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Abstract

In considering evolution of transcribed regions, regulatory modules, and other genomic loci
of interest, we are often faced with a situation in which the number of allelic states greatly
exceeds the population size. In this limit, the population eventually adopts a steady state
characterized by mutation-selection-drift balance. Although new alleles continue to be explored
through mutation, the statistics of the population, and in particular the probabilities of seeing
specific allelic configurations in samples taken from a population, do not change with time. In
the absence of selection, probabilities of allelic configurations are given by the Ewens sampling
formula, widely used in population genetics to detect deviations from neutrality. Here we de-
velop an extension of this formula to arbitrary, possibly epistatic, fitness landscapes. Although
our approach is general, we focus on the class of landscapes in which alleles are grouped into
two, three, or several fitness states. This class of landscapes yields sampling probabilities that
are computationally more tractable, and can form a basis for the inference of selection signatures
from sequence data. We demonstrate that, for a sizeable range of mutation rates and selection
coefficients, the steady-state allelic diversity is not neutral. Therefore, it may be used to infer
selection coefficients, as well as other key evolutionary parameters, using high-throughput se-
quencing of evolving populations to collect data on locus polymorphisms. We also carry out
numerical investigation of various approximations involved in deriving our sampling formulas,
such as the infinite allele limit and the “full connectivity” assumption in which each allele can
mutate into any other allele. We find that our theory remains sufficiently accurate even if these
assumptions are relaxed. Thus, our framework establishes a theoretical foundation for infer-
ring selection signatures from samples of sequences produced by evolution on epistatic fitness
landscapes.

Introduction

With the advent of high-throughput molecular biology techniques, it has recently become possible
to carry out large-scale phenotypic assays in molecular systems. For example, Podgornaia and
Laub have mapped all 204 = 1.6 × 105 possible combinations of four key residues in the E. coli
protein kinase PhoQ, and assayed each mutant for the signaling function mediated by its binding
partner PhoP.1 The study revealed 1659 functional PhoQ variants, which can be thought of as
forming the upper plane on the fitness landscape. The upper plane is divided into several clusters
under single-point mutational moves – only sequences within each cluster can mutate into each
other without undergoing deleterious moves to the lower plane, where all non-functional sequences
reside. This two-plane landscape is highly epistatic – the effect of a given mutation depends on the
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amino acids at the other three positions, in agreement with previous reports on the primary role
of epistasis in molecular evolution.2,3, 4, 5

The picture of fitness landscapes made of multiple interconnected planes is supported by other
high-throughput experiments aimed at elucidation of the relationship between gene sequence and
function.3,6, 7 Although these experiments typically yield distributions of mutation fitness effects,
the data can often be understood, at least to a first-order approximation, in terms of functional
and non-functional sequence variants.8,9 Indeed, distributions of fitness effects often appear to
be bi-modal in such studies, with a low-fitness peak for strongly deleterious and lethal mutations,
and another for weakly deleterious and neutral ones. In comparison to deleterious and neutral
mutations, beneficial mutations are relatively infrequent.6,7, 9 The coarse-graining of the fitness
landscape into functional and non-functional states may be refined by introducing additional fitness
values, e.g. for weakly deleterious mutations.

Overall, given the astronomically large number of possible sequence variants, we expect the
size of neutrally-connected clusters on all fitness planes to be larger than the population size.
Then evolutionary dynamics on a multiple-plane landscape will involve periods of neutral search
followed by positive selection, in which the bulk of the population moves to a higher-fitness state.3,10

Populations evolving on such a landscape will eventually reach a steady state characterized by
mutation-drift balance.11 This balance determines the statistics of the population, such as the
mean and the variance of the number of distinct alleles. Although the population continues to
explore new alleles through mutations, the allele statistics do not change anymore once the steady
state is reached. In the absence of selection (that is, for evolution on a single neutral plane), the
probability of observing a given pattern of allelic diversity in a sample of size n taken from the
steady-state population was derived by Ewens.12

The Ewens sampling formula can be used to understand the allelic diversity in neutral popula-
tions, and test for deviations from the neutral expectation.13 However, in order to make quantitative
predictions of selection coefficients, it is necessary to extend the Ewens sampling formula to arbi-
trary fitness landscapes. As noted above, of special interest in molecular evolution are landscapes
in which alleles are grouped into two or three distinct fitness states. Such landscapes provide a
natural generalization of the completely neutral evolutionary scenario.

Previous work in this area has focused mostly on deriving frequency spectra for either arbitrary
fitness landscapes or specific models of selection. In particular, Li obtained the frequency spectrum
for a general landscape, and used it to derive expressions for the mean number of alleles in a
sample, as well as the mean and the variance of the heterozygosity.14,15,16 Ewens and Li derived
frequency spectra for landscapes with two and three fitness states, and used them to compute the
mean number of distinct alleles and the mean heterozygosity.17 Griffiths also derived a general
integral expression for the frequency spectrum.18

More recently, Ethier and Kurtz have studied allelic diversity in a general model of selection in
which fitness of each new allele is completely independent of the fitness of its parent.19 This and
follow-up work20,21,22 has contributed to our understanding of how allelic sampling probabilities
are shaped by various forms of selection pressure. In particular, Joyce and Genz have developed
effective algorithms for evaluating sampling probabilities.23 Finally, Desai et al. have investigated
sampling probabilities in a model (previously introduced by Charlesworth et al.24 and Hudson and
Kaplan25) comprised of a sequence of neutral and negatively selected sites.26 This model has no
epistasis, and therefore can be treated using the Poisson Random Field method.27 However, the
models of both Ethier and Kurtz and Desai et al. cannot be applied to molecular evolution, which
is characterized by prominent epistasis and correlated fitness values.

Here we develop an extension of the Ewens sampling formula to arbitrary fitness landscapes.
First, we use the diffusion approximation of population dynamics to derive a general sampling
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formula valid for any number of alleles K (allele i is assigned an arbitrary fitness value fi), mutation
rate µ, and population size N . We assume that the population adopts a steady state characterized
by mutation-selection-drift balance. The sampling formula is derived under the assumption that
n� N , where n is the total sample size; this assumption is often realistic in populations subjected
to high-throughput sequencing.

The most general sampling formula is not amenable to efficient calculations since it involves
sums over special functions with a number of terms that increases rapidly with both the sample
size and the number of alleles. Therefore, we focus on multiple-plane landscapes applicable in
molecular evolution, with only a few (two or more) distinct fitness states. We also make the
N � K approximation, which reflects the fact that the number of possible allelic states in molecular
systems is typically much larger than effective population sizes. The resulting sampling formulas
are sufficiently tractable to be used to study selection signatures and deviations from neutrality
on multiple-plane fitness landscapes for arbitrary mutation rates and selection coefficients. In
particular, we study the effective population size approximation24,26 and its limits of applicability.
We compare our results with numerical simulations, investigating potential deviations between
experiment and theory which may be caused by the differences in evolutionary dynamics between
fully connected sequence networks (for which our theory is valid) and more realistic scenarios
involving single-point mutations. We also investigate finite network size effects, since our multiple-
plane sampling formula is derived in the infinite allele limit.

Our results are applicable to understanding the nature of allelic diversity under selection, mu-
tation and drift, for a vast class of fitness landscapes that are relevant to both molecular evolution
and, more generally, evolution in systems where the number of alleles vastly exceeds the popula-
tion size. Moreover, our sampling formulas form the basis for a quantitative test which can both
detect the presence of selection and estimate selection coefficients in epistatic systems under very
general and well-defined assumptions. Population-level allele diversity data is increasingly available
through high-throughput sequencing techniques, making our approach a practical and timely tool
for studying the role played by selection in present-day populations.

Results

Steady-state distribution of allele frequencies

We consider a haploid population of fixed size N . Each individual in the population has a single
allele in the state i, with fitness fi; there are K distinct allelic states. Mutations occur at a
probability µ per generation, replacing the original allele with one of the K − 1 remaining alleles.
Thus the probability of offspring Aj produced by parent Ai6=j is µ/(K − 1). We can view this
system as an “allelic network” with the topology of a complete graph, with K vertices representing
allelic states and edges representing mutational moves. Stochastic evolution of the population can
then be described using Moran 28,29 or Wright-Fisher29,30 population dynamics.

Without loss of generality, we can specify fitness fi of the allele Ai with respect to an arbitrary
reference allele AK . It is convenient to introduce a K-dimensional vector of relative fitnesses
multiplied by the population size: ~β = (N(f1 − fK), ..., N(fK−1 − fK), 0). Likewise, we define a
K-dimensional vector of mutation rates as ~ε = (ε, ..., ε), where ε = Nµ/(K − 1) for Moran28,29 and
ε = 2Nµ/(K − 1) for Wright-Fisher population dynamics.29,30 a We also introduce θ = Kε, which
in the limit of large number of alleles K →∞ becomes Nµ and 2Nµ for Moran and Wright-Fisher

aAll the formulas in this section can be generalized to the case of final-state-dependent mutation rates, i.e. µij = µj ,
∀i in Ai → Aj
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dynamics, respectively. Note that we consider the case of equal mutation rates between alleles, for
which the steady state is well-defined.31

The evolutionary dynamics of this system in the diffusion limit is described by the forward
Kolmogorov equation:

∂p

∂t
=

1

2

K−1∑
i,j=1

∂2(Vijp)

∂xi∂xj
−
K−1∑
i=1

∂(Mip)

∂xi
, (1)

where p(~x, t) is the joint probability of frequencies of K alleles at time t (~x = (x1, ..., xK) is a
K-dimensional vector of allele frequencies which occupy a (K − 1)-dimensional simplex ΣK−1 =
{(x1 ≥ 0, ..., xK ≥ 0) :

∑K
i=1 xi = 1}), and

Mi = E[δxi] =
ε−Kεxi

2N
+

1

2
xi

∂〈f〉
∂xi

−
K−1∑
j=1

xj
∂〈f〉
∂xj

+O

(
1

N2

)
,

Vii = E[δx2
i ]− E[δxi]

2 =
xi(1− xi)

N
+O

(
1

N2

)
,

Vij = E[δxiδxj ]− E[δxi]E[δxj ] = −xixj
N

+O

(
1

N2

)
,

(2)

where xi denotes the frequency of allele Ai in the population, and 〈f〉 =
∑K

i=1 fixi is the mean
population fitness.

In steady state ∂p/∂t = 0, and the distribution of allele frequencies in Eq. 1 is given by14,15,32

p(~x) =
1

Z
eN〈f〉

K∏
i=1

xε−1
i , (3)

where Z is the normalization constant. Eq. 3 can be written more explicitly as

p(~x) =
1

B(~ε)F(~ε; |~ε|; ~β)

K∏
i=1

xε−1
i eβixi , (4)

where |~ε| = Kε = θ is the L1-norm of ~ε,

B(~a) =

∏n
i=1 Γ(ai)

Γ(
∑n

i=1 ai)
(5)

is the generalized beta function written in terms of Gamma functions, and

F(~a; b;~z) =

∞∑
j1=0

...
∞∑
jn=0

a
(j1)
1 ...a

(jn)
n

b(j1+...+jn)

zj11

j1!
...
zjnn
jn!

=
∞∑
j=0

Bj(α1, ..., αj)

j!b(j)
(6)

is the confluent hypergeometric function 1F1(a; b; z) generalized to vector arguments. Here, a(j) =
Γ(a + j)/Γ(a) is the rising factorial, Bj is the jth complete Bell polynomial and αj = (j −
1)!
∑n

i=1 aiz
j
i .

Differentiation of this function with respect to ~z yields

k∏
i=1

(
∂

∂zi

)ni
F(~a; b;~z) =

∏k
i=1(ai)

(ni)

b(n)
F

(
~a+

k∑
i=1

ni~1i; b+ n;~z

)
, (7)

where n =
∑k

i=1 ni and (1i)j = δij .
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Strongly monomorphic limit

When mutation rate decreases and population size is kept fixed, ε→ 0 and the population becomes
monomorphic.29,33,34,35 We consider the Fourier transform of the steady-state distribution in Eq. 4:

p̃(~k) =

∫
ΣK−1

d~xei
~k·~xp(~x), (8)

where the integral is over the (K − 1)-dimensional simplex. Using Eq. 6, we can write the Fourier
transform as a ratio of two generalized hypergeometric functions:

p̃(~k) =
F(~ε; |~ε|; ~β + i~k)

F(~ε; |~ε|; ~β)
. (9)

Taking the ε→ 0 limit yields

p̃mono(~k) =

∑K
m=1 e

βm+ikm∑K
m=1 e

βm
. (10)

Thus the steady-state distribution in the monomorphic limit is given by:

pmono(~x) =

∫
d~x

Vol(ΣK−1)
e−i

~k·~xp̃mono(~k) =

∑K
m=1 e

βmδ(~x−~1m)∑K
m=1 e

βm
, (11)

where Vol(ΣK−1) =
√
K/(K−1)! is the volume of the (K−1)-dimensional simplex and (1m)i = δmi.

Therefore in the ε → 0 limit the population resides in one of the K monomorphic states available
to it, with the probability of being in a particular state exponentially weighted by its fitness.36,37,38

Probability of a sample of alleles

Let us now consider a situation relevant to molecular evolution, where the number of alleles K is
much larger than the population size N . In this case, the steady state in terms of allele frequencies
is unlikely to be reached on relevant evolutionary time scales. Mathematically, the K → ∞ limit
of Eq. 4 becomes ill-defined.39,40 Nonetheless, the steady state is well-defined in terms of allelic
counts rather than frequencies of specific alleles.11 In other words, the allelic diversity of the
population (e.g. as characterized by the mean and the variance of the distribution of the number
of distinct allelic types) is tractable and will no longer change in steady state, although new alleles
will continue being explored through mutation.

One is often interested in statistical properties of a sample of alleles of size n� N obtained from
the population. Let us consider a simple example of a population evolving on a small allelic network
with K = 5 allelic types A,B,C,D,E. Suppose that in sampling n = 4 alleles from the population
we first observe allele A, then C, then A again, and finally D. We can record this sequence of alleles
as an ordered list (A,C,A,D). However, typically we are not interested in the order in which alleles
appear in the sample, and therefore record the result as an unordered list {A,A,C,D}, which shows
that allele A has appeared twice and alleles C and D have appeared once each. b Alternatively, we
can record non-zero allelic counts, which gives us nA = 2, nC = 1, nD = 1. Finally, we can dispense
with the allele labels altogether, identifying each allele in the sample as either new or already seen.
In this case, we are left with an unordered list of counts {2, 1, 1}, meaning that we have observed 4

bWe shall use the notation {a, b, ..., z} for unordered lists and (a, b, ..., z) for ordered ones. For ordered lists
(a, b, ..., z) 6= (b, a, ..., z), whereas for unordered lists {a, b, ..., z} = {b, a, ..., z}.
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alleles of 3 different types, with one type represented by two alleles and the other two types by one
each. In general, we will refer to {n1, ..., nk} as the (unordered) allelic counts. The allelic counts
can also be summarized in terms of a histogram which records how many groups of j identical
alleles occur in the sample, with j ranging from 1 to n. In our example, there is one group of two
identical alleles and two groups of one allele each, so that (A,C,A,D) is recorded as the allelic
histogram (a1 = 2, a2 = 1, a3 = 0, a4 = 0). c

We now derive the probability P[{n1, ..., nk}] of observing an unordered sample {n1, ..., nk},
given that the population has reached steady state in terms of its allelic diversity. Before treating the
general case, we illustrate our approach using a toy example withK = 3 allelic types: A = (A,B,C).
We wish to calculate the probability of observing the {2, 1} unordered configuration in a sample
of size n = 3, which is assumed to be much less than the population size N . There are 18 ordered
configurations that contribute to this probability:

AAB ABA BAA
AAC ACA CAA
BBC BCB CBB

ABB BAB BBA
ACC CAC CCA
BCC CBC CCB

In particular, the probability of choosing A first, then A again and finally B is

P[(A,A,B)] =

∫
x2
Ax

1
B p(xA, xB, xC) dxAdxBdxC

=

∫
x2
Ax

1
B p(xA, xB) dxAdxB,

(12)

where p(xA, xB, xC) is given by Eq. 4. Consequently, the probability of observing two A’s and one
B in any order is given by41

P[{A,A,B}] =

(
3

2 1

)∫
x2
Ax

1
B p(xA, xB) dxAdxB, (13)

where
(

3
2 1

)
is the multinomial coefficient. Introducing a set S2A = {(A,B), (A,C), (B,C)}, which

permutes allelic identities in an ordered manner (i.e., the overall allele ordering from A to B to C
is preserved in each pair of alleles), we can take into account the first 9 configurations in the table
above:

P[{A,A,B}] + P[{A,A,C}] + P[{B,B,C}] =

(
3

2 1

) ∑
σ∈S2A

∫
x2
σ1x

1
σ2 p(xσ1 , xσ2) dxσ1dxσ2 . (14)

In order to include the last 9 configurations in the table, we need to switch the order of the
alleles: {(A,B), (A,C), (B,C)} → {(B,A), (C,A), (C,B)}. But switching the alleles in each pair
amounts to replacing x2

σ1x
1
σ2 with x2

σ2x
1
σ1 = x1

σ1x
2
σ2 in Eq. 14. Thus we can summarize the entire

table by introducing a set PN of all distinct permutations of allelic counts N , which determine
the powers to which the allelic frequencies are raised in Eq. 14. In our example N = (2, 1) and

cWe shall use the notation (a1, a2, ..., an) for allelic histograms.
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PN ≡ {ν1, ν2} = {(2, 1), (1, 2)}. Therefore,

P[{2, 1}] =

(
3

2 1

) ∑
ν∈PN

∑
σ∈S2A

∫
xν1σ1x

ν2
σ2 p(xσ1 , xσ2) dxσ1dxσ2 (15)

=

(
3

2 1

) ∑
ν∈PN

∑
σ∈S2A

E

[
2∏
i=1

xνiσi

]
. (16)

The above example can be easily generalized to describe the probability P[{n1, ..., nk}] of ob-
serving an unordered list of counts, {n1, ..., nk}. Note that the sample size is n =

∑k
i=1 ni, and that

k distinct allelic types are observed. First, we enumerate all K alleles, forming a unique ordered list
A = (1, ...,K). Second, we choose a subset σ = (σ1, ..., σk) of size k from A without replacement,
so that the allelic order is preserved: σ1 < ... < σk (note that no subsets are allowed to contain
repeating elements of A). Then SkA can be naturally defined as a set which contains all ordered
subsets of A of size k. Finally, as before PN ≡ {ν1, ..., νk} is a set of all distinct permutations of
allelic counts N = (n1, ..., nk). With these definitions,

P[{n1, ..., nk}] =

(
n

n1 ... nk

) ∑
ν∈PN

∑
σ∈SkA

E

[
k∏
i=1

xνiσi

]
, (17)

where
(

n
n1 ... nk

)
is the multinomial coefficient, and the expectation is calculated with respect to the

steady-state allele distribution, Eq. 4.
We can use the probability distribution over unordered configurations (Eq. 17) to compute the

distribution of the number of different allelic types k:

P[k] =
∑

n1≥...≥nk
n1+...+nk=n

P[{n1, ..., nk}], (18)

where the summation runs over all ordered partitions of n into k positive integers.

Sampling formula for the arbitrary fitness landscape

As Eq. 17 demonstrates, evaluation of sample probabilities requires calculation of moments of allele
frequency distributions. This is most easily accomplished by taking derivatives of the normalization
constant Z = B(~ε)F(~ε; |~ε|; ~β) with respect to the components of ~β:

E

[
k∏
i=1

xνii

]
=

1

Z

k∏
i=1

(
∂

∂βi

)νi
Z. (19)

Using Eq. 7, we obtain:

P[{n1, ..., nk}] =

(
n

n1 ... nk

)∏k
i=1 ε

(ni)

(Kε)(n)

∑
ν∈PN

∑
σ∈SkA

F(~ε+ ~νσ;Kε+ n; ~β)

F(~ε;Kε; ~β)
, (20)

where equal mutation rates are assumed for all alleles and ~νσ is a K-dimensional vector whose σi-th
components are νi (i = 1, ..., k) and all the other components are zero. As discussed above, the sum
over σ extends over all distinct subsets of k alleles sampled from K uniquely ordered alleles and
subject to the σ1 < ... < σk constraint. Therefore ~νσ has K − k zero and k non-zero components
which are distributed according to σ. The sum over ν extends over all distinct permutations of
allelic counts which sum up to n. Eq. 20 is valid for arbitrary fitness landscapes and arbitrary K.
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Neutral limit of the sampling formula

When all alleles have the same fitness, the general sampling formula given by Eq. 20 should reduce
to the Ewens formula for neutral evolutionary dynamics.11,12 Indeed, with all βi set to zero, the
generalized hypergeometric function F(~a; b;~0) (Eq. 6) becomes 1. Then for the finite number of
alleles K

P[{n1, ..., nk}] = NP
n!

(Kε)(n)

(
K

k

) k∏
i=1

ε(ni)

ni!
, (21)

where NP = |PN| is the total number of distinct permutations of allelic counts (n1, ..., nk). In the
limit of an infinite number of alleles K →∞, Eq. 21 becomes

P[{n1, ..., nk}] = NP
1

k!

n!∏k
i=1 ni

θk

θ(n)
. (22)

Changing variables to allelic histogram counts yields
∏k
i=1 ni =

∏n
j=1 j

aj and NP = k!/
∏n
j=1 aj !,

resulting in

P[(a1, ..., an)] =
n!∏n

j=1 aj !j
aj

θk

θ(n)
. (23)

Eq. 23 is known as the Ewens sampling formula.11,12

Sampling formula for populations with two fitness states

As a straightforward generalization of the neutral case, consider a system with I alleles of fitness
f1 and K − I alleles with fitness f2 6= f1. Thus the fitness landscape consists of two interconnected
“planes”. We can assume without loss of generality that alleles 1, . . . , I belong to the first plane and
alleles I + 1, . . . ,K belong to the second plane. Then γ = I/K defines a fraction of nodes on the
first plane, and the fitness vector is ~β = (β, ..., β, 0, ..., 0) with I non-zero entries followed by K − I
zeros. Then it can be shown that for finite K the sampling probability is given by (Appendix A):

P[{n1, ..., nk}] =
n!∏k
i=1 ni!

∏k
i=1 ε

(ni)

(Kε)(n)

(
K

k

)
×

∑
ν∈PN

k∑
i=0

1F1

(
γθ +

∑i
m=1 νm; θ + n;β

)
1F1 (γθ; θ;β)

(
I
i

)(
K−I
k−i
)(

K
k

) .

(24)

Taking the infinite allele (K →∞) limit with γ fixed, we arrive at

P[{n1, ..., nk}] =
n!

k!

1∏k
i=1 ni

θk

θ(n)
×

∑
ν∈PN

k∑
i=0

1F1

(
γθ +

∑i
m=1 νm; θ + n;β

)
1F1 (γθ; θ;β)

(
k

i

)
γi(1− γ)k−i.

(25)

Thus hypergeometric sampling of Eq. 24 reduces to binomial sampling in the infinite allele limit.
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Sampling formula for populations with multiple fitness states

Let us now generalize the result of the previous section to the case of multiple fitness states: each
allele can be assigned a distinct fitness value fm, m = 1, . . . ,M . In other words, the fitness
landscape consists of multiple planes, with Im = γmK nodes of fitness fm on the mth plane, so
that

∑M
m=1 γm = 1. Then the sampling probability for finite K is given by

P[{n1, ..., nk}] =
n!∏k
i=1 ni!

∏k
i=1 ε

(ni)

(Kε)(n)

(
K

k

)
×

∑
ν∈PN

∑
Y ∈Y(~I,N )

F(~γθ + ~νY ; θ + n; ~β)

F(~γθ; θ; ~β)

(
I1
i1

)
...
(
IM
iM

)(
K
k

) ,

(26)

and its infinite allele limit is given by

P[{n1, ..., nk}] =
n!

k!

1∏k
i=1 ni

θk

θ(n)
×

∑
ν∈PN

∑
Y ∈Y(N )

F(~γθ + ~νY ; θ + n; ~β)

F(~γθ; θ; ~β)

(
k

i1...iM

)
γi11 ...γ

iM
M .

(27)

The sums in Eqs. 26 and 27 take into account all possible ways of sampling n alleles from M
planes (Fig. 1). To explain these sums, let us imagine distributing n books over M shelves. The
books come in k indivisible volume sets, and the ith set has νi identical books in it. We would like
to find all book-to-shelf arrangements, keeping in mind that shelves have finite capacities: only Im
books can be placed on the mth shelf. One way to describe any book-to-shelf arrangement is to use
an M -dimensional vector ~νY which records how many books are placed on each shelf. For example,
if M > k, a vector ~νY = (ν1, ..., νk, 0, ..., 0) with M − k zeros following k non-zero entries describes
placing volume sets on shelves in a particular order: the first volume set goes on the first shelf,
the second volume on the second shelf and so on (assuming that the shelves are large enough to
accommodate the volume sets), until no more books are left, so that the remaining M − k shelves
remain empty. Permutations of this arrangement, expressed as permutations of ~νY vector elements,
are also allowed (again, assuming that all the shelves are large enough). We can also put more
than one volume set on a single shelf, leading to arrangements such as (ν1 + ν2, ν3, ..., νk, 0, ..., 0)
with M − k + 1 zero and k − 1 non-zero entries. As before, this arrangement is allowed only if the
number of books on each shelf does not exceed shelf capacities. Note that the question of capacity
does not arise in the infinite allele limit, since the shelves become effectively infinitely long.

In order to systematically list all the arrangements for volume sets (ν1, ..., νk), we follow a simple
rule: if the kth set of νk books is placed on the mth shelf, the (k + 1)th set of νk+1 books goes
either on the same shelf or on the m′th shelf with m′ > m. Taking elements of (ν1, ..., νk) one
by one and changing the initial shelf (onto which the 1st volume set is placed) and the number of
volume sets on each shelf, we can generate a set of all permutations of ~νY elements. We shall call
this set Y(~I,N ) since it depends on both the shelf capacities ~I = (I1, ..., IM ) and the volume sets
N . In the limit of infinite shelf capacity the dependence on shelf sizes disappears, and the set of all
permutations will be called Y(N ). To include all possible arrangements, we need to perform the
book-placing procedure for each distinct permutation of N = (n1, ..., nk).

Now, if we replace shelves with fitness planes and volume sets with allelic counts, we obtain an
algorithm for generating all allowed placements of allelic counts on fitness planes. The non-negative
indices i1 . . . iM in Eqs. 26 and 27 represent the number of volume sets (allelic counts) on each shelf
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Figure 1: Illustration of summations over Y(~I,N ) and Y(N ) in Eqs. 26 and 27 respectively, for a
list of allelic counts N = (4, 1, 2). (A) The finite plane case. Finite plane capacities are shown in
parentheses. (B) The infinite plane case.

(fitness plane). The distribution of alleles among fitness planes of finite capacity is illustrated in
Fig. 1A for M = 3 and a vector of allelic counts ~ν = (4, 1, 2); the infinite-plane case is shown in
Fig. 1B.

Next, let us consider the monomorphic limit of Eq. 27: θ → 0 with finite β and γ. It can be
shown that

F(θ~γ; θ; ~β) −−−→
θ→0

M∑
m=1

γme
βm , (28)

leading to

P[{n}] = 1 +O(θ),

P[{n1, ..., nk}] = O(θk−1).
(29)

Therefore, as expected, the P[{n}] (k = 1) term predominates in the monomorphic limit.
By construction, Eqs. 25 and 27 reduce to the neutral limit (Eq. 22) when all fitness values

are the same. In addition, the neutral limit is reproduced in the strongly polymorphic, mutation-
dominated limit, defined as θ →∞ with finite β and γ. In this limit,

F(~γθ + ~νY ; θ + n; ~β)→ F(~γθ; θ; ~β), (30)

and Eq. 27 reduces to the neutral result. This is expected since selection effects become vanishingly
small in this regime.
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Frequency spectrum for arbitrary fitness landscapes

The frequency spectrum Φ(x) is a standard way of characterizing allele frequency distributions in
evolving populations;42 Φ(x)dx is defined as the number of alleles in the population with frequency
in the (x, x+dx) range. Therefore, according to Eq. 4 the steady-state frequency spectrum is given
by

Φ(x) =
K∑
i=1

pi(x), (31)

where pi(x) =
∫ ∏

j 6=i dxjp(~x) is the marginalized allele frequency distribution for the ith allele.
Note that according to Eq. 31 Φ(x) is normalized as follows:∫ 1

0
xΦ(x)dx = 1. (32)

Correspondingly, xΦ(x)dx is the probability that an allele randomly drawn from the population
has its frequency in the population in the (x, x+ dx) range. The frequency spectrum can be used
to find E[k], the mean number of distinct alleles in a sample of size n:

E[k] =

∫ 1

0
(1− (1− x)n) Φ(x)dx. (33)

For a landscape with M distinct fitness values, the frequency spectrum is given by (Appendix B)

Φ(x) =
Γ(Kε)

Γ(ε)Γ((K − 1)ε)
xε−1(1− x)(K−1)ε−1

×
K∑
i=1

eβix
F(~εi; (K − 1)ε; (1− x)~βi)

F(~ε;Kε; ~β)
,

(34)

where the (K − 1)-dimensional vectors ~βi and ~εi are obtained from K-dimensional vectors ~β and ~ε
by removing their ith components. The formula above is valid for arbitrary number of alleles K,
mutation rate, and population size.

Using Eq. 34, the expected number of distinct alleles in a sample of size n can be computed as

E[k] =K − 1

F(~ε;Kε; ~β)

K∑
i=1

∞∑
j=0

1

(Kε)(j+n)

×
∑

j1+...+jK=j

βj11 ...β
jK
K

j1!...jK !
ε(j1)...ε(jK)((K − 1)ε+ j − ji)(n).

(35)

In the K → ∞ limit (and assuming that all M fitness planes also become infinite in this limit),
Eq. 34 simplifies to

Φ(x) = θx−1(1− x)θ−1F(θ~γ; θ; (1− x)~β)

F(θ~γ; θ; ~β)

M∑
m=1

γme
βmx. (36)

Furthermore, in the case of two fitness states (M = 2) we can simplify Eq. 36 using Eq. 55:17

Φ(x) = θx−1(1− x)θ−1(1− γ + γeβx)
1F1(γθ; θ; (1− x)β)

1F1(γθ; θ;β)
. (37)
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For neutral evolution, we set all βi to 0; Eq. 36 then yields

Φneutral(x) = θx−1(1− x)θ−1, (38)

which looks like two-allele steady-state allele frequency distribution. In the strongly monomorphic
limit and the absence of selection, the steady-state distribution (Eq. 4) simplifies to (Eq. 11):

pneutral(x) =
1

2
[δ(x) + δ(x− 1)]. (39)

Since Φ(x) = Kp(x), we obtain

Φneutral(x) =
K

2
[δ(x) + δ(x− 1)] (40)

in the monomorphic limit of neutral evolution.
Using Eq. 33, we can obtain a standard expression for the mean number of alleles observed in

neutral evolution:11,15,17

E[k] = θ (ψ(θ + n)− ψ(θ)) = θ
n−1∑
i=0

1

i+ θ
, (41)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. Note that E[k] → 1 in the monomorphic limit
(θ → 0) and E[k]→ n in the strongly polymorphic limit (θ →∞).

Finally, we observe that Eq. 41 can also be derived by setting all βi = 0 in Eq. 35:

E[k] = K −
K∑
i=1

Γ(Kε)

Γ((K − 1)ε))

Γ((K − 1)ε+ n))

Γ(Kε+ n)

−−−−→
K→∞

K −K 1− ψ(Kε)ε+ o(ε2)

1− ψ(Kε+ n)ε+ o(ε2)

= θ(ψ(θ + n)− ψ(θ)).

(42)

In the monomorphic limit (θ → 0), Eq. 36 becomes

Φmono(x) = θx−1(1− x)−1

∑M
m=1 γme

xβm
∑M

m=1 γme
(1−x)βm∑M

m=1 γme
βm

. (43)

In this limit, xΦmono(x) is non-zero only if x ' 1, where Φmono(x) ' θx−1(1 − x)−1. Note that
selection effects disappear: the entire population is in the same allelic state due to genetic drift,
performing a random walk on the uppermost fitness plane.

In the strongly polymorphic, mutation-dominated limit (θ →∞), Eq. 36 simplifies to

Φpoly(x) = θx−1(1− x)θe−x
∑M
m=1 γmβm

M∑
m=1

γme
xβm . (44)

In this case, xΦpoly(x) is peaked around x ' 0, with Φpoly(x) ' θx−1(1 − x)θ. The population is
completely delocalized, with each member of the population in a distinct allelic state and negligible
selection effects. This is not surprising since mutation dominates both selection and genetic drift
in this limit.
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Fitness landscape models

We have carried out validation of our theoretical predictions against numerical simulations. We
have used the Moran model of population genetics11,28 to evolve a population of N = 103 haploid
organisms, each of which could be in one of K allelic states. Specifically, at each step a parent
is chosen by randomly sampling the population with weights proportional to the fitness of each
individual. An offspring is then produced as an exact copy of the parent. Next, the offspring
undergoes mutation with the probability µ. Finally, the population is uniformly sampled to choose
an organism that will be replaced by the offspring, keeping the overall population size constant.
Probabilities of sampling n individuals from the population were calculated as averages over 106

samples gathered from 103 independent runs. For each run, a randomly generated initial population
was evolved to steady state, after which n individuals were sampled from the population with
replacement 103 times, waiting ∼ 1/µ generations between samples.

We consider two types of models with different mutational moves. In the first model, each allele
is allowed to mutate into any of the other K−1 alleles with equal probabilities. We call this model
fully-connected (FC); it corresponds to our theory which was developed for FC networks. In the
second model, a more realistic move set of single-point mutations is implemented: each organism’s
genome is represented by a sequence of integers a1...aL of length L, where 0 ≤ ai ≤ A − 1. A
mutation replaces an integer at a randomly chosen site with one of the remaining A − 1 integers;
all the replacements have equal probabilities. We call this model a single-point mutation (SPM)
model.

Finally, we assign a fitness value to each allele. We focus on the landscapes in which alleles
can have either low or high fitness values (the “two-plane” model), or low, intermediate, and high
fitness values (the “three-plane” model). The fractions of alleles found in each plane are given by
~γ: ~γ = (γ, 1 − γ) for the two-plane model and ~γ = (γ1, γ2, 1 − γ1 − γ2) for the three-plane model.
In the FC model, the mutational neighborhood of each allele is the same, so that any desired allele
fractions ~γ can be implemented. However, in the SPM model the fractions of neutral, beneficial
and deleterious moves in each plane will depend on ~γ and the assignment of states to planes. We
wished to produce non-trivial distributions of neutral moves on the fitness planes, with mutational
neighborhoods of some alleles being completely neutral in each plane. Another condition was
that the number of alleles in each plane should decrease with its fitness, to reflect the fact that
higher-fitness solutions are harder to find.

To fulfill these requirements, we chose to assign fitness values in the SPM model in the following
way. We use the sequence length L = 10 and the alphabet size A = 4. For each sequence a1...aL we
compute a score z = a1 + ...+ aL. We compare these scores with a set of cutoffs (c1, ..., cM−1) for
the M -plane landscape. For the two-plane landscape, the fitness is 1 if z ≤ c1, and 1 + s otherwise.
We use the cutoff c1 = 17, which yields ~γ = (0.758, 0.242). For the three-plane landscape, if z ≤ c1

the fitness is 1, if c1 < z ≤ c2 the fitness is 1 + s−∆s, and if z > c2 the fitness is 1 + s+ ∆s. We
choose the cutoffs c1 = 17 and c2 = 21, which lead to ~γ = (0.758, 0.210, 0.032). In order to compare
FC and SPM simulations directly, we use the same values of ~γ in the corresponding FC models.

Note that in the neutral case the exact mapping between θ and µ is given by θ = Nµ/(1− µ)
for the Moran model.11 However, it is unclear if this mapping can be extended to the non-neutral
cases considered here. In any event, for the population size and the values of θ investigated below,
µ = θ/(N + θ) ' θ/N . Therefore, we use the diffusion theory result θ = Nµ in comparing
theoretical predictions with numerical simulations.
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Figure 2: Probabilities of all possible partitions of n = 3 alleles ({3}, {2, 1} {1, 1, 1}) sampled from
the population of size N = 103. (A) and (B) KL divergences for the two-plane fitness landscape
as a function of the mutation rate Nµ and the selection coefficient Ns scaled by the population
size, for partition probabilities with and without selection (A), and partition probabilities with
selection compared with the EPS approximation (Eq. 45) (B). (C) KL divergences for the sampling
probabilities of all possible partitions on a three-plane vs. two-plane landscape. Alleles in the three
planes have fitnesses 1, 1 + s − ∆s and 1 + s − ∆s respectively, with Ns = 6 for both two and
three-plane landscapes.

The effective population size approximation

In the monomorphic limit, we expect the effective population size (EPS) approximation to hold:24,26

population dynamics is neutral but with the rescaled population size N∗. Indeed, in the two-plane
case Eq. 25 reduces to

P[{n1, ..., nk}] −−−→
θ→0

NP

k!

n!∏k
i=1 ni

θk−1(1− γ)k−1 (45)

in the θ → 0 limit, which corresponds to the s� µ regime when β is finite; Eq. 45 is the same as
the neutral sampling formula (Eq. 22) in the monomorphic limit if the population size is rescaled:
N → N∗ = (1− γ)N . This result can be generalized to the landscape with multiple fitness planes,
in which case

N∗ = γmN, (46)

where γm is a fraction of nodes with the highest fitness.
However, the EPS approximation breaks down in the polymorphic regime. Indeed, if we take

the N → ∞ limit, which keeps β/θ finite (i.e., the ratio of selection and mutation forces remains
finite as population size increases), it can be shown for the two-plane landscape that

P[{n1, ..., nk}]
P[{n1, ..., nk}|β = 0]

=

∞∑
m=0

cm

(
s

µ

)m
≡ S (47)

where P[{n1, ..., nk}|β = 0] is given by Eq. 22, and coefficients cm depend solely on n1, ..., nk. Since
the right-hand side of Eq. 47 does not depend on the population size, it can be used to define
N∗ = S1/(k−n)N . However, this definition will be sample-specific, due to dependence of S1/(k−n)

on n1, ..., nk. Thus there is no global rescaling of the population size in the strongly polymorphic
regime, and evolutionary dynamics is non-neutral.26

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2016. ; https://doi.org/10.1101/065011doi: bioRxiv preprint 

https://doi.org/10.1101/065011
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: (A) Mutation load (Eq. 52) and (B) the population fraction on the lower plane (Eq. 53)
for the two-plane fitness landscape, as a function of the mutation rate (Nµ) and the selection
strength (Ns) rescaled by the population size.

Detection of selection signatures

As discussed above, in general we expect allele diversity to deviate from neutrality, making it
possible to detect selection signatures using sequences sampled from a population as input. To
investigate non-neutral population dynamics, we compute probabilities for all partitions {n1, ..., nk}
of n alleles sampled from the population evolving under selection, and compare them with steady-
state partition probabilities obtained under neutral evolution and the EPS approximation.

We use the Kullback-Leibler (KL) divergence to quantify the difference between two probability
distributions:43

KL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
. (48)

For the two-plane system, we first compare partition probabilities under selection, P (i) =
P[{n1, ..., nk}|θ, β], with the corresponding neutral probabilities, Q(i) = P[{n1, ..., nk}|θ, β = 0].
Here, i labels distinct partitions. In Fig. 2A, we plot the KL divergence as a function of the
mutation rate and the selection strength for the two-plane fitness landscape. We observe that
evolutionary dynamics is essentially neutral if selection is weak (s ≤ µ); in addition, the range of
selection coefficients for which neutrality holds increases in the monomorphic regime (Nµ ≤ 1).
On the other hand, population statistics is clearly non-neutral when the population is polymorphic
and the separation between the two fitness planes is large. Next, we compute the KL divergence
KL(P ||Q∗) between the EPS probability distribution, Q∗(i) = P[{n1, ..., nk}|θ∗, β = 0], where
θ∗ = (1−γ)θ, and P (i) (Fig. 2B). We see that the EPS approximation fails in the polymorphic, weak-
selection regime. Overall, the neutral and EPS approximations are approximately complementary
– for example, in the strong-selection (s � µ), polymorphic regime, when evolutionary dynamics
becomes non-neutral, it is well approximated by the EPS model.

In Fig. 2C we show KL divergences between partition probability distributions on two- and
three-plane fitness landscapes. We observe that the partition probabilities are essentially two-
plane (i.e., there are no selection signatures indicating presence of intermediate-fitness alleles) if
the population is monomorphic (Nµ ≤ 1), or if the distance between the two upper planes is
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smaller than the mutation rate (∆s ≤ µ). However, there is a considerable parameter region in
which deviations between two and three-plane sampling probabilities appear to be significant (with
KL divergences between the two distributions of 0.01 or more), making it possible to detect three
distinct fitness states in the sampling data.

Mutation load

By definition, the mutation load is given by29,35

L =
fmax − 〈f〉
fmax

, (49)

where fmax is the maximum fitness, and 〈f〉 =
∑K

i=1 xifi is the mean population fitness. To estimate
the mutation load at steady state, we compute the expected value of the mean population fitness
over multiple realizations of the stochastic process:

E[〈f〉] =
K∑
i=1

E[xi]fi = fK +
1

N

K−1∑
i=1

E[xi]βi = fK +
1

N

K−1∑
i=1

∂ logZ

∂ log βi
, (50)

where Z = B(~ε)F(~ε; |~ε|; ~β) is the normalization in the steady-state allele frequency distribution
(Eq. 4). Choosing fK to be the maximum fitness, we obtain the following expression for the
mutation load:

L = − 1

NfK

K−1∑
i=1

E[xi]βi = − 1

NfK

K−1∑
i=1

∂ logZ

∂ log βi
. (51)

For the two-plane system, Eq. 51 yields (Appendix A):

L = − βγ

N(1 + s)
1F1(γθ + 1; θ + 1;β)

1F1(γθ; θ;β)
. (52)

Note that in the two-plane system

E[xlow] =
1 + s

s
L, (53)

where E[xlow] is the average fraction of the population on the lower plane.
Mutation loads for the two-plane fitness landscape are shown in Fig. 3A over a range of se-

lection strengths and mutation rates. As expected, we observe that the largest deviations from
the maximum fitness occur in the strong-mutation, strong-selection regime, where a fraction of the
population is constantly displaced to the lower plane by mutation, incurring a fitness cost. Cor-
respondingly, at a given value of selection strength the mutation load increases with the mutation
rate. In the monomorphic regime the mutation load is vanishingly low because the entire popula-
tion condenses to a single allelic state and moves randomly on the upper plane. The fraction of the
population on the lower fitness plane is shown in Fig. 3B. The fraction is high when the separation
between the two planes is low and, at a fixed separation, it increases with the mutation rate.

Partition probabilities on fully-connected vs. single-point-mutant networks

Our theoretical results have been developed for fully-connected networks in which an allele can mu-
tate into any other allele. However, this model is not realistic for protein or nucleotide sequences, in
which mutational neighborhoods of a given sequence consist of single-point mutants, i.e. sequences
that differ from each other at only a single site. Here we investigate how partition probabilities
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Figure 4: Partition probabilities for the two-plane fitness landscape. Shown are sampling probabil-
ities of all partitions with n = 3: {3}, {2, 1}, {1, 1, 1}. Bars: theoretical predictions in the infinite
allele limit. Black circles: numerical simulations on the FC sequence network. Grey circles: numer-
ical simulations on the SPM sequence network. In all simulations, alphabet size A = 4, sequence
length L = 10, and population size N = 103 were used. Partition probabilities were estimated from
106 samples as described in the main text. (A) Monomorphic population, Nµ = 0.1. (B) Weakly
polymorphic population, Nµ = 1.0. (C) Strongly polymorphic population, Nµ = 10.0. Note that
the corresponding KL divergences are listed in Table 1.

Figure 5: Partition probabilities for the three-plane fitness landscape. All parameters and symbols
are as in Fig. 4, unless indicated otherwise; KL divergences are listed in Table 1.

change if we switch from the FC to the SPM allele network described above. In Fig. 4, we compare
theoretical predictions with numerical simulations on the FC and SPM networks in the two-plane
system. Overall, we observe excellent agreement between theory and simulations on FC networks.
Furthermore, we see that the agreement between SPM simulations and our theoretical results is
reasonable: in nearly all cases, the predicted ranking of the sample partitions, as well as the rank-
ing within any given sample partition with respect to Ns, are preserved. The largest discrepancies
occur in the weakly polymorphic (Nµ = 1), strong-selection regime (Ns = 6, 13).

The situation is qualitatively similar when a three-plane fitness landscape is considered (Fig. 5).
We again observe excellent agreement between theory and FC simulations and, overall, reasonable
agreement between theory and SPM simulations, with the largest discrepancies again occurring in
the weakly polymorphic, strong-selection regime.

Network size effects

Although our approach is valid for an arbitrary number of alleles K, statistics of allele diversity
in a population under selection become substantially easier to deal with in the infinite-allele limit.
As discussed in the Introduction, this limit is justified since our focus here is on evolution of
protein, RNA and DNA sequences, where the number of alleles grows exponentially with sequence
length. Nonetheless, we have systematically investigated the extent of deviations between our
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Table 1: KL divergences between theoretical predictions and numerical simulations for the two-
plane fitness landscape (Fig. 4) and the three-plane fitness landscape (Fig. 5)).

Two-plane landscape Three-plane landscape
Ns = 0 Ns = 6 Ns = 13 Ns = 0 Ns = 6± 3 Ns = 13± 5

Nµ = 0.1 FC 7× 10−7 3× 10−5 8× 10−5 1× 10−5 2× 10−6 7× 10−8

SPM 4× 10−5 8× 10−3 2× 10−2 2× 10−6 2× 10−2 3× 10−2

Nµ = 1 FC 5× 10−5 2× 10−5 1× 10−4 3× 10−5 4× 10−5 5× 10−6

SPM 4× 10−5 2× 10−2 8× 10−2 2× 10−4 9× 10−2 2× 10−1

Nµ = 10 FC 9× 10−6 8× 10−6 2× 10−5 7× 10−6 1× 10−4 2× 10−5

SPM 4× 10−5 2× 10−4 3× 10−3 6× 10−6 1× 10−4 2× 10−2

infinite-allele theory results and simulations as the number of alleles K decreases and becomes
comparable to the population sizeN . Fig. 6 shows the KL divergence between partition probabilities
derived theoretically for the two-plane landscape in the infinite-allele limit (Eq. 25) and obtained
numerically on finite-size FC networks. We consider three regimes: monomorphic (Nµ = 0.1),
weakly polymorphic (Nµ = 1.0), and strongly polymorphic (Nµ = 10.0). In the latter two cases,
noticeable deviations between theory and simulations begin to appear below the K ∼ N regime; the
agreement improves as the population becomes more monomorphic. We conclude that our theory
is applicable over a wide range of mutation rates, as long as the network size is comparable to, or
greater than, the population size.

Discussion

One of the most challenging problems in evolutionary biology is to understand evolutionary dy-
namics of molecular loci, such as protein or RNA-coding sequences, or gene regulatory regions.
The number of nucleotides at these loci, L, is large enough so that the total number of possible
sequences, K = AL, is astronomical, far exceeding the population size N . Under these conditions
the evolution of a molecular locus, assumed to be decoupled by recombination from the rest of
the genome, reaches a “de-labelled” steady state characterized by mutation-selection-drift balance.
The allelic diversity in the population is determined by the balance of forces of selection and drift
on one hand, and mutation on the other. The former act to reduce allelic diversity, while the latter
acts to increase it. As a result, population statistics such as the mean number of distinct alleles, or
the probability of seeing a certain allelic configuration in a sample, do not change with time, even
though new genotypes continue to be explored on the effectively infinite allelic network.

The neutral allelic diversity in such a system (that is, when all alleles have the same fitness)
was explored by Ewens.11,12 The main result of that study, the Ewens sampling formula, is widely
used in population genetics. The neutral landscape is a single plane, with each allele connected
to the other K − 1 alleles. However, recent high-throughput studies connecting protein sequences
with phenotypes reveal a more complex picture: generally, a functional protein such as an en-
zyme can be disrupted by a subset of mutations at each of its sites (e.g., through substitution of
a hydrophobic residue for a hydrophilic one in the protein core). Other mutations do not signifi-
cantly change protein stability, binding affinity or specificity, and are therefore effectively neutral.
Occasionally, a mutation is found which increases the protein’s fitness, but these mutations are
generally infrequent. Overall, recent experimental studies point to fitness landscapes comprised of
multiple interconnected planes. The simplest landscape of this kind has just two distinct fitness
states, with functional sequences on the upper plane and non-functional sequences on the lower
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Figure 6: KL divergence between computational and theoretical partition probabilities on the FC
two-plane fitness landscape (Ns = 6, ~γ = (0.758, 0.242)), as a function of the log ratio between the
total number of allelesK and the population sizeN . The sample size is n = 3; partition probabilities
were estimated from 106 samples as described in the main text. Population size is N = 103, and
the total number of alleles is K = 103 × 2i, i ∈ {−6 . . . 8}. For smaller networks, the number
of the nodes in the upper and lower planes had to be rounded to the nearest integer. Diamonds:
polymorphic population (Nµ = 10.0), squares: weakly polymorphic population (Nµ = 1.0), circles:
monomorphic population (Nµ = 0.1). The solid vertical line indicates the case of the network size
equal to the population size (K = N).

plane.1 Multiple-plane fitness landscapes are characterized by extensive epistasis, which is likely to
be pervasive in molecular evolution.2,3, 4, 5

Since molecular evolution may be described by steady-state dynamics on multiple-plane fitness
landscapes, it is of great interest to generalize the Ewens sampling formula to arbitrary fitness
landscapes, and to the multiple-plane class of landscapes in particular. Tractable expressions for
sampling probabilities would enable inference of selection coefficients, relative plane sizes, and
mutation rates, using DNA, RNA or protein sequences sampled from the population as input. Here
we report an extension of the Ewens sampling formula to arbitrary fitness landscapes, focusing
especially on the multiple-plane case which yields substantial simplifications in the infinite allele
limit. Unlike current state-of-the-art techniques based on the Poisson random field framework,27

such as the sampling probability formulas developed by Desai et al.,26 our approach is capable
of treating epistasis. However, the essential drawback of the Ewens sampling formula and its
generalizations is the “fully-connected” assumption (i.e., that each allele can mutate into every
other allele). Moreover, the sampling formula becomes intractable for large sample sizes, due to a
large number of terms to sum over.

Therefore, in order to study the limits of applicability of our theory, we have carried out
extensive comparisons with numerical simulations on multiple-plane fitness landscapes. First, we
checked the full-connectivity assumption inherent in the Ewens approach by comparing the sampling
probabilities of our theory with those obtained by simulation of steady-state populations evolving
on single-point-mutant networks. We find that the agreement, although dependent on the details
of the fitness landscape model, the values of selection coefficients, and mutation rates (and least
reliable in the weakly polymorphic regime), remains strong enough overall to encourage application
of our theoretical results to sequence data. Note that our model of the fitness landscape was
constructed specifically to create a non-trivial distribution of neutral, deleterious and beneficial
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single-point mutations for the alleles, making it in some sense as distant from the fully connected
network as possible. Thus we expect the deviations to be smaller (or at least not much worse) in
natural systems. Second, we have checked the infinite-allele assumption by systematically reducing
the number of alleles until it became lower than the population size. We find that, over a wide
range of mutation rates, deviations between theory and simulations become significant only when
the number of alleles approaches the population size from above. Thus our assumption of the
infinite network size is justified for all loci that are long enough, such as those encoding transcribed
or regulatory regions.

Robust inference of selection coefficients and mutation rates on the basis of a sample of pop-
ulation allelic states requires statistics of allelic diversity to deviate substantially from both the
neutral expectation and the effective population size (EPS) approximation. Clearly, no inference
of selection signatures is possible on the basis of limited sample data if population dynamics is
close to neutral. On the other hand, in the EPS limit only the relative size of the highest-fitness
plane can be inferred. By scanning over a wide range of selection coefficients and mutation rates
on a two-plane fitness landscape, we have found that, although regions of neutral and EPS dy-
namics are roughly complementary, there are areas of parameter space characterized by deviations
from both. Thus the use of our generalized Ewens sampling formula, which is valid throughout
the entire parameter space, is necessary for inferring selection signatures from data. Moreover,
allelic diversity generated by steady-state evolutionary dynamics on a three-plane fitness landscape
is sufficiently distinct from its two-plane counterpart in the strong-selection, weakly polymorphic
regime, opening up a possibility of inferring multiple selection coefficients from the data. Another
hallmark of non-neutral population dynamics is de-localization of the population to multiple fitness
planes. With a two-plane landscape, we expect the fraction of the population on the lower plane
to increase with the mutation rate and decrease with the distance between the two planes. Our
investigation of the mutation load confirms these predictions.

In summary, we have generalized the Ewens sampling formula to evolutionary dynamics under
selection. Although in principle our results are valid for arbitrary fitness landscapes, focusing on the
infinite allele limit and landscapes with just two or three distinct fitness states yields substantial
simplifications, making our approach computationally tractable and thus applicable to inferring
selection signatures from high-throughput sequence data. Such multiple-plane fitness landscapes
are consistent with recent large-scale studies of molecular phenotypes.1,3, 6, 7 Unlike previous ap-
proaches, we do not assume the absence of epistasis, which is likely to be prevalent in molecular
evolution.2,3, 4, 5 However, we do make the infinite allele assumption, and, as in the Ewens original
formula,12 assume that each allele can mutate into any other allele. We check our theory against
numerical simulations in model systems where these assumptions are relaxed, and find that our
predictions remain accurate enough to enable inference of evolutionary parameters from sequencing
data.
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Appendix

A Simplification of the sampling formula in the two-plane system

In the two-plane system, the fitness vector has the following structure:

~β = (β, ..., β︸ ︷︷ ︸
I

, 0, ..., 0︸ ︷︷ ︸
K−I

) (54)

with I nonzero entries followed by K − I zeros. In this case, Eq. 6 involves summation over only I
indices:

F(~ε; θ; ~β) =
∞∑
j1=0

...
∞∑
jI=0

ε(j1)...ε(jI)

θ(j1+...+jI)

βj1

j1!
...
βjI

jI !

=

∞∑
j=0

βj

θ(j)

∑
j1+...+jI=j

ε(j1)...ε(jI)

j1!...jI !
= 1F1(γθ; θ;β),

(55)

where γ = I/K is the fraction of nodes on the first (lower) plane, and in the last equality we used∑
j1+...+jI=j

(
j

j1...jI

)
a

(j1)
1 ...a

(j1)
I = (a1 + ...+ aI)

(j), (56)

where the sum runs over all non-negative ji that sum up to j.
Now, consider a situation in which the first i out of k counts happen to come from the first

plane. This means that they are among the first I elements of ~νσ. Since assigning these i counts to
different locations within the first I slots in the ~νσ vector (while keeping their original order) does
not change the result, we can for convenience assign them to be the first i elements of ~νσ, followed
by I − i zeros. Then

~νσ = (

i︷ ︸︸ ︷
ν1, ..., νi, 0, ..., 0︸ ︷︷ ︸

I

,

k−i︷ ︸︸ ︷
νi+1, ..., νk, 0, ..., 0︸ ︷︷ ︸

K−I

). (57)

The corresponding generalized confluent hypergeometric function is again given by the sum over I
indices:

F(~ε+ ~νσ; |~ε|+ n; ~β)

=
∞∑
j1=0

...
∞∑
jI=0

βj1

j1!
...
βjI

jI !

(ε+ ν1)(j1)...(ε+ νi)
(ji)ε(ji+1)...ε(jI)

(Kε+ n)(j)
.

(58)

We can rewrite it as

F(~ε+ ~νσ; |~ε|+ n; ~β) =
∞∑
j=0

βj

j!

∑
j′+j′′=j

(
j

j′ j′′

)
1

(Kε+ n)(j′+j′′)

×
∑

j1+...+ji=j′

(
j′

j1...ji

)
(ε+ ν1)(j1)...(ε+ νi)

(ji)

×
∑

ji+1+...+jI=j′′

(
j′′

ji+1...jI

)
ε(ji+1)...ε(jI).

(59)
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Using Eq. 56 immediately leads to

F(~ε+ ~νσ; |~ε|+ n; ~β) = 1F1

(
γθ +

i∑
m=1

νm; θ + n;β

)
, (60)

so that the generalized confluent hypergeometric function is once again reduced to the ordinary
confluent hypergeometric function.

Lastly, we need to take into account the fact that we can put counts into different positions of
the ~νσ vector. This introduces an additional binomial pre-factor

(
I
i

)
. Similarly, placing the rest

of the counts into the last K − I entries of the ~νσ vector introduces another binomial pre-factor(
K−I
k−i
)
. Using these pre-factors together with Eqs. 55 and 60 in Eq. 20 yields Eq. 24.

B Frequency spectrum for the arbitrary landscape

We can expand the exponents in the allele frequency distribution (Eq. 4) into a series:

p(x1, ..., xK) =
1

B(~ε)F(~ε; |~ε|; ~β)

K∏
i=1

∞∑
ji=0

βjii
ji!
xε+ji−1
i , (61)

and apply ∫ 1−s

0
xa−1(1− s− x)b−1dx = (1− s)a+b−1 Γ(a)Γ(b)

Γ(a+ b)
(62)

in order to get

p(xσ(1), ..., xσ(k)) =
Γ(|~ε|)

Γ(|~εσc |)
∏
i∈σ Γ(εi)

(1− |~xσ|)|~εσc |−1

×
F
(
~εσc ; |~εσc |; (1− |~xσ|)~βσc

)
F(~ε; |~ε|; ~β)

∏
i∈σ

xεi−1
i eβixi ,

(63)

where σc is a list of the K − k alleles not contained in σ, and therefore ~εσc and ~βσc are (K − k)-
dimensional vectors obtained from ~ε and ~β by eliminating elements at the positions specified by
σ, while ~xσ is a k-dimensional vector obtained from the K-dimensional vector ~x by keeping the
elements at the positions specified by σ, and eliminating the rest.

With equal mutation rates, we have

p(xσ(1), ..., xσ(k)) =
Γ(Kε)

Γ((K − k)ε)Γ(ε)k
(1− |~xσ|)(K−k)ε−1

×
F
(
~εσc ; (K − k)ε; (1− |~xσ|)~βσc

)
F(~ε;Kε; ~β)

∏
i∈σ

xε−1
i eβixi .

(64)

Taking the k = 1 case and summing over allelic types, we obtain Eq. 34.
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