. (C.6)

We choose these approximations to plot the correlation curves from Eq. (6) in
Fig. 2. More specifically, we put the asymptotic expansions together with a
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spline at the intersection point ↵
is

= e�/¯t, to produce a series of smooth lines.
Remarkably, both the exact solutions and the approximations are practically
indistinguishable from straight lines.

Appendix D. Gompertz-Makeham iso-average-lifespan curves

Gavrilov [2, 3] proposed that Strehler-Mildvan correlation is a spurious re-
lation in the original work of Strehler and Mildvan [9] due to the neglect of
age-independent background mortality. Let us investigate Gompertz-Makeham
survival fraction

N
GM

(t|↵,M0, A) = exp

✓
�At+

M0

↵

�
1� e↵t

�◆
(D.1)

and Gompertz-Makeham fit properties in the same manner as we did for our
Gompertz model fit above. The exact average lifespan for Gompertz-Makeham
law is

¯t
G

=

1̂

0

dtN
G

=

exp

M0
↵

↵

✓
M0

↵

◆
A/↵

�

✓
�A

↵
,
M0

↵

◆
, (D.2)

which is indeed somewhat better than its Gompertz law counterpart, since the
Makeham parameter moves the centre of our expansion for the upper incomplete
gamma function from the singular point near zero argument of �(0, M0

↵

) to a
better analytical point nearby a non-zero argument of �

�
�A

↵

, M0
↵

�
. Accordingly,

one can expect the divergent series approximation as in Eq. (C.3) to disappear.
Nevertheless, we are left with the three-parameter fitting procedure for which
SM correlation exists in exactly the same manner. We saw how the degeneracy
manifold in case of Gompertz fit arises from the vanishing slope between two
optimization curves. In a similar way, in case of Gompertz-Makeham fit the
same problem emerges due to the shrinking slope between two optimization
surfaces, representing the solutions of Eqs. (3), now in the three-dimensional
parameters space. Makeham parameter determines the specific cross-section of
these surfaces, where the same degeneracy problem for the remaining pair of
Gompertz parameters still persists. Although, we expect that the Makeham
parameter A estimate from the fit is well-defined as long as it is large enough.
Nevertheless it is not often the case, at least in human aging studies, since the
age-independent mortality is usually small and hence the introduction of the
Makeham parameter is of a little practical consequence.

Appendix E. An example of Gompertz-Makeham fit for human mor-

tality data

Human mortality data analysis is not of primary interest for the present
study, since it is fundamentally difficult to attain genetic and environmental
variations control, characteristic to laboratory experiments. For that reason,
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A.

B.

Figure E.5: A. A combined IMR (M0) versus Gompertz exponent slope ↵ plot for the female
human period mortality data in France from Shkolnikov et al. [8], summarizing the estimates
obtained by the least-squares procedure for Gompertz-Makeham mortality law. The dots
represent the fitting results for the yearly period mortality data. The dots, the iso-average-
lifespan curves defined by Eq. (D.2) and the left boxes with t̄ values are coloured according to
average lifespan t̄. The ellipses combine fitting results for several successive years and show
their long-term uncertainty in (M0,↵) plane, while the corresponding time periods, average
lifespans and Makeham parameters A are written in the boxes on both sides of ellipses. The
pseudocolour of the right boxes and ellipses denotes the Makeham age-independent mortality
value A: green for a small and red for a large Makeham contribution. B. The same plot for
the Swedish female human period mortality data from Shkolnikov et al. [8].
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we provide the following example illustration of how our results concerning the
stability of Gompertz fit could be employed for human demography studies.
For the demonstration, we have chosen female human period mortality data for
France and Sweden [8] collected for the time interval from 1860 to 2000. Since
we are now considering lifetables, including those from the time periods prior
to 1950, when age-independent mortality was very high, we have to take it into
account explicitly and employ Gompertz-Makeham fit.

The results of the calculations for the two countries are summarized in
Figures E.5A and B. The fitting results are represented by dots. The solid
lines in the background represent iso-average-lifespan curves as prescribed by
Eq. (D.2) from Appendix D. Average lifespan is now a function of 3 variables
¯t = ¯t(M0,↵, A). We colour the lines and individual fitting results according to
average lifespan. We assumed that underlying biological factors change slowly
with time and combined the dots, representing a few subsequent periods into
ellipses. Sizes and orientations of the ellipses provide the estimates of fit uncer-
tainties. We coloured the ellipses according to the calculated values of Makeham
term in a continuous way, from red to green for large and small age-independent
mortality estimates, respectively.

Human demography evolves rather slowly and therefore for sufficiently short
time-periods any human population can be considered homogeneous with a con-
stant lifespan. Therefore, we expect that there should exist an approximate form
of SM correlation. We indeed observe in Figures E.5A and B all the ellipses
aligned more or less along the iso-average-lifespan curves. Not unexpectedly,
over longer timescales SM correlation still holds “locally”, but, in line with ex-
pectations from Eq. (B.9), the slope of the line changes gradually along with
the average lifespan, which increases over the decades, apparently as a function
of environmental conditions improvements and achievements of medicine. The
breakdown of global linear trend in 1950s is probably associated with a 10-fold
Makeham age-independent mortality drop within the first half of the century,
which is marked by the sudden colour-change of the ellipses in Figure E.5 be-
tween two parts of the “broken” trajectory.

The behavior can be easily understood with the help of the analytical re-
lations derived in Appendix B. Let us assume that Makeham age-independent
mortality term is changed by a small margin, A ! A + �A. Then, due to
Eq. (D.1) the surviving fraction also changes N(t) ! N(t) exp(��At). Fol-
lowing the derivation leading to Eqs. (B.6), (B.7) and (B.8), we observe that
N(

¯t) = 1/2�⌘, where ⌘ ⇡ ��A¯t and is presumed to be small. Therefore,
while the average lifespan acquires a small correction �¯t ⇠ ⌘¯t, the Gompertz
parameters change much stronger, by

4⇤ ⇠ �⇤

2A¯t,

and
4↵ ⇠ �⇤

2A,

still in the direction of SM correlation, �↵ = �⇤/¯t, at the given value of average
lifespan. The estimates obtained here are interesting on their own. We have
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just demonstrated, that the Gompertz fit degeneracy does not manifest itself
only in obscuring true aging model parameters in a situation when there is an
insufficient number of specimens in experimental cohorts. In fact, the spuri-
ous correlation between Gompertz parameters may mask a truly biologically
significant response to experimental conditions. For example, a therapy aimed
at reduction of age-independent mortality, such as an antibiotic, may be mech-
anistically characterized as an intervention, fundamentally acting on aging by
increasing Gompertz exponent and reducing IMR.
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