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Abstract 
 
Features selection is a key step in many single-cell RNASeq (scRNASeq) analyses. Feature 
selection is intended to preserve biologically relevant information while removing genes only 
subject to technical noise. As it is frequently performed prior to dimensionality reduction, 
clustering and pseudotime analyses, feature selection can have a major impact on the results. 
Several different approaches have been proposed for unsupervised feature selection from 
unprocessed single-cell expression matrices, most based upon identifying highly variable genes 
in the dataset. We present two methods which take advantage of the prevalence of zeros 
(dropouts) in scRNASeq data to identify features. We show that dropout-based feature selection 
outperforms variance-based feature selection for multiple applications of single-cell RNASeq.  
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Introduction 
 
Single-cell RNASeq (scRNASeq) has made it possible to analyze the transcriptome from 
individual cells. In a typical scRNASeq experiment for human or mouse, ~10,000 genes will be 
detected. Most genes, however, are not relevant for understanding the underlying biological 
processes, and an important computational challenge is to identify the most relevant features. 
For some well-studied systems one can find the most important genes by searching the 
literature, but in most situations an unsupervised approach would be more desirable. However, 
unsupervised feature selection remains difficult due to the high technical variability and the low 
detection rates of scRNASeq experiments. 
 
A widely used approach for feature selection is based on the concept of differentially expressed 
genes, i.e. genes whose level differs between two sets of cells. Differential expression can be 
considered a supervised method for feature selection, and it is commonly used in bulk RNASeq 
experiments. However, the conceptual framework is more difficult to apply to scRNASeq since 
differential expression methods, such as SCDE ​(Kharchenko et al., 2014)​, require 
predetermined, homogeneous subpopulations, which are often unavailable.  
 
Unsupervised methods for identifying relevant features specifically for scRNASeq data have 
mainly focused on the identification of highly variable genes ​(Brennecke et al., 2013; 
Kolodziejczyk et al., 2015; Satija et al., 2015)​. These methods differ mainly in their approach to 
adjusting for the relationship between mean and variance inherent to count-data, such as fitting 
a polynomial regression ​(Brennecke et al., 2013)​, binning genes by expression level ​(Satija et 
al., 2015)​, or comparing to a moving median ​(Kolodziejczyk et al., 2015)​. Alternatively, specific 
genes may be identified from their weights inferred during dimensionality reduction ​(Björklund et 
al., 2016; Klein et al., 2015; Macosko et al., 2015; Pollen et al., 2014; Usoskin et al., 2015; 
Wilson et al., 2015)​. Another approach is to decompose an expression matrix into a small set of 
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meta-features using dimensionality reduction methods, such as principal component analysis 
(PCA) or ​t-Distributed Stochastic Neighbor Embedding (t-SNE) ​(Maaten, Laurens van der and 
Hinton, 2008)​. However, these methods are often sensitive to systematic noise, e.g. batch 
effects, due to the large number of genes subject to technical noise relative to the number of 
genes influenced by biological effects ​(Hicks et al., 2015; Tung et al., 2017)​. In addition, the 
biological interpretation of extracted meta-features is often challenging.  
  
A salient aspect of scRNASeq data is the presence of “dropouts”, i.e. genes that are not 
detected in some cells but highly expressed in others. We introduce two novel feature selection 
methods based on the relationship between dropout-rate and mean expression across genes. 
The methods are closely related with one specifically adapted for full-length transcripts and the 
other for UMI-based protocols. Comparing to currently available methods, we find that 
dropout-rate based methods outperform variance-based methods on both simulated and real 
datasets. 
 
Results 
 
Dropout-based Feature Selection 
 
Dropout-based feature selection is conceptually similar to highly-variable gene-based feature 
selection. In both cases it is assumed that genes expressed at a constant level will follow some 
distribution due to technical noise, and that genes responding to a biological perturbation will 
follow a different distribution (​Figure 1 A,B​). Highly variable gene detection characterizes these 
distributions using the relationship between the mean and the variance, whereas dropout-based 
feature selection uses the relationship between the mean and the number of zeros. Since 
single-cell RNASeq data contains a large number of zeros, with dropout rates often spanning 
the full range from 0 to 1, this is effective in characterizing the expression distributions (​Table 
S1 ​).  An important property of the mean-dropouts relation is that differential expression across 
distinct populations of cells or through pseudotime increases the observed dropout-rate due to 
the nonlinearity of the relationship (​Figure 1 C​).  The advantage of using the dropout-rate over 
variance is that the former can be estimated more accurately due to much lower sampling noise 
(​Figure S1 ​).  
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Figure 1: ​Differentially expressed genes exhibit bimodal expression which increases the 
dropout rate relative to the mean expression. (​A & B​) Genes with the same mean expression 
(dashed red line), but (A) is expressed evenly across cells, whereas (B) is highly expressed in 
some cells (blue) and lowly expressed in others (green). (​C​)This leads to a surplus of dropouts 
since mean and dropout rate average linearly (dotted line) whereas the expectation (black line) 
is non-linear. Orange points indicate a gene with very high expression where differential 
expression leads to only a small increase in dropout-rate.  
 
The first novel method for identifying high-dropout genes fits a Michaelis-Menten function to the 
relationship between mean expression (​S​) and dropout-rate (​M3Drop​).  

 
Since the Michaelis-Menten function has a single parameter (K​M​), we can test the hypothesis 
that the gene-specific K​i ​ is equal to the K​M​ that was fit for the whole transcriptome. This can be 
done by propagating errors on both observed dropout rate and observed mean expression to 
estimate the error of each K​i ​. The significance can then be evaluated using a t-test (see: 
Methods). We confirmed that the M3Drop model fits three diverse Smartseq/2 scRNASeq 
datasets (​Figure S3d-f​). 
 
The second method for identifying high dropout genes (​NBDrop​) was tailored for low-depth 
high-throughput data, which generally employs unique molecular identifiers (UMIs). NBDrop fits 
a library-size adjusted negative binomial model to account for the strong dependency between 
library-size and number of detected genes for high-throughput protocols (​Figure S2 ​)​(Grün et al., 
2014)​. We use the mean (μ ​ij ​) and dispersion (r​j ​) parameterization of the negative binomial 
distribution for the number of transcripts ​Y ​: 

 

4 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/065094doi: bioRxiv preprint 

http://www.codecogs.com/eqnedit.php?latex=P_%7Bdropout%7D%20=%201-%20%5Cfrac%7BS%7D%7BK_M&plus;S%7D
http://f1000.com/work/citation?ids=17069&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=17069&pre=&suf=&sa=0
https://www.codecogs.com/eqnedit.php?latex=P(Y_%7Bij%7D%20%3D%20y)%20%3D%20%5Cfrac%7B%5CGamma(y%2Br_j)%7D%7B%5CGamma(r_j)*y!%7D(%5Cfrac%7Br_j%7D%7B%5Cmu_%7Bij%7D%2Br_j%7D)%5E%7Br_j%7D(%5Cfrac%7B%5Cmu_%7Bij%7D%7D%7B%5Cmu_%7Bij%7D%2Br_j%7D)%5Ey%0
https://doi.org/10.1101/065094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 
where t​i ​is the total counts for gene i, l ​j ​ is the relative library size of cell j, n ​c​ is the total number of 
cells, and  are the observed counts of gene i in cell j. 
 
To calculate the expected dropout-rate, we first fit a log-linear relationship between the average 
expression ( ) and dispersion (r​j ​) across all genes. This is used to estimate the gene-specific 
dispersions under the null hypothesis (r​0j ​), which is then used to calculate expected dropout rate 
(p ​j ​): 
 

 
Features with observed dropout-rate, ​d​j​, ​ that is significantly higher than expected by chance 
were identified using a binomial test. As a null hypothesis, it is assumed that the dropout-rate 
follows a binomial distribution, d ​j ​ ~ Binom( n ​c​, p ​j ​), and we use this to identify genes where d ​j ​ is 
significantly higher than expected by chance. 
 
Unlike M3Drop, NBDrop does not account for errors in the estimated mean expression levels. 
Thus, it is not as well suited for data with small-sample sizes and/or high amplification noise, as 
is typical of full-transcript, plate-based protocols ​(Islam et al., 2014)​. We confirmed that the 
NBDrop model fits three diverse tag-based scRNASeq datasets (​Figure S3a-c ​). 
 
Comparison to Other Feature Selection Methods 
 
To demonstrate the advantage of using dropouts for feature selection, we compared both 
M3Drop and NBDrop to their variance-based counterparts. For comparison with NBDrop, we 
used the same library-size adjusted negative binomial model but ranked genes by the distance 
between their gene-specific dispersion and the expected dispersion calculated from a linear 
relationship fit to the log-transformed means and dispersions of across all genes (Methods).  
 
For comparison with M3Drop we considered the popular highly variable gene (​HVG​) method 
proposed by Brennecke et al. (2013) ​(Brennecke et al., 2013)​. HVG fits a quadratic model to the 
relationship between mean expression and the coefficient of variation squared (CV​2​) and 
outliers above the fitted curve are selected as features. Originally, the model was fit using 
ERCC spike-ins, but this can be problematic since many datasets do not contain spike-ins or 
may have technical issues which affect the consistency of spike-ins added to all experimental 
batches ​(Svensson et al., 2017)​. Thus for consistency we fit the model using all genes, based 
on the assumption that most genes exhibit only technical noise.  
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In addition, we considered feature selection based on the Gini Index ​(Gini, 1912)​ a common 
measure of skewness. We use the method proposed in GiniClust ​(Jiang et al., 2016)​ to account 
for the relationship between the Gini Index and the maximum observed expression and estimate 
a p-value for each gene (​Gini​).  
 
As an alternative to the above methods which all rely on identifying outlier genes based 
summary statistics, we considered gene-gene correlations (​Cor ​), which ranked genes based on 
the magnitude of their strongest correlation, and principal component analysis (​PCA​), which 
ranked genes by their loadings for the top PCs calculate for the whole dataset. Finally we 
considered a consensus approach (​Cons ​) where genes were ranked by each method 
independently then the average rank across all methods was used to score each feature.  
 
Evaluating Feature Selection Methods Using Synthetic Data 
 
In general, the main goal of unsupervised feature selection in scRNASeq analyses is to identify 
genes that are differentially expressed according to some unknown underlying structure in the 
data. Thus, we evaluate the ability of feature selection methods to identify genes that are 
differentially expressed between two populations of cells from scRNASeq data when the labels 
for the two groups are not provided.  
 
We simulated data using both a zero-inflated negative binomial model (ZINB) and a library-size 
adjusted negative binomial model (LS-NB). The parameters of the generative models were set 
by fitting to three different full-transcript and three different tag-based scRNASeq datasets 
(Methods). Data were simulated for two cell populations where the minor population constituted 
between 1-50% of the total number of cells, generating a total of 108 simulated datasets. 
Log-fold changes in mean expression for each gene was drawn from a normal distribution, and 
genes with a log-fold change of >5 between the cell populations were considered true DE genes 
and genes with log-fold change of < 1 were considered as not DE. For a fair comparison of 
methods we rank all genes by significance or effect-size for each method and calculate the area 
under the ROC curve (AUC) based on these rankings. 
 
Both dropout based feature selection methods, NBDrop and M3Drop, performed significantly 
better than variance-based feature selection on the ZINB simulations (​Figure 2 ​). Furthermore, 
NBDrop significantly outperformed all other outlier-detection based methods on LS-NB 
simulations. Notably, the popular HVG method was only marginally better than random chance 
(AUC < 0.6) when we considered only the top 2000 ranked features for both sets of simulations. 
The best method was gene-gene correlations, which slightly outperformed the dropout-based 
methods. In addition to considering the ranking of the genes, we also considered the number of 
genes reported at a 5% FDR. Here we found big differences between the methods since only 
NBDrop, M3Drop and HVG have reasonable estimates of feature significance (​Figure 2 E​). The 
Gini index detects almost no significant features and gene-gene correlations detects more than 
80% of genes as significant features, while PCA and NBDisp do not have significance tests 
associated with them.​ ​In addition, gene-gene correlations took hours to compute vs seconds for 
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the outlier-based methods. Greater inequality in relative size of the two populations of cells 
decreased the performance of all feature selection methods except PCA (​Figure S4 ​).  

 
Figure 2: Feature selection performance on simulated data ​. Each feature selection method 
was applied to 54 ZINB (​A, C​) and 54 LS-NB (​B, D​) simulated datasets. Boxplots indicate the 
area under the receiver operator curve (AUC) for identifying true DE genes when all genes (​A, 
B​) or only the top 2000 features (​C, D​) were considered. Notches indicate 95% confidence 
intervals of the median. Dashed line indicates an AUC of 0.5 which is expected by chance. ​ ​(​E​) 
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Proportion of genes identified as significant features after applying a 5% FDR correction to the 
p-values reported by each feature selection method when applied to the simulated datasets. 
Theoretical computational complexity with respect to number of genes (g) and number of cells 
(c), and observed runtimes (CPU time). 
 
One potential disadvantage of dropout-based feature selection is that they may be unable to 
detect highly expressed genes since these may have no dropouts, even when they are 
differentially expressed across cell populations. However, when we binned data by expression 
level we found that dropout-based feature selection performance only dropped below 
variance-based feature selection for the top 5% most highly expressed genes in our simulations. 
This corresponds to a mean expression level of >1,000 reads/cell or >64 umis/cell (​Figure S5 ​), 
levels that are found only rarely in most datasets. For the other 95% of genes, dropout-based 
feature selection out-performed variance-based feature selection. Dropout methods perform 
better in part because estimates of variance are very sensitive to sampling noise, particularly for 
highly skewed distributions  ​(Rose and Smith, 2002)​, including those that are frequently 
observed for single-cell RNASeq datasets. Our simulations show that sampling noise can 
produce substantial errors even in datasets of 1,000 cells (​Figure S1 ​). In addition, highly 
variable gene and high dropout feature selection scale more favorably with the number of cells 
than gene-gene correlations (​Table S2 ​).  
 
Feature Selection for Real Datasets 
 
To account for other sources of technical noise that were not accounted for in our simulations, 
we tested the feature selection methods on two real scRNASeq datasets. Again, we considered 
a scenario where the two groups of cells are assumed to be unknown. We selected the ​Tung et 
al., (2017)​ human iPSCs as an example of tag-based data and the ​Kolodziejczyk et al., (2015) 
mouse ESCs as an example of full-transcript data. In both studies, the authors examined 
homogeneous cultures and they performed multiple replicates of bulk RNASeq on at least two 
of the same conditions at were used for scRNASeq. We use the differentially expressed genes 
identified from the bulk RNASeq data as ground truth to test the performance of feature 
selection on the single-cell data.  
 
Again, both dropout-based feature selection methods significantly outperformed variance-based 
methods on full-transcript datasets recapitulating our results on simulated data (​Figure 3 top​). 
On the Tung data NBDrop significantly outperformed all other methods except the consensus. 
Interestingly, on both real datasets the consensus features significantly outperformed all other 
methods. One reason for this may be that correlation and PCA based feature selection pick up 
complementary information from the outlier-detection based feature selection (​Figure 3 ​ ​bottom​) 
and different biases with respect to mean expression level (​Figure S6 ​) 

8 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/065094doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=3138713&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2930022&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2930022&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=807339&pre=&suf=&sa=0
https://doi.org/10.1101/065094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 3: Performance of feature selection on real scRNASeq data.​ (top row) performance 
of top 2000 features as ranked by each method on real single-cell RNASeq data. Consusens 
DE genes from bulk were used as the ground truth. Error bars indicate 95% CIs. We considered 
both a Smartseq2 dataset (Kolodziejczyk, left column) and a UMI-tagged (Tung, right column) 
dataset. (bottom row) Overlaps among the top 2000 features identified by each method, Cor 
and PCA methods are distinct because they are biased towards more highly expressed genes 
(​Figure S6 ​).  
 
Reproducibility of Selected Features 
 
Combining different scRNASeq datasets collected from different labs and using different 
protocols remains a challenging effort due to the prevalence of batch effects ​(Haghverdi et al., 
2017)​. To demonstrate how unsupervised feature selection can be used to identify genes that 
are biologically informative across multiple scRNASeq datasets, we considered five datasets 
examining early mouse embryo development (​Table S1 ​). Since early development is a 
synchronized, robust biological process, we can use the sampling time-point of each cell as 
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ground truth ​(Kiselev et al., 2017)​. We evaluated how reproducible features were across 
datasets, and how well they capture both the distinct stages and developmental trajectory as 
opposed to the batch-effects between datasets (​Figure 4 ​). For each feature selection method, 
we extracted the top 2,000 features from each dataset, and we then asked how well the gene 
lists agreed. Gene-gene correlations, both dropout-based feature selection methods and the 
consensus features were most reproducible with ~5% of the top 2000 features detected in all 
five datasets (​Figure 4A​). To further investigate the biological relevance of the features 
identified in three or more of the datasets by each method, we used hierarchical clustering to 
group the data using only the set of features that were reproducible in at least three datasets. 
(​Figure 4B​). Comparing the clusters with the ground truth developmental stages, we conclude 
that the dropout-based features produced the most accurate clustering whereas the PCA and 
gene-gene correlation features were least accurate. In addition, we considered whether the 
ordering of the stages through development was preserved by estimating pseudotime with DPT 
(Haghverdi et al., 2016)​. Again, we found that dropout-based features performed the best, 
whereas gene-gene correlation and particularly PCA features performed the worst. Thus, the 
dropout-based feature selection methods were most accurate in identifying biologically relevant 
genes, consistent with the findings in our related paper on a cross-dataset comparison method 
(Kiselev and Hemberg, 2017)​. 
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Figure 4: Biological relevance of identified features. ​(​A​) Reproducibility of features across 
five early mouse development datasets. The top 2000 features identified by each method in 
each dataset were intersected with each other. To summarize the extent of overlap we 
computed the 𝜲​2​ statistic : ∑(obs-exp)​2​/exp, where the sum is over the number of datasets (see 
Methods). (​B​) Accuracy of clustering the combined datasets compared to the true 
developmental stages using the adjusted Rand index (ARI). The value shown is the ARI after 
Ward hierarchical clustering using just those genes identified in at least three of the five 
datasets. (​C​) Percentage of cells in the correct order (zygote->blastocyst) after inferring 
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pseudotime using DPT ​(Haghverdi et al., 2016)​ on the combined datasets with just those genes 
identified in at least three of the five datasets. 
 
Discussion 
 
Due to the high level of noise affecting all genes in scRNASeq experiments, feature selection is 
an important step in the data analysis. We present two new method for feature selection in 
single-cell RNASeq data based on identifying high dropout-genes. M3Drop uses a 
Michaelis-Menten equation to model the zeros in full-transcript scRNASeq. The other model, 
NBDrop, uses a modified negative binomial model to account for differing sequencing depths or 
tagging efficiency of UMI-tagged scRNASeq data. Feature selection using these models 
outperforms existing methods on both real and simulated datasets (​Figure 2, 3 ​). Furthermore, 
we show that the dropout-based feature selection can help overcome batch-effects between 
datasets to reveal underlying biological processes (​Figure 4 ​). 
 
Here we have considered several different feature selection methods and evaluated them on 
both simulated and real scRNASeq data. In simulated data, with no technical confounders, 
gene-gene correlations out-perform all other methods of feature selection (​Figure 2 ​). However, 
in real datasets where other confounders such as stress, RNA degradation, or reagent batch 
can create spurious gene-gene correlations we found that the correlation-based method 
performed similarly to variance-based feature selection methods and was out-performed by our 
dropout-based approaches (​Figure 3, 4 ​). Despite the similar overall performance, correlation 
and PCA based feature selection identified distinct features from those identified by 
high-variance or high-dropout based methods (​Figure 2 B​). As a result, taking the consensus of 
several methods outperformed any individual method.  
 
We have demonstrated that dropout-based unsupervised feature selection can identify 
biologically meaningful genes. For both M3Drop and NBDrop, the features can be interpreted as 
differentially expressed genes, but since the methods do not require subpopulations to be 
defined ​ a priori​, they are widely applicable. Interestingly, we found differences in performance 
on different types of data, for instance the popular HVG detection method ​(Brennecke et al., 
2013)​ has poorer performance on UMI-tagged data than on full-transcript data (​Figure 2,3 ​) thus 
highlighting the importance of tailoring models to account for differences between protocols. . As 
a result we develop two methods of dropout-based feature selection, M3Drop tailored to 
Smartseq/2 platforms and NBDrop tailored to UMI-based platforms. We expect that this effect is 
not limited to feature selection, but that the choice of protocol will affect many statistical 
analyses of scRNASeq data. Thus it is important to consider the type of data each method was 
designed to handle when choosing an analysis pipeline for scRNASeq datasets.  
 
Methods 
 
Dropout-based feature selection methods: 
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M3Drop 
 
The expression of each gene was averaged across all cells including those with zero reads for a 
particular gene (​S​). Dropout rate was calculated as the proportion of cells with zero reads for 
that gene (​P​dropout​). We fit the Michaelis-Menten equation ​(Michaelis and Menten, 1913)​ to the 
relationship between these two variables 

 
using maximum likelihood estimation as implemented by the ​mle2 ​function in the ​bbmle ​R 
package to obtain the global ​K​M​ across all genes. This model fits full-transcript data very well 
(​Figure S2 D-F​). The Michaelis-Menten equation can be rearranged with K on the left hand 
side. This is useful for estimating a gene-specific ​K​j​ as 
 

  
 
Since ​K​j​ ​is a function of both the dropout and the mean expression, the measurement error for 
each ​K​j​ estimate was calculated using error propagation rules to combine errors on observed S 
and P: 
 

  
 
Where  is the sample standard deviation of S and  is the sample standard deviation of P. 
The K​j ​’s were observed to be log-normally distributed around the globally fit K​M ​(​Figure S6 ​). 
Thus, we tested each one against the global K​M​ that was fit to the entire dataset using a 
one-sided Z-test: 
 

  

 was estimated as the standard error of the residuals and added to   
 

  
 

  
 
The resulting p-values can be used to ascertain the significance of each feature or to rank 
genes in  order of decreasing significance (increasing p-value). Since all computations are 
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based on gene-level statistics the method scales linearly with the number of cells and number of 
genes. 
 
NBDrop & NBDisp 
 
Negative binomial models have been shown to fit normalized molecule counts from single-cell 
RNASeq data employing unique molecular identifiers, referred to as UMI-tagged data ​(Grün et 
al., 2014; Islam et al., 2014)​ . We modified the single negative binomial distribution to explicitly 
model the tagging/sequencing efficiency for each cell (​l​j​) as the relative total molecules 
observed in cell ​j​.  
 

 
 
where  is the number of UMIs observed for gene ​i ​in cell ​j​. Thus, each observation is 
modelled as a negative binomial model with mean and variance equal to: 
 

 

 
The mean (𝜇​ij ​) and the gene-specific dispersion parameter (r​i ​) are estimated as: 
 

 

 
 
where ​t​i​ is the total molecules counts for gene ​i​, and ​n​c​ is the total number of cells. Genes with 
Poissonian behavior, which results in negative dispersion, were assigned a maximum 
dispersion of 10 ​10​. To identify high dispersion genes using this model (​NBDisp​) we fit a linear 
regression between the log observed mean expression and the log estimated dispersion 
parameter across all genes with mean expression > 16 and non-Poissonian dispersions. The 
residuals from this regression was used to rank genes.  
 

 
 
The probability of any given observation being a zero (dropout) is calculated as: 
 

 

 

And the expected total dropouts per gene is: 
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To identify high dropout genes we substituted the expected dispersion calculated from β ​0​ and β ​1 
in the linear regression equation above for the gene-specific dispersions, and model the number 
of dropouts per gene as a binomial distribution (​Figure S2 A-C​). The p-value of the observed 
dropouts can be used to test significance of features or to rank them. This method also scales 
linearly in number of genes and cells. 
 
Accuracy using bulk RNASeq as ground truth 
 
To evaluate the accuracy of feature selection methods we use two published datasets for which 
bulk RNASeq data was available in addition to single-cell data. For both datasets, the cell 
populations are relatively homogeneous. ​Tung et al., (2017)​ considered iPSCs from three 
different individuals and performed three replicates of UMI-tagged scRNASeq and three 
replicates of bulk RNASeq for each. Read/UMI counts were obtained from the Gene Expression 
Omnibus (​GSE77288 ​). 
 
For ​Kolodziejczyk et al., (2015)​ we considered ESCs grown under two conditions: alternative 2i 
and serum for which there were three replicates of scRNASeq and two replicates of bulk 
RNASeq. Full-transcript single-cell RNASeq read counts were obtained from ArrayExpress 
(​E-MTAB-2600 ​). Raw reads for bulk samples were obtained from ArrayExpress and mapped to 
GRCm38 using STAR ​(Dobin et al., 2013)​ and gene level read counts were obtained using 
featureCounts ​(Liao et al., 2014)​.  
 
The ground truth differentially expressed genes were obtained for each dataset using three 
standard analysis methods: DESeq2 ​(Love et al., 2014)​, edgeR ​(Anders et al., 2013)​, and 
limma-voom ​(Law et al., 2014)​. Genes identified as differentially expressed using all three 
methods at 5% FDR were considered ground-truth positives. Genes not identified as DE by any 
of the methods at 20% FDR were considered ground-truth negatives. This resulted in 1,915 
positives, and 8,398 negatives for the iPSCs; and 709 positives and 11,278  negatives for the 
ESCs (​Figure S7 ​). 
 
Accuracy of feature selection methods was evaluated using the area under the receiver 
operator curve (AUC) using the pROC R package, and the number of DE genes among the top 
2000 ranked genes.  
 
Single-cell RNASeq datasets 
 
We considered eleven public scRNASeq datasets (​Table S2 ​). These were chosen to reflect a 
range of different dataset sizes, sequencing methods and cell-types. Datasets where the 
expression matrix consisted of raw read counts (or UMI counts) were normalized using counts 
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per million except for NBDrop and NBDisp. Quality control was performed prior to all analyses 
as follows. First, all genes annotated as processed pseudogenes in Ensembl (version 80) were 
removed and cells with fewer than 2000 detected genes were removed. Genes detected in 
fewer than 4 cells or with average normalized expression < 10 ​-5​ were excluded from 
consideration. For the Deng data, only single mouse embryo cells analyzed using the SmartSeq 
protocol were considered to avoid technical artefacts.  
 
Simulated datasets 
 
We simulated UMI-tagged data using the depth-adjusted negative binomial model fit to one of 
the three UMI-tagged datasets, Tung ​(Tung et al., 2017)​, Zeisel ​(Zeisel et al., 2015)​ and Klein 
(Klein et al., 2015)​. Mean gene expression levels were drawn from a log-normal distribution fit to 
the respective dataset. Cell-specific sequencing efficiency was drawn from a gamma 
distribution. Finally, gene-specific dispersions were calculated from the mean expression level 
using the power-law relationship fit to the respective dataset. Each simulated dataset contained 
25,000 genes and 500 cells and were consistent with the original data (​Figure S8,S9 ​).  
 
We simulated full-transcript data using a zero-inflated negative binomial model fit to each of 
three full-transcript datasets, Pollen ​(Pollen et al., 2014)​, Buettner ​(Buettner et al., 2015)​, or 
Kolodziejczyk ​(Kolodziejczyk et al., 2015)​. As before, mean gene expression levels were drawn 
from a log-normal distribution and  gene-specific dispersions were calculated from the mean 
expression level using a power-law relationship. Simulated expression values were inflated with 
zeros according mean expression using the Michaelis-Menten equation fit to the respective 
dataset. Since full-transcript data is generally obtained from fewer cells than UMI-tagged data, 
each simulated full-transcript dataset contained 200 cells and 25,000 genes and were 
consistent with the original data (​Figure S8,S9 ​).  
 
Differentially expressed (DE) genes were added by increasing/decreasing the mean expression 
of each gene in a subset of the cells by a log base-2 fold change drawn from a normal 
distribution with mean = 0 and sd = 2. Dispersions were adjusted in the differentially expressing 
cells according to the fitted power-law relationship. We considered subpopulations containing 
1%, 10%, 20%, 30%, 40% or 50% of the cells and three replicates for each of the six dataset 
and each subpopulation size were generated. 
 
Genes with a greater than 5-fold increase or decrease in mean expression were considered 
ground truth DE genes respectively. Genes with less than absolute 1-fold change in mean or 
dispersion were considered unchanged.  
 
Analysis of Developmental Datasets 
 
Reproducibility 
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We considered five full-transcript single-cell RNASeq datasets examining mouse embryonic 
development from fertilization to blastocyst (​Table S2 ​). Any genes not present in all five 
datasets were removed, leaving 11,315 genes in total and the top 2000 ranked genes for each 
feature selection method were compared across datasets. The expected number of genes 
identified in precisely ​n ​datasets was calculated as: 

 
where ​p ​is the proportion of genes identified by each method i.e. ​p = ​2,000/11,285 = 0.18. This 
was summarized across all ​n ​using a chi-square statistic : 
 

 
 
Biological analyses were performed on the subsets of features that were identified in at least 
three of the five developmental datasets by each method respectively. Expression levels were 
converted to log2 counts-per-million prior to analysis. Known biological stages were collapsed to 
“oocyte/zygote”, “2-cell”, “4-cell”, “8-cell”, “16-cell/morula”, and “blastocyst” since there is little 
evidence to support biologically meaningful differences at different timepoints within these 
groups.  
 
Clustering was performed using Ward’s hierarchical clustering ​(Ward, 1963)​ on Euclidean 
cell-cell distances. The resulting tree was cut at every possible height and the maximum 
adjusted-Rand-index ​(Rand, 1971)​ between the clusters and the known stage was reported.  
 
Pseudotime was estimated using the DPT/destiny R-package. Cells were placed in order and in 
reverse order according to the inferred pseudotime, and their respective stage labels were 
compared to the “ideal” ordering, i.e. all zygotes then all 2-cells etc…, the proportion of matches 
between the two sets of labels was used as the percent of cells correctly ordered.  The ordering, 
forward or reverse, which gave the highest percent correct was reported. 
 
Code/Data Availability 
Dataset accession codes are listed in ​Table 1 ​.  
R packages used: ROCR (version 1.0-7), gplots (version 3.0.0), bbmle (version 1.0.18), reldist 
(version 1.6-6), irlba (version 2.1.2), monocle (version 2.2.0), destiny (version 1.0.0), DESeq2 
(version 1.10.1), edgeR (version 3.12.1), limma (version 3.26.9) 
M3Drop and NBDrop & NBDisp are freely available on github (contains code for highly variably 
gene detection) : ​https://github.com/tallulandrews/M3Drop 
 
Author Contributions 
T​A and MH conceived of the project and wrote the manuscript. TA developed the method, 
produced the code, analyzed and interpreted the data. MH supervised the work. 
 

17 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/065094doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=exp%20%3D%20%7B5%20%5Cchoose%20n%7D%20(p)%5En(1-p)%5E%7B5-n%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_n%20%5Cfrac%7B(obs-exp)%5E2%7D%7Bexp%7D
http://f1000.com/work/citation?ids=1173304&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3109334&pre=&suf=&sa=0
https://github.com/tallulandrews/M3D
https://doi.org/10.1101/065094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Acknowledgements 
The authors would like to thank: ​ Vladimir Kiselev, ​Davis McCarthy, Simon Andrews, and 
Tomislav Ilicic for their comments and suggestions for improving this manuscript. 
 
Competing Financial Interests 
The authors declare they have no competing interests. 
  

18 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/065094doi: bioRxiv preprint 

https://doi.org/10.1101/065094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Tables 

Table S1 ​: Publicly available single-cell RNASeq datasets, normalization method and proportion 
of zero valued entries in the filtered expression matrix. 

Dataset Cell-types Labels Protocol N % Zero Source 

Tung Human 
iPSCs 

Donor 
individual 

5’ Seq 
UMIs -> (CPM) 

768 49% (Tung et al., 2017)  
GSE77288 

Klein Mouse 
ESC 

Differentiatio
n timepoint 

CEL-Seq  
UMIs -> (CPM) 

2448 63% (Klein et al., 2015)  
GSE65525 

Zeisel Mouse 
brain 

BackSPIN 
clustering 

5’ Seq  
UMIs -> (CPM) 

2542 77% (Zeisel et al., 2015)  
GSE60361 

Pollen Human 
cell lines 
& tissues 

Cell line 
identity 

Smartseq 
FPKMs 

301 60% (Pollen et al., 
2014)  
SRP041736** 

Buettner Mouse 
ESC 

Cell-cycle 
stage 

Smartseq 
Counts -> (CPM) 

279 51% (Buettner et al., 
2015) 
E-MTAB-2805 

Kolodziej
czk 
(Kolo) 

Mouse 
ESCs 

Growth 
media 

Smartseq 
Counts -> (CPM) 

406 51% (Kolodziejczyk et 
al., 2015) 
E-MTAB-2600 

Deng Mouse 
embryos 

Development 
timepoint 

Smartseq 
Counts -> (CPM) 

255 50% (Deng et al., 2014) 
GSE45719 

Biase Mouse 
embryos 

Development 
stage 

Smartseq 
FPKMs 

56 38% (Biase et al., 2014) 
GSE57249 

Fan Mouse 
embryos 

Development 
stage 

SUPeR-seq 
FPKMs 

69 46% (Fan et al., 2015) 
GSE53386 

Xue Mouse 
embryos 

Development 
stage 

Poly-A selected 
RPKMs 

17 30% (Xue et al., 2013) 
GSE44183 

Goolam Mouse 
embryos 

Development 
stage 

SmartSeq2 
Counts -> (CPM) 

124 43% (Goolam et al., 
2016) 
E-MTAB-3321 

*UMI = Unique Molecular Identifier; FPKM = fragments per kilobase per million; CPM = count 
per million 
** Processed data was provided by the authors 
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Supplementary Figures 
 
 

 
 
Figure S1 ​Sampling noise for sample variance and sample dropout rate in a homogeneous 
population. Simulated expression values for 1,000,000 cells were downsampled without 
replacement 10,000 times. The percent error of the observed variance/dropout rate of the 
downsampled values relative to the variance/dropout rate calculated over all 1,000,000 values 
was calculated. (​A-C​) Simulating from a zero-inflated negative binomial fit to Smartseq2 data. 
(​D-F​) Simulating from the library-size adjusted negative binomial fit to UMI-tagged data. mu = 
mean, var = variance, d = dropout-rate for all 1 million simulated cells. 
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Figure S2: ​Importance of sequencing depth/tagging efficiency in UMI-tagged (green) vs 
full-transcript (blue) datasets. 
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Figure S3 ​Fitting NBDrop (​A-C​) and M3Drop (​D-F​) to three UMI-tagged and full-transcript 
scRNASeq datasets respectively. Each point is a gene coloured by the local density of points 
around it (black = high density). Blue line indicates the fitted relationship between mean and 
dropout rate from NBDrop or M3Drop respectively. Orange points are significant features using 
each method. 
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Figure S4 ​Performance as measured by the AUC for the top 2000 ranked gene (​A,B​) or all 
genes (​C,D​) when the minor cell-population composes 1, 10, 20, 30, 40 or 50% of the total cells. 
Count matrices were simulated using a zero-inflated negative binomial (ZINB) or library-size 
adjusted negative binomial (LS-NB) fit to each of three full transcript and three umi-tagged 
datasets respectively. Three replicates of 25,000 genes each were performed for each datasets 
at each subpopulation size. The numbers in the legend represent the average AUC for the six 
points. 
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Figure S5 ​ Performance as measured by the AUC for all genes binned into 20 quantiles. Count 
matrices were simulated using a zero-inflated negative binomial (ZINB) or library-size adjusted 
negative binomial (LS-NB) fit to each of three full transcript and three umi-tagged datasets 
respectively. Three replicates of 25,000 genes each were performed for each datasets at each 
subpopulation size. Points are results for each bin from each replicate, lines are 
spline-smoothed trends for each feature selection method.  
 

 
Figure S6 ​ Gene-gene correlations and PCA are biased towards highly expressed genes in real 
scRNASeq data. Boxplots of the expression level of the top 2000 features identified by each 
method on the real scRNASeq data. Red line indicates the median expression level for all 
genes in each dataset.  
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Figure S6 ​ Normal distribution of K​i ​ around K​M 
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Figure S7 ​Ground truth DE genes were defined using the intersection (positives) and the 
complement of the union (negatives) of three standard differential expression method on the 
respective bulk RNASeq data of the Tung and Kolodziejzck datasets.  

 
 
Figure S8 ​Simulations recapitulate observed relationship between gene expression and dropout 
rate. Only genes with log fold changes smaller than one (ground truth negatives) are plotted for 
the simulated data (blue). 
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Figure S9 ​Simulations recapitulate observed relationship between gene expression and 
variance. Only genes with log fold changes smaller than one (ground truth negatives) are 
plotted for the simulated data (blue). 
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