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Abstract 

Short tandem repeats (STRs) are polymorphic genomic loci valuable for 

various applications such as research, diagnostics and forensics. However, their 

polymorphic nature also introduces noise during in vitro amplification, making 

them difficult to analyze. Although it is possible to overcome stutter noise by 

using amplification-free library preparation, such protocols are presently 

incompatible with single cell analysis and with targeted-enrichment protocols. 

To address this challenge, we have designed a method for direct measurement 

of in vitro noise. Using a synthetic STR sequencing library, we have calibrated 

a Markov model for the prediction of stutter patterns at any amplification cycle. 

By employing this model, we have managed to genotype accurately cases of 

severe amplification bias, and biallelic STR signals, and validated our model 

for several high-fidelity PCR enzymes. Finally, we compared this model in the 

context of a naïve STR genotyping strategy against the state-of-the-art on a 

benchmark of single cells, demonstrating superior accuracy. 
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Introduction 

Short tandem repeats (STRs, also known as microsatellites) are repetitive elements of 

1-6 base pairs long that constitute about 3% of the human genome. They are best 

known for their highly mutative properties in vivo, which is due to polymerase 

slippage that results in repeat contraction/expansion. Although their mutation rates 

vary dramatically, even low estimates are 3-4 orders of magnitude larger than of 

random point mutations, highlighting STRs as a tool of growing interest for various 

applications1. In disease, STRs are linked to tens of human diseases such as 

Huntington's disease2; In several cancer types, mismatch repair deficiencies are 

analyzed utilizing STR polymorphic state, pointing to the disease progression3. In 

genetics studies, STRs are utilized to study population genetics and phylogenetics4, 5. 

In regulatory genomics, the importance of STRs as regulatory elements was recently 

demonstrated6. Recently, due to technological advancements in single cell (SC) 

genomics, SC STR analysis became of research interest for applications such as cell 

lineage phylogenetic analysis within an organism7, 8 and for pre-implantation genetic 

diagnosis9. 

A key challenge for STR analysis is that they undergo noisy amplification in vitro, 

similarly to in vivo replication slippage. This noise, often termed “stutter”, is 

commonly manifested by excessive peaks when STR length data is plotted in a 

histogram of lengths (see example in Error! Reference source not found.B). Despite 

the value of the high polymorphicity of short unit STRs (e.g. in cancer diagnosis, 

forensics and phylogeny), they are still not commonly used for most assays due to 

excessive stutter noise. To address the stutter problem, simple noise models, such as 

highest peak analysis, are often employed. These simple models do not apply to 

highly polymorphic STRs, such as mono and di repeats, specifically in samples, 

which undergo substantial amplification. Using such models in these cases is likely to 

result in false genotyping. The problem of genotyping highly polymorphic STRs is 

even more difficult when genotyping non-hemizygous loci (such as from autosomal 

chromosomes, X Chromosome in female and in copy number variation (CNV) cases) 

since it is compounded by amplification imbalance of the two alleles. Such 

unbalanced amplification is typical in SC studies, as the starting material for WGA is 

a single copy of each locus. 
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With the growing need of in vitro amplification as a tool for basic and applicative 

scientific research, straightforward in vitro STR amplification studies were 

performed, in order to calibrate amplification factors and conditions 5, 10-12. A 

common STR stutter noise rule of thumb is that STR mutation rate both in vivo and in 

vitro is proportional to two main factors: (A) unit type length: short unit STRs (mono- 

and di-repeats) are more mutable than longer unit types. (B) STR length: Longer 

STRs (in repeat number) are more mutable than shorter STRs1. Nevertheless, despite 

years of STR research, a well-defined stutter behavior model is still lacking. The 

emergence of next generation sequencing (NGS) as a tool for large scale and detailed 

per-base analysis of STRs has re-emphasized the need for bioinformatics tools for 

STR analysis. While most current tools focus on mapping reads to the reference 

genome5, 13, 14, their stutter error correction algorithms are mainly calibrated with 

statistical models based on indirect measurements such as STR distributions in 

progenies, in populations and/or in user-defined data sets. Here we present a method 

for controlled measurements of stutter behavior during amplification for various STR 

types and sizes. Utilizing these measurements, we calibrated a mathematical model 

that accurately captures and predicts the stutter pattern of in vitro STR amplification. 

 

Results 

Controlled amplification of synthetic STR molecules 

In order to study the stutter pattern as a function of amplification, we have designed 

and ordered a library of plasmids (Error! Reference source not found.A), each 

containing a unique combination of STR type and length, spanning all naturally 

occurring mono and di repeats (namely: A, C, AC, AG, AT) in the full spectrum of 

their natural genomic occurrence15 (Supplemental Table S1). The construct within 

each plasmid is sequencing-ready and includes a unique Illumina dual index 

combination for direct sequencing (T1) and a unique barcode for cross contamination 

control. Overall, the experimental setup allows for a controlled amplification and 

sequencing of all highly mutable STRs at three independent time points (T1-no 

amplification, T2-single amplification, T3—two amplifications) using various nested 

PCR primers, with the ability to measure the specific sequencing noise and bias for 
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each STR length and type (Error! Reference source not found.B,C and 

Supplementary figures S1-S5).  

  

 

Figure 1. The synthetic STR experiment summary: A. Schematic description of the synthetic library. In each 

plasmid, a different synthetic STR construct was designed, synthesized and clone-sequenced for various STR types 

and length. The STR was designed within a context of an Illumina Truseq-HT dual index library to enable for 

nested PCR amplification at two time points (T2- amplification using outer primers only, T3-amplification using 

inner primers followed amplification by outer primers). The library is flanked by BsrDI restriction sites to enable 

direct sequencing of the STR library without amplification (T1). Internal barcode (yellow triangle) is a short 

sequence, unique to each STR length to detect for cross-contamination. See text and methods for elaboration and 

Supplemental Table S1 for the designed constructs. B. AC STRs repeat-number histograms, as were interpreted 

from sequencing results (T1, T2 and T3), compared to their expected length, T0 (designed sequence). C. Sequencing 

analysis results of each STR type, repeat-number and time point described as the percentage of the original 

(designed) signal from all the reads. Dashed line at the 5% marks the lower threshold of analysis: data points 

below the mark were deemed too noisy and were excluded from downstream analysis. 

 

Fitting and model comparison 

The data generated for the 3 time points (T1, T2, and T3) was used for the calibration 

of a computational model that predicts the stutter pattern at any theoretical 

amplification cycle given the repeat unit and length of the STR. Together with the 

assumption of perfect synthesis process (T0 – the designed construct prior to any 

manipulation), supported by Sanger sequencing. 
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Our goal is to predict the stutter histogram  of repeat numbers for any amplification-

time-point  and for any original length  in repeat units, , and we assess the 

performance by: 

 

Where  is the distance between the two histograms. We have examined 

multiple distance metrics for the sake of histogram comparison and found 1-

correlation16 to be the most suitable (Supplementary Figure S6). 

We attempted to fit parameters to multiple models from the literature17, 18 and several 

in-house polynomial models by minimizing the overall distance between their 

resulting model histograms and the measured stutter patterns (Error! Reference source 

not found.B and Supplementary Figures S1-S5) using the Broyden–Fletcher–

Goldfarb–Shanno (BFGS)19 optimization algorithm. We finally chose the model 

“Linear1up3dw”, a contraction-biased multistep linear model that best match the 

stepwise probabilities when implemented within a discrete-time Markov chain (Figure 

2). This model obtained the best overall fit across the attempted mono and di STR 

when calibrated individually for each repeat type. 

 

Figure 2. Model fitness to synthetic dataset. Each model parameters were optimized to best fit the dataset 

measured from the synthetic plasmids at different amplification time-points. The scores reflect the squared sum of 

1-correlations across all measurements for each STR repeat unit type (i.e. AC, AG…) divided by the number of 
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samples. Models include Whittaker1-9 as introduced by Whittaker et al17, HipSTR18 and polynomial models 

named after their number of variables and degrees. 

We model these processes as an iterative mutation process with multiple steps. For 

each of these steps, our genotype can contract by up to 3 repeat units or elongate by a 

single repeat. The probability of such a mutation is linearly dependent on the STR’s 

current length.  

Validation and genotyping comparison 

To confirm the model, we propose R&B, a naïve genotyping algorithm implementing 

an exhaustive strategy to call the original STR length from a population of reads with 

different STR lengths by scoring it against all possible predicted populations of any 

amplification time and STR length: 

Following a meticulous STR genotyping comparison by Willems et al. 18, we compare 

this heuristic only to the current state-of-the-art, HipSTR genotyping tool, on a 

benchmark experiment first presented by Biezuner et al8. This experiment involves 

cells from a controlled ex vivo cell lineage tree experiment, picked and extracted for 

their DNA, while documenting their sampling lineage. STR mapping issues were 

tackled using an STR-targeted enrichment panel (rather than shotgun sequencing) and 

mapping the known primers panel to the reads in order to identify them. Using a 

similar strategy (FMSV20), we can isolate the problem of genotyping stutter patterns 

and avoid possible mapping bias. 

The known lineage topology of individually analyzed SCs provides a solid reference 

for the comparison of any genotyping tool. To do so, we have devised the following 

metric to assess the accuracy of genotyping algorithms: 

Let � � ������� � � be the set of alleles assigned to the leaves of tree T by a 

genotyping algorithm. ���, �� is the maximum parsimony or the minimal number of 

mutations required to explain set of alleles A on the leaves of tree �. 

 	��� 
  �∑ �#�� � 1�����  is the allele diversity. 

We define F as the reference tree fitting: 
 ���, �� 
 |�| � 1 � ���, �� � 	��� 

The reference tree fitness aims to balance the diversity of alleles found within this cell 

group, which provides information describing the topology of T, with the adherence 
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of the genotypes to T. We compensate for the fact that diverse genotypes inherently 

have a lower parsimony, even when correct. 

Using this metric, Loci that add valid information regarding the tree will be awarded 

positive scores while loci whose genotyping results contradict the topology will be 

negatively scored. A locus for which there is no relevant information (either no 

genotyping or a single allele across all cells) will receive a zero score. 

Both genotyping methods, R&B and HipSTR, provide a measure of confidence 

together with each locus they attempt to genotype. While these confidence metrics are 

very different and have different distributions across the attempted cells/loci 

population, we can try to compare them by referring to percentiles of the full scores 

set, the top 10%, top 50% or any other threshold. To compare similar confidence 

genotyping attempts of both tools despite the large difference in the number of 

successfully genotyped loci, we compared only the cells/loci combinations for which 

both tools provide a genotyping attempt ranked with sufficient confidence (Figure 3A, 

B). Here we can see that across most confidence levels, when both tools attempt to 

provide a genotype, R&B attempts are more in line with the true tree topology. 

To maintain simplicity, we only account for mono-allelic loci from the X 

chromosome of the cancerous cell line used in this experiment (human male DU145). 

Other chromosomes were found to have major copy-number abnormalities. 
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Figure 3. Genotyping results: Comparison of the proof of concept genotyping method, R&B, with HipSTR 

genotyping tool18 under default parameters and with the “--no-rmdup” flag, appropriate for PCR amplified results. 

We compare the results’ quality in tiles A and B by measuring their ability to accurately genotype the sequencing 

results of the ex-vivo cell lineage tree (reference tree fitness) as a function of their subjective confidence metrics 

(confidence greater than percentile threshold, lower values mean higher confidence but less loci). We compare loci 

that were genotyped by both genotyping methods within similar confidence percentiles (A, B) and the total 

quantity of the produced genotypes (C, D); We see that R&B excels in both quality and quantity. Across all cases, 

we used a minimal coverage of 5X, no confidence filters prior to percentile calculation and no stutter filtering for 

HipSTR. To maintain simplicity, we only account for haploid loci from the X chromosome of the cancerous cell 

line used in this experiment (human male DU145). 

 

Experimental validation by controlled synthetic templates and real 

genomic data 

To provide experimental-based confirmation for the model validity we opted to 

measure its simulated amplification cycles analysis in a series of controlled 

experiments. First, by using synthetic STRs as controlled templates for serial dilution 

analysis, and later, using synthetic STRs and real genomic data to demonstrate the 

robustness of the model analysis to the utilized PCR enzymes. 

Experimental validation of the model by using controlled synthetic templates  

(1) Controlled amplifications of synthetic STRs in a serial dilution experiment. Using 

the synthetic STRs that were used for the model calibration above, we generated 

highly accurate NGS data originated from amplification of known and controlled 

templates. First, we have generated an NGS dataset generated from a single PCR 

amplification using the Q5 enzyme (NEB), as previously described for the T2 

experiment, of 3 different templates: (AC)20, (AC)25 and (AC)30, each using 3 serially 

diluted templates (by 10 fold each). Our model's simulated cycles linearly correlate 

with the actual number of amplification cycles performed, as expected from serially 

diluted samples (Supplementary Figure S7A, B). 

(2) Model robustness to pcr enzyme by an enzyme comparison assay. First, we 

performed a small-scale PCR enzyme comparison by applying 5 commercially 

available PCR enzymes on the same synthetic templates as used above at an equal 

template concentration (using a subset of the generated data of Q5 from the 

abovementioned experiment (1) and 4 other enzymes). We show that the model 

accurately captures the stutter variability between different polymerases within a 

single degree of freedom, its simulated cycles (Supplementary Figure S7A, C). 
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Experimental validation of the model by using single cell STR data 

Following the successful proof of concept of polymerase comparison using synthetic 

templates, we opted to enlarge the validation to thousands of data points per each 

polymerase to create a statistical significant polymerase error rate comparative assay 

based upon the measured error rate per each thousands of genomic STR loci. 

To generate a valid comparison we opted to utilize the same polymerase for the entire 

targeted amplicon sequencing amplicon protocol as outlined in 8 using 1769 

amplicons (Supplemental Table S2). We first selected 6 high-fidelity enzymes and 

opted to apply them in parallel to a large collection of single cell WGA DNA 

template, on a large STR panel size in a 2-step amplicon targeted sequencing 

approach as described above. Specifically, the protocol follows a previously described 

method 8 which utilizes an AA chip for multiplex amplification and a 2nd off-chip 

PCR for library barcoding, with the modification of PCR enzymes, thus,  each sample 

will serve as template for all enzymes in a coupled 1st and 2nd PCR reactions. To fit all 

PCR enzymes in a single preliminary AA chip, we composed a “unified” 1st PCR 

thermal cycler protocol that meets the requirements of all enzyme manuals (see 

methods section), with as little digression as possible from the manufacturers 

recommended protocols. 2nd PCR was performed with each enzyme’s original 

protocol. The single cells taken from an H1 cell line which demonstrates a normal 

karyotype, thus reducing copy number artefacts (in this analysis, only X-chromosome 

STR were used). Following a preliminary analysis (Supplementary Table S3, 

Supplementary Figure S8) of two single cell DNA and 2 controls (positive and 

negative: bulk genomic DNA and DDW, respectively) in duplicates, we removed 

KOD enzyme from further analysis due to low success rate (mapped reads/total reads 

ratio). dNTpack, although failed in this experiment, since successfully utilized in the 

original protocol 8 with a different thermal cycler protocol was taken as a control for a 

large scale experiment. Here, we have enlarged the cohort of samples to 22 single cell 

DNA samples and 2 controls (positive and negative) were used as templates in an 

enzyme dedicated AA chip, in duplicates (48 samples per enzyme). Again, the 1st 

PCR program was as the abovementioned “unified” and further PCR was in 

accordance with the enzyme protocol. dNTPack was used in two different AA chips: 

First (herein: “dNTPack”, as the rest of the enzyme (“unified” and than dedicated 

thermal cycler programs), an expected negative control. Second (herein: 
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“UltraII/dNTPack”), as the 1st PCR of the original AA protocol, in accordance with 

Fluidigm’s AA manual with cycle reduction as recommended by Fluidigm, and as 

was used in 8, with UltraII serving as its 2nd PCR enzyme.  

Applying our STR noise model on the sequencing data received from the large scale 

experiment we have generated an aggregated plot of simulated cycle scores of all 

single cells in the experiment (duplicates included, Figure 4A, see also results 

summary in Supplementary Table S4). We found that PrimeStar demonstrates a 

significantly lower simulated cycle number compared to the other enzymes. UltraII 

and Q5, both are second best in the number of simulated cycles category, 

demonstrating a similar result, thus emphasizing the robustness of the model, as both 

enzymes are based essentially on the same Q5 enzyme with a different mix 

composition. dNTPack shows the highest number of cycles amongst all examined 

enzymes. The original protocol (UltraII/dNTPack) demonstrates much higher success 

in number of successfully amplified loci count, making its 1st PCR program preferable 

over the manufacturers protocol (in the context of utilization in AA chips), reasoning 

why the Fluidigm recommended such modification in the AA PCR protocol. 

Moreover, a cross between UltraII for the 2nd PCR and dNTPack for the 1st PCR 

showed improved score over dNTPack alone. These crossed results demonstrate the 

superiority of UltraII over dNTPack in noise insertion as could be expected by 

looking at the scores of each enzyme alone.  
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Figure 4. Comparison of genotyping results for various PCR enzymes using targeted PCR on a template of 

single cells WGA DNA A) Comparing the number of simulated PCR cycles that best fit the measured histogram 

reflects the STR-specific stutter noise that is produced by a fixed number of actual PCR cycles. B) Comparing the 

fitness (correlation) between the simulated histograms and the measured ones. C) Loci counts that were retrieved 

from each SC. 
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Overall, we show that the model accurately captures the variability between different 

polymerases within a single degree of freedom, its simulated cycles, making it robust 

to any switch in utilized biochemical methods. It should be noted that although 

PrimeStar demonstrates the best score in noise insertion UltraII/dNTPack, as used in 

the current lab protocol (8, where Q5 is used instead of UltraII) shows good loci 

count(Figure XC), emphasizing that our current protocol works well in this category. 

However, UltraII and Q5 are also the best in the loci count category, and when 

considering both categories together, it seems that utilizing UltraII only, or PrimeStar 

only would be a preferable protocol, depends on the experiment requirements. 

 

Biallelic calling - genomic data 

We opted to try and fit biallelic loci that amplified unevenly during the WGA process 

on SCs by extending the exhaustive search to nearly all possible allele combinations 

and at any proportion from the set: 0.1/0.9, 0.2/0.8,…,0.5/0.5…, 0.9/0.1 

(Supplementary Figure S9). In order to assess our ability to accurately discover the 

true alleles that compose a stuttered biallelic histogram, we have selected autosomal 

loci from a SC population of H1 stem cells8 that consistently presented alleles A and 

B when genotyped as mono-allelic (Figure 5A,B,C first column). Since alleles A and 

B can appear at any proportion (Figure 5D), we can assume these cases presented the 

biallelic locus’ alleles at a proportion of 0/1 or 1/0 and that occurrences of this loci 

that failed to be genotyped as mono-allelic would present both alleles A and B. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2018. ; https://doi.org/10.1101/065110doi: bioRxiv preprint 

https://doi.org/10.1101/065110


 

 

Figure 5. Biallelic genotyping using overlaid model histograms. Figure rows A, B and C show the successful 

genotyping of biallelic loci (AC repeats) within a SC population of H1 stem cells8. A, Recognizing overlapping 

alleles spanning 17 and 27 repeats, B, 22 and 27 repeats, and C, 25 and 28 repeats. First column – Monoallelic 

genotypes recognized in the clonal population. Second and third columns – In biallelic SC signal: Second column: 

Heatmap of the correlation scores between the predicted and the measured histograms across the space of possible 

alleles; Third column: Overlaid model prediction (green histogram) on top of the measured histogram (blue 

histogram). The resulting genotypes are marked as vertical green lines that also depict the alleles' proportion in 

their height. D, Examples of asymmetric allele proportions. 

 

Discussion 
STR usage in scientific research is increasing. High throughput sequencing opens a 

new frontier for STR science, both for basic4, 6 and for applicative research21, 22. With 

that understanding, in recent years, bioinformatics tools were developed to map and 

genotype STRs in a high-throughput genome-wide scale with improved accuracy and 

speed over standard mapping algorithms5, 13, 14. However, current tools still struggle 

with the in vitro amplification stutter noise that is typical to STRs, and in particular to 

highly mutable STRs. Recent biochemical advances have enabled PCR-free protocols 

that substantially decreased the effect of stutter noise in STR analysis5. However, 

these protocols have some limitations: (1) they require bulk amounts of template, 
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making it incompatible with SC analysis, which requires whole genome amplification 

(2). In most cases, only a fraction of the STRs in the genome is required for analysis 

and therefore targeted amplification is required 23. Overall, this work lays the 

foundation for a better understanding of STR behavior in the NGS era. Although STR 

enrichment and sequencing kits are now available, a comprehensive assessment of the 

STR sequencing capabilities of extant sequencing machine was not systematically 

carried out, except for known constraints of some technologies such as 

mononucleotides sequencing in pyrosequencing based technologies24 and inferred 

estimation of such noise from old Illumina platforms25. Here we provided a controlled 

measurement of noisy sequencing at different amplification conditions and even in 

amplification free STR molecules. 

 

We described here a new stutter model for the highly mutable STRs over in vitro 

amplification. The novelty of this model is that it is calibrated with NGS data 

generated by a controlled amplification of a range of di- repeat STRs of different 

types and sizes (according to their genomic occurrence in human). One key element in 

our model is that it takes into account that during amplification, the molecule lengths 

stochastic mutations can be accurately predicted, according to its inputs, the STR 

type, and the input length distribution of the previous amplification step. We chose to 

model the STR noise as a discrete-time Markov chain (DTMC). Our model enables 

easy calibration of different types of STRs. However, our data clearly shows a distinct 

and unusual pattern of noisy amplification of AT, which currently cannot be 

determined by either Markovian or binomial models, and may require modified model 

in the future. This variation in mutational mechanism was suggested previously1.  

 

We provided three types of experimental-based evidence for the effectiveness of our 

model: 

(1) Controlled amplification of STR plasmids. First, by utilizing it to measure an 

accurate amplification difference between known STR templates of various 

types and concentration, and second, by validating it against various types of 

polymerases. 

(2) Comparative analysis of STR amplification of thousands of genomic single 

cell STRs. 
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Both experiments have demonstrated the model robustness, such that although 

calibrated by a specific set of polymerases and conditions can be trustfully 

used as a quantitative tool for analyzing mutational processes by any NGS 

downstream process. Future work will enable a large-scale utilization of this 

model for assaying and/or optimizing other mutational processes, such as 

WGA. 

(3) Utilization of NGS genomics datasets from SCs by accurately analyzing STRs 

from biallelic histograms, from drifted histogram, unclear determination of 

single peaks, and unbalanced allelic representation. 

 

We also compared our model to a state-of-the-art genotyping tool14 utilizing NGS 

data from SC targeted enrichment data, originated from an ex vivo controlled cell 

lineage tree8. Our model outperforms both by the number of STR genotypes and both 

by the calling confidence, when compared with respect to the ex vivo tree.  

 

We acknowledge that the bioinformatic improvement we provide here is mainly the 

stutter model itself, where current tools, mainly HipSTR, are implemented as a more 

inclusive STR genotyping tools in terms of phasing, haplotyping and interfaces with 

standard bioinformatics pipelines. Nevertheless, we recommend this model as an 

integrative step for STR noise analysis, specifically for SC analysis, where the 

sequenced samples undergo extensive amplification or in high sensitivity STR 

analysis, e.g. diagnosis of Microsatellite Instability (MSI) in cancer samples26. The 

tolerance of our model to noisy STR signal allows for a more flexible experimental 

design and opens the gate for highly mutable STR sequencing research.  

 

 

Materials and Methods 

Controlled amplification noise measurement of a synthetic STR 

library 

STR plasmid design: Sequence verified cloned plasmids containing synthetic STRs of 

different types and sizes (Supplemental Table S1) were ordered from either IDT or 
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GenScript (pIDT-kan and modified puc57-Kan vectors, respectively). Cloning vectors 

were validated to exclude BsrDI restriction sites. STRs were synthesized in the 

context of a complete Illumina NGS library (Truseq HT) to allow for nested 

amplification, and to enable a direct digestion using the Type IIS restriction enzyme 

BsrDI, thus creating a sequencing ready library. See elaboration in main text and in 

Error! Reference source not found.. Immediate STR flanking sequences were 

validated to avoid partial STR repeat unit occurrence (e.g. (AC)X followed by “A”). 

Internal 3-mer internal barcodes were inserted to allow for cross-contamination 

detection between samples. Several amplification time points were measured: 

T1 (No-PCR) control: was performed by pooling all STR plasmid libraries at equal 

concentration and digestion with BsrDI enzyme (NEB) according to manufacturer 

protocol. Digestion was performed at 65℃ for 16 hours, followed by inactivation at 

80℃ for 20 minutes. Reaction was then processed for sequencing (see later 

description in "Pooling and sequencing"). 

T2 and T3 PCR experiments 

In the T3 experiment, each STR plasmid (10-4 µg/µl) was loaded as template in an 

AccessArray (AA) PCR chip. Each primer inlet was loaded with the same primer 

solution ("Inner primers") composed of X1 Access Array Loading Reagent (Fluidigm) 

and primers: Control_Fw: 

5’-CTACACGACGCTCTTCCGATCTTCCTAATCTTACGCGGCCATAAC-3’ and 

Control_Rev: 

5’-CAGACGTGTGCTCTTCCGATCATGGACAGTCTTTAAGAGCCCATC-

3’(IDT), at a concentration of 1µM each. PCR reactions and purifications were 

performed as described in8: In summary, a 1st PCR of 30 cycles PCR reaction is 

performed in the AA chip. Following sample harvesting, purification and dilution 

1:100, a 2-step 2nd PCR of 17 cycles (5 cycles with annealing temperature of 55ºC + 

12 cycles with annealing temperature of 70ºC) is performed to generate a dual 

indexed sequencing library (note that the "Outer primers" sequences were as 

described for the 2nd PCR primer sequences in8. The 1st PCR (in the AA chip) is done 

using the manufacture recommended enzyme: FastStart High Fidelity PCR System, 

dNTPack (Roche) while the 2nd PCR is done using Q5 Hot Start High-Fidelity DNA 

Polymerase (NEB) with the addition of SYBR green I (LONZA) at a final 
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concentration of X1, to enable real time tracking of amplification. Following 2nd PCR, 

each sample was purified using SPRI beads. 

T2 PCR was performed by using 0.1ng-1ng of each STR plasmid as a template. 

Samples were processed in accordance with the T3 2
nd PCR protocol. 

 

Pooling and sequencing: All samples (T1, T2, T3) were purified and concentrated 

using MinElute PCR purification kit (Qiagen), pooled together and size selected (200-

500bp) using a 2% agarose BluePippin gel cassette (Sage Science) utilizing an 

upgraded software that avoids blue light exposure after marker detection. Products 

were concentrated again (Minelute) and were sequenced by a 2X220bp sequencing 

(Miseq, Illumina) using a manufacture recommended sequencing primers (R1, Index) 

and custom R2 primer 5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC-3’ 

(HPLC grade, IDT). 

Experimental validation of the model by using controlled synthetic 

templates  

We opted to validate the model using five high fidelity PCR enzymes, using the 

controlled synthetic STRs as templates. The enzymes were: the two enzymes that 

were described above (Q5 High-Fidelity DNA Polymerase and FastStart High Fidelity 

PCR System, dNTPack), Phusion High-Fidelity DNA Polymerase (NEB), KOD Hot 

Start DNA Polymerase (Novagen) and KAPA HiFi HotStart PCR Kit (Kapa 

Biosystems). 

Reactions were as performed in the T2, described above: 20µl reactions in a 96-well 

format, with real time amplification tracking using SYBR green I, each time using a 

different enzyme and buffer composition, different templates, and different barcoding 

primers. The template for each PCR was 2µl of 1ng/µl STR plasmids: (AC)20, (AC)25, 

or (AC)30. Each reaction was duplicated to avoid PCR primer sequence effect (using 

different indexes). Negative control (water) was added to each PCR. In the serial 

dilution validation experiment, Q5 enzyme was used as described above, using the 

same STR plasmids as templates in 3 concentrations: 1 ng/µl (also used for the 

enzyme comparison experiment), 10-2 ng/µl and 10-4 ng/µl. 

All Samples were purified, pooled and sequenced as described above. 

The following exceptions were considered: 1) Activation, elongation and final 

elongation were adjusted to fit each enzyme’s recommended protocol. 2) Annealing 
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temperature from the 6th amplification step and on was according to each enzyme’s 

elongation temperature. 3) PCR reaction was stopped when amplification reached a 

plateau. 4) Due to failure of dNTPack to amplify using the standard 2-step PCR 

protocol, we applied the same program as being performed in the 1st PCR of T3 (in the 

AA chip). 5) Reactions mixes were according to manufacturer's protocols, with 

primer concentrations of 0.3-0.5µM, with the exception of dNTPack, which 

composition was according to Fluidigm’s recommended reaction mixture with primer 

concentration of 0.1µM each and a final volume of 10.6µl. 

 

Experimental validation of the model by using single cell STR data 

The high fidelity PCR enzymes were used in this study were: NEBNext Q5 Hot Start 

HiFi PCR Master Mix (NEB), NEBNext Ultra II Q5 Master Mix (NEB), FastStart 

High Fidelity PCR System, dNTPack (Roche), KOD Hot Start DNA Polymerase 

(Novagen), KAPA HiFi HotStart PCR Kit (Kapa Biosystems) and PrimeStar Max 

(Takara). 

A recreation of the original amplicon targeted sequencing protocol as presented in 8 

was performed in order to assess the error rate per polymerase enzyme using the STR 

stutter model. In summary, AA chip generates a mixture of 48 X sample+PCR wells, 

with 48 X primer mixes (1769 of amplicons in total, see Supplementary Table S2), 

ending up with 2304 nanoliter reactions, which are later harvested to each sample’s 

inlets (48 reactions to a single well). Following sample harvesting, purification and 

dilution 1:100, a 2nd PCR was performed at a final volume of 20µl, each sample with 

its corresponding PCR enzyme from the 1st PCR reaction and using its protocol, 

unless otherwise mentioned. Purification and pooling procedures were as described in 
8. The “unified” AA 1st PCR protocol as abovementioned described was composed in 

accordance with the thermal cycling protocol guidelines of all examined polymerases: 

Activation was performed at 98℃ for 3 minutes followed by 5 cycles of  98℃ for 20 

seconds, 60℃ for 15 seconds and 70℃ for 15 seconds, and 20 cycles of  98℃ for 

20 seconds, 70℃ for 15 seconds and 70℃ for 15 seconds. A final elongation step 

was added: 70℃ for 5 minutes. Each polymerase reaction mixture was according to 

its manual. To avoid over-cycling SYBR green (X1) was added to enable 

amplification tracking by real time PCR. Libraries were first shallow sequenced in 2 × 

220-bp in a Miseq sequencer (Illumina), followed by normalization and pooling by 
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number of total reads per sample, and deep-sequenced in NextSeq(Illumina) 2 × 151-

bp. 

Computational analysis 

For the initial analysis of the mini-genes library, enzyme comparison and biallelic 

genotyping, the pipeline presented by Biezuner et al8 was used. In short, reads are 

processed using cutadapt (https://cutadapt.readthedocs.io/en/stable/) and PEAR 

(Zhang et al. 2014), followed by unique mapping of the merged reads to their target 

using read alignment of only the read's edges corresponding to the primer pairs. STR 

repeat number is then determined by aligning the read to references containing a 

range of STR lengths and choosing the reference length with the highest alignment 

score. 

For the initial analysis of the library that was used for comparing genotyping 

accuracy, FMSV27 mapping was used to generate the input for R&B genotyping tool 

while BWA-MEM was used to generate the input for HipSTR18. 
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