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Abstract17

Genomic data is increasingly being used to understand infectious disease epidemiology. Isolates18

from a given outbreak are sequenced, and the patterns of shared variation are used to infer19

which isolates within the outbreak are most closely related to each other. Unfortunately, the20

phylogenetic trees typically used to represent this variation are not directly informative about21

who infected whom – a phylogenetic tree is not a transmission tree. However, a transmission tree22

can be inferred from a phylogeny while accounting for within-host genetic diversity by colouring23

the branches of a phylogeny according to which host those branches were in. Here we extend24

this approach and show that it can be applied to partially sampled and ongoing outbreaks.25

This requires computing the correct probability of an observed transmission tree and we herein26

demonstrate how to do this for a large class of epidemiological models. We also demonstrate how27

the branch colouring approach can incorporate a variable number of unique colours to represent28

unsampled intermediates in transmission chains. The resulting algorithm is a reversible jump29

Monte-Carlo Markov Chain, which we apply to both simulated data and real data from an30

outbreak of tuberculosis. By accounting for unsampled cases and an outbreak which may31

not have reached its end, our method is uniquely suited to use in a public health environment32

during real-time outbreak investigations. We implemented our technique in an R package called33

TransPhylo, which is freely available from https://github.com/xavierdidelot/TransPhylo.34
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Introduction35

Infectious disease epidemiology is increasingly incorporating genomic data into routine public36

health practice, using genome sequencing for diagnosis, resistance typing, surveillance, and37

outbreak reconstruction. In the latter use case, we can draw inferences about the order and38

direction of transmission based on the presence of mutations common to multiple pathogen39

isolates (Gilchrist et al., 2015; Croucher and Didelot, 2015). While early works in this area40

assumed that pathogen genomes from a transmission pair should be identical or near-identical,41

a number of genomic outbreak investigations revealed the complicating factor of within-host42

evolution (Ypma et al., 2013; Romero-Severson et al., 2014; Worby et al., 2014).43

Many important bacterial pathogens have periods of latency, chronic infection, or prolonged44

asymptomatic carriage, all of which contribute to the generation of within-host genetic diversity45

(Didelot et al., 2016). Staphylococcus aureus is a canonical example, in which single hosts can46

harbour multiple distinct lineages of the pathogen, each of which may be transmitted onwards47

(Young et al., 2012; Golubchik et al., 2013; Harris et al., 2013; Tong et al., 2015; Paterson et al.,48

2015; Azarian et al., 2016). In scenarios where a single host harbours substantial diversity, it49

can be difficult to infer which other hosts they infected – different lineages may have been50

transmitted at different points during the donor’s infection and the genome sequenced from the51

donor may only represent a single lineage captured at the time a diagnostic sample was taken52

and not the complete set of lineages present within that individual. Indeed, simulation studies53

have shown that if within-host diversity is ignored, incorrect inferences can be drawn about the54

transmission events that occurred within an outbreak (Romero-Severson et al., 2014; Worby55

et al., 2014; Worby and Read, 2015).56

We have previously introduced a framework for inferring person-to-person transmission events57

from genomic data that considers within-host genetic diversity (Didelot et al., 2014). We use58

the genomic data to build a time-labelled phylogeny, which we divided into subtrees, each of59

which captures the variety of lineages that were present within each host. In other words, the60

phylogeny is “coloured” with a unique colour for each host, with transmission events represented61

as changes in colours along a branch. We originally used a simple susceptible-infected-recovered62

(SIR) model to evaluate the probability of the transmission tree, and we recently showed we63

can extend our approach to incorporate other types of epidemiological models (Hatherell et al.,64

2016). A similar approach, developed independently (Hall et al., 2015), couples phylogeny65

construction and transmission tree inference into a single step.66

The main limitation of these previous methods is that they assume that all outbreak cases have67

been sampled and sequenced and that the outbreak has reached its end. These assumptions68

greatly simplify transmission tree inference, but don’t reflect epidemiological reality. An69

outbreak is rarely completely sampled – cases may not be reported to public health or they70

may not have nucleic acid available for sequencing – and genomic epidemiology investigations71

are frequently unfolding in real-time, meaning an outbreak is being analysed before it is72

ended. The few methods that can deal with unsampled cases do so at the cost of assuming73

no within-host diversity (Jombart et al., 2014; Mollentze et al., 2014). Here, we introduce a74

new Bayesian method for inferring transmission events from a timed phylogeny that can be75

applied to outbreaks that are partially sampled, ongoing, or both. We solve two problems that76

arise from these sampling issues: the complexity of calculating the probability of an observed77

transmission tree under these conditions, and the difficulty in exploring the posterior distribution78
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of possible transmission trees given a phylogeny. Our method also permits the inference of when79

these transmission events occurred; when coupled with the person-to-person inference, this80

results in a comprehensive and epidemiologically actionable outbreak reconstruction. Here, we81

apply our new approach to both simulated datasets and a real-world dataset from the genomic82

investigation of a tuberculosis outbreak in Hamburg, Germany.83

Methods84

We use a two-stage approach, first constructing a timed phylogenetic tree P on the observed85

sequences and overlaying transmission events (Didelot et al., 2014). Let T be the transmission86

tree, P be the timed phylogenetic tree, θ be the parameters of the transmission and sampling87

model, and Neg the within-host effective population size.88

P(θ,Neg, T |P) ∝ P(P|Neg, T )P(T |θ)P(θ)P(Neg) (1)

We compute P(P|Neg, T ) by separating P into independent parts, each of which evolves in a89

different individual host (Didelot et al., 2014; Hall et al., 2015); see below. This separability90

relies on the assumption of a complete transmission bottleneck, meaning that that within-91

host genetic diversity is lost at transmission, as is commonly assumed in this context. The92

central challenge here is therefore to compute P(T |θ) for a general model of transmission:93

one that allows for both unsampled cases and varying levels of infectivity throughout the94

course of infection, which is representative of the biological reality for many pathogens. We95

first illustrate how to do this in a scenario where the outbreak is over; this is a convenient96

assumption mathematically and makes the derivation simpler. We then proceed to the case97

where data collection ends at a fixed time before the end of the outbreak, as is the case when98

analysing an ongoing outbreak.99

Basic epidemiological model100

The epidemiological process we consider is a stochastic branching process in which each infected101

individual transmits to secondary cases called offspring (Becker, 1977; Farrington et al., 2003).102

The number of offspring for any infected individual is drawn from the offspring distribution α(k)103

and we follow previous studies (Lloyd-Smith et al., 2005; Grassly and Fraser, 2008) in assuming104

that it is a negative binomial distribution with parameters (r, p). The mean of this distribution105

is called the reproduction number (Anderson and May, 1992), which is constant and equal to106

R = rp/(1 − p), and the probability of having k offspring is α(k) =
(
k+r−1
k

)
pk(1 − p)r. The107

time span between the primary and any secondary infection is drawn from the generation time108

distribution γ(τ), where τ is the time since infection of the primary case. The generation time109

distribution can take any form (Fine, 2003) but a Gamma distribution is often used (Wallinga110

and Lipsitch, 2007).111

Finished outbreak scenario112

We first consider the situation where an outbreak follows the model above until there are no113

more infected individuals; we refer to this as a finished outbreak and we use the star subscript114
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(∗) to denote the mathematical quantities associated with this scenario. In this situation, all115

individuals are sampled with the same probability π, in which case the time span from infection116

until sampling has distribution σ(τ). We want to calculate the probability of a transmission117

tree p∗(T ). This requires some preliminary quantities.118

We say that an infected individual is “included” if they are part of the transmission tree by119

being either sampled or by leading through transmission to at least one sampled descendant.120

Otherwise, we say that an infected individual is “excluded”. Let ω∗ be the probability of being121

excluded. This means the individual and all of their descendants are unsampled. Considering122

the number of offspring k, we have that:123

ω∗ = (1− π)
∞∑
k=0

α(k)ωk∗ = (1− π)G(ω∗) (2)

where G(z) is the probability generating function of the offspring distribution. We model this124

as a negative binomial distribution so that G(z) =
(

1−p
1−pz

)r
, but our approach could use other125

distributions. We choose the negative binomial distribution to allow individuals to have different126

rates at which they are in contact with others (gamma-distributed) combined with a Poisson127

distribution of secondary infections given their individual rate. The solution ω∗ to Equation 2128

is calculated numerically (Supplementary Material).129

The probability that an individual has d offspring who are included in the process is130

P(d offspring included) =
∞∑
k=d

(
k

d

)
α(k)ωk−d∗ (1− ω∗)d (3)

In our final product for P(T |θ), arrived at by induction, each included case will have its own131

term. For notational simplicity we define the “modified offspring function” to collect the other132

parts of this expression:133

α∗(d) =

∞∑
k=d

(
k

d

)
α(k)ωk−d∗ (4)

A good approximation is obtained by taking the sum up to a large value (Supplementary134

Material). Note that if π = 1 then ω∗ = 0 and α∗(d) = α(d).135

We now consider a transmission tree T generated from the model, which is made of n nodes136

corresponding to the included infected individuals (either sampled or unsampled). They are137

indexed by i = 1, ..., n. Let si = 0 if i is unsampled and si = 1 if i is sampled, in which case138

its sampling time is tsami . Let tinfi denote the time when i became infected and di denote its139

number of included offspring who are indexed by j = 1..di. The probability of T given the140

parameters θ can be obtained by considering the root ρ of the tree, which has dρ offspring, and141

the subtrees {Tj}j=1..dρ corresponding to each offspring. A recursive form of the probability of142

the transmission tree can then be written as:143

p∗(T |θ) = (1− π)1−sρ(πσ(tsamρ − tinfρ ))sρ
∞∑

k=dρ

( k
dρ

)
α(k)ω

k−dρ
∗

dρ∏
j=1

[
p∗(Tj)γ(tinfj − tinfi )

] . (5)

The parameters θ appear in the offspring distribution α, the generation time density γ and the144

sampling time density σ. The terms in the square brackets do not depend on k, so that we can145
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rearrange the equation using the modified offspring function α∗ defined in Equation 4:146

p∗(T |θ) = (1− π)1−sρ(πσ(tsamρ − tinfρ ))sρα∗(dρ)

dρ∏
j=1

[
p∗(Tj)γ(tinfj − tinfi )

]
(6)

Finally by induction we obtain the probability of T as a product over all nodes of the147

transmission tree:148

p∗(T |θ) =
n∏
i=1

(1− π)1−si(πσ(tsami − tinfi ))siα∗(di)

di∏
j=1

γ(tinfj − tinfi )

 (7)

Ongoing outbreak scenario149

We now consider the situation where an outbreak follows the same model as previously150

described, until some known time T where observation stops. Whereas individuals were151

previously all sampled with the same probability π, it is now necessary to account for the152

fact that individuals who became infected soon before T have a lower probability of being153

sampled. More formally, the probability of sampling for an individual infected at time t is equal154

to:155

πt = π

∫ T−t

0
σ(τ)dτ (8)

Stopping observation at time T also affects the probability of being excluded, with all individuals156

infected at t ≥ T being excluded.157

For an individual infected at time t, let ωt be the probability of being excluded. Note that158

where t > T , ωt = 1. Before that time, ωt is not constant, but we know that as t → −∞, we159

should have ωt → ω∗. We have that:160

ωt = (1− πt)
∞∑
k=0

α(k)

[∫ ∞
0

γ(τ)ωt+τdτ

]k
(9)

Let ω̄t =
∫∞
0 γ(τ)ωt+τdτ . Using the generating function G(z) of the negative binomial161

distribution of α(k) we have ωt = (1 − πt)G(ω̄t). We approximate ω̄t using a numerical162

integration (Supplementary Material). Good agreement is found with the expected limit163

ω−∞ = ω∗ where ω∗ is given in Equation 2.164

As before, we use the modified offspring function to simplify the notation:165

αt(d) =
∞∑
k=d

(
k

d

)
α(k)ω̄k−dt (10)

and obtain a good approximation by taking the sum up to a large value of k (Supplementary166

Material).167

With the same recursive reasoning as in the finished outbreak scenario, we have:168

P(T |θ) =
n∏
i=1

(1− πtinfi )1−si(πtinfi
σt(t

sam
i − tinfi ))siαtinfi

(di)

di∏
j=1

γt(t
inf
j − tinfi )

 (11)

where σt(τ) and γt(τ) are respectively equal to σ(τ) and γ(τ) truncated at time τ = T − t.169
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Inference of transmission tree given a phylogeny170

The models described above generate transmission trees where each node is an infected171

individual, each terminal node is a sampled infected individual, and links between nodes172

represent direct transmission events (Figure 1A). Let us now consider that transmission involves173

the transfer of only a single genomic variant of the pathogen from the donor to recipient (ie174

a complete transmission bottleneck) and that sampling involves sequencing a single genome,175

randomly selected from the within-host pathogen population. The ancestry of the sequenced176

genomes can then be described as a phylogeny which is made of several subtrees, each of177

which corresponds to the evolution within one of the included hosts and describes the ancestral178

relationship between the genomes transmitted and/or sampled from that host (Figure 1B). The179

probability P(P|T , Neg) of a pathogen phylogeny P given a transmission tree T and within-180

host effective population size Neg is therefore equal to the product of the subtree likelihoods for181

all included hosts (Didelot et al., 2014; Hall et al., 2015), which can be calculated for example182

under the coalescent model with constant population size Neg (Kingman, 1982; Drummond183

et al., 2002).184

Having defined both P(T |θ) and P(P|T , Neg), we can now perform Bayesian inference of the185

transmission tree T given a timed phylogeny P using the decomposition in Equation 1. Although186

a timed phylogeny is not directly available, there are powerful approaches readily available to187

reconstruct it from genomic data (Drummond et al., 2012; Bouckaert et al., 2014; Biek et al.,188

2015; To et al., 2016). As in our earlier work (Didelot et al., 2014), we can approach this189

problem by coloring the phylogeny with one color for each host (Figure 1B); however, since190

we now consider that some hosts may not have been sampled, the number of infected hosts191

and therefore the number of colors is not known. In other words, the parameter space is not of192

fixed dimensionality, and exploring it with a Monte-Carlo Markov Chain (MCMC) requires that193

we include reversible jumps that change the number of hosts in the transmission tree (Green,194

1995). Our proposal for adding new transmission events is uniformly distributed on the edges195

of the phylogeny P. Our proposal for removing transmission events is uniformly distributed on196

the set of transmission events that can be removed without invalidating the transmission tree.197

In a transmission tree T with n hosts and
∑n

i=1 si sampled hosts, there are n −
∑n

i=1 si such198

removable transmission events. The Metropolis-Hastings-Green ratio for the MCMC move from199

T to T ′ by adding a transmission event is therefore equal to:200

αT →T ′ = min

(
1,

P(T ′|θ)
P(T |θ)

P(P|T ′, Neg)

P(P|T , Neg)

|P|
n+ 1−

∑n
i=1 si

)
(12)

where |P| denotes the sum of the branch lengths of the phylogeny P. Conversely, the acceptance201

ratio of the MCMC update from T to T ′ by removing a transmission event is:202

αT →T ′ = min

(
1,

P(T ′|θ)
P(T |θ)

P(P|T ′, Neg)

P(P|T , Neg)

n−
∑n

i=1 si
|P|

)
. (13)

Within each MCMC iteration, additional standard Metropolis-Hastings moves are used to203

estimate the first parameter r of the Negative binomial distribution for the number of offspring204

(using an Exponential(1) prior), the second parameter p of the Negative binomial distribution205

of the number of offspring (using a Uniform([0,1]) prior), the probability of sampling π (using a206

Uniform([0,1]) prior), and the within-host effective population size Neg (using an Exponential(1)207

prior).208
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Results209

Example application to a simulated dataset210

We simulated an outbreak in which the generation time distribution had a gamma distribution211

with a mean of 1 year, with a negative binomial offspring distribution with parameters212

(r = 2, p = 0.5), such that the reproduction number was R = 2. We set the sampling density213

at π = 0.5 with a sampling time distribution identical to the generation time distribution.214

The simulation was stopped after n = 100 genomes had been sampled, which happened at215

time T . The corresponding phylogeny (Figure 2A) was used as input for our transmission tree216

inference algorithm with the date T used as described in the “ongoing outbreak scenario” in the217

Methods section. Performing 50,000 MCMC iterations took less than an hour on a standard218

computer. The mean posterior of the sampling proportion π was 0.48 with a 95% credibility219

interval of [0.36,0.59]. The mean posterior of the reproduction number R was 2.168367 with a220

95% credibility interval of [1.75,2.65]. The estimates of these two key parameters of our model221

are therefore in excellent agreement with the true values used to perform the simulation.222

Out of the n = 100 sampled individuals, only 53 were infected by another sampled individual;223

for the majority of these links, our algorithm inferred the existence of the link with high224

posterior probability, with only nine pairs being given a probability < 0.2 and 15 pairs being225

given a probability < 0.5 (Figure 2B, red curve). Conversely, for the 9847 pairs of sampled226

individuals for which a link did not exist in the simulated data, most were given a very small227

probability of a link in the posterior distribution of transmission trees, with only nine pairs228

being given a probability > 0.5 (Figure 2B, blue curve). If we consider 0.5 as the probability229

threshold for when transmission was inferred, our method had a specificity (true negative rate)230

of 99.9% and a sensitivity (true positive rate) of 72%. The area under the receiver operating231

characteristic (ROC) curve was 98.97%. These results demonstrate that in this specific example232

our algorithm was able to infer the correct transmission links with high accuracy, in spite of233

having information about only a proportion π = 0.5 of infected individuals. It should be noted234

that this application represents a best case scenario, since the phylogeny is known exactly,235

whereas for real epidemiological investigations it would need to be inferred from sequences,236

adding noise and uncertainty.237

Evaluation of performance using multiple simulated datasets238

We repeated the simulation described above for values of the sampling density π varying from239

0.1 to 1 by increments of 0.01, while leaving the reproduction number constant at R = 2. For240

each of the 90 simulated datasets, we applied our algorithm to estimate the values of both π241

and R (Figure 3). We found that the estimate of R remained fairly constant as it should, while242

the estimate of π increased as the correct value of π was increased. There was no sign of a243

bias in the estimates up to π = 0.6, but higher values of π were consistently underestimated,244

with the value of R being slightly overestimated in compensation. We attribute this bias to245

the difficulty in assessing with certainty whether all cases have been sampled in a transmission246

chain, since there always remains a possibility that an unsampled individual may have acted as247

intermediate. This small bias also reflects our choice of prior for π, which was uniform between248

0 and 1, and the fact that only 100 genomes were used in each simulation.249
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We also performed simulations in the converse situation where the sampling density was kept250

constant at π = 0.5 but the reproduction number was increased from R = 1 to R = 11 by251

increments of 0.1. For each of the 100 simulated datasets, our method was applied and the252

inferred values of π and R were recorded (Figure 4). Although there was once again a slight253

bias towards underestimating the sampling density π, its 95% credibility intervals always covered254

the correct value of π = 0.5. The inferred values of R were accordingly overall slightly upward255

biased, although they followed almost linearly the correct values used for simulation. The 95%256

credibility intervals for R almost always included the correct values. We conclude from these257

results that our algorithm performs well despite being tested in difficult situations, with only258

100 sampled genomes, unknown proportions of unsampled cases, uninformative priors, and very259

large intervals of values being used in the simulations. A small outbreak with high sampling260

density and a larger outbreak with lower sampling density can often look similar, especially in261

the first stages of an ongoing outbreak, but our algorithm is able to distinguish between these262

two scenarios with good accuracy.263

Application to a Mycobacterium tuberculosis outbreak dataset264

We applied the method to a previously reported tuberculosis outbreak (Roetzer et al., 2013).265

We used BEAST (Drummond et al., 2012) to infer a timed phylogeny from the published266

data (Figure S1). In determining the best priors for the densities of the times between267

becoming infected and infecting others (the generation time) and between becoming infected268

and becoming known to the health care system (sampling time), we considered both clinical269

aspects of tuberculosis disease and aspects of the epidemiological investigation. The outbreak270

lasted 13 years, during which active case finding was used to identify individuals with prior271

exposure to known cases. An early report on this outbreak (Diel et al., 2004) noted that many272

cases were identified for reasons not connected to their tuberculosis infection, such as presenting273

to health care with other symptoms, to obtain a health certificate, or to enter a detox program.274

We therefore used a Gamma distribution for the sampling time density, with a shape parameter275

1.1 and rate 0.4. The generation time for tuberculosis should reflect a chance of relatively rapid276

progression from infection to active disease and hence to the opportunity to infect others, but277

also a possibility of infection leading to a long latent period before progression (Barry et al.,278

2009). We therefore used a Gamma function with shape parameter 1.3 and rate parameter 0.3279

for the generation time density. We ran 100,000 MCMC iterations. The MCMC traces are280

shown in Figure S2.281

Figure 5 shows the consensus transmission network for the real-world tuberculosis outbreak282

(Roetzer et al., 2013) and Figure 6 shows the inferred numbers of unsampled cases along with283

the reported cases through time. While most cases were sampled, reflecting a robust public284

health investigation, we estimate that early in the outbreak, several unsampled individuals285

were contributing to transmission. During this period, the two major clades of the phylogeny286

diverged. Figure 6A recapitulates the two major waves of the outbreak – an early peak around287

1998 and a second pulse from 2005 onwards – each with a small portion of inferred unsampled288

cases. While the number of unsampled individuals was small, the method does allocate key289

transmission events to unsampled cases, particularly early in the outbreak, suggesting that290

screening and investigation earlier in the outbreak was not as comprehensive as it eventually291

became. This is to be expected, as outbreak management efforts typically intensify as the292

number of cases grows.293
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Figure 6B shows the posterior times between an individual becoming infected and infecting294

others – the generation time – and the posterior time intervals between infection and sampling295

– the infectious period, with priors shown in grey. Our observed generation times are variable,296

which reflects the clinical history of tuberculosis – an infection that can progress rapidly to297

active, infectious disease or that can have a asymptomatic, non-infectious latent period of298

variable length. We used a gamma function as a prior, with mode strictly greater than 0, but299

the posterior generation times have a mode of 0, suggesting a relatively high portion of those300

who go on to infect others have a rapid progression to from infection to active disease. It301

is important to note that the posterior generation times are only an indicator of the inferred302

natural history of tuberculosis among those with active disease who were sampled ; individuals303

who were infected but did not progress to active disease and those who never presented to care304

and were not sampled do not appear in the dataset, and those who did not infect others do not305

appear in the cases behind the inferred generation times. The mean posterior generation time306

was 1.0 years with a standard deviation of 1.36 years. The posterior times between becoming307

infected and becoming known to health authorities also differ from the prior assumption; they308

have a mean of 1.4 years and standard deviation of 2 years. Sampling times are distinct from309

the prior but are affected by a change in the prior assumption.310

Where inferred infectors are sampled cases with associated clinical and/or epidemiological data,311

an advantage of our approach is that it allows comparison of the relative contributions of312

different groups of individuals to the burden of transmission. Figure S3 shows the inferred313

per-case transmission stratified by several characteristics of the cases (Roetzer et al., 2013):314

individuals’ AFB smear status (a measure of how many bacilli are found in their sputum, if315

any), HIV status, abuse of alcohol or other drugs, and whether the individual had a permanent316

domestic residence. Our method did not detect significant differences in secondary infections317

arising from smear-positive and -negative cases, between substance users and non-substance318

users, and between stably or transiently housed individuals. However, consistent with the fact319

that HIV-positive patients tend to be less infectious with tuberculosis, we find that HIV-positive320

individuals transmitted somewhat fewer cases on average than HIV-negative individuals. Due321

to the small number of HIV-positive cases – only five individuals were HIV-positive in this data322

– the estimates are much more variable than the estimates for HIV-negative cases. Many more323

clinical or demographic factors might impact transmissions, such as the presence of cavitary324

disease and the reported number of social contacts, but these data were unavailable for the325

present analysis.326

Results in Figure S3 do not reflect differences in transmission rates given contact with others,327

because we do not know about exposures that did not result in infection. We also do not have328

information about behaviours that might modulate transmission. For example, if smear-positive329

cases sought and obtained treatment more rapidly than smear-negative cases, or were more330

unwell and had more limited activities, their transmission rate per contact could be higher than331

their smear-negative counterparts but they might still contribute fewer onward transmissions.332

The posterior sampling density is π = 0.93 with a standard deviation of 0.05, consistent with333

a very densely-sampled outbreak in a high-resourced setting with good case finding. Posterior334

estimates of π depend somewhat on priors for σ.335
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Discussion336

We have described a new methodology for reconstructing who infected whom based on genomic337

data from an infectious disease outbreak. The novelty of this approach, which extends our338

earlier work in the area, is that it now accounts for both the possibility of some cases not having339

been sampled and the possibility that more cases may occur in the future. Addressing these340

issues overcomes key hurdles in using genomic data to reconstruct disease transmission events341

during a real-time public health response. In these situations, a case may not be sequenced342

due to a lack of clinical specimen or otherwise sequenceable material, while cases might go343

unsampled for various reasons, including subclinical, or asymptomatic, infections for which an344

individual may not seek care or a diagnosis in another jurisdiction. Furthermore, following early345

proof-of-concept retrospective studies, genomic epidemiology is now being used to prospectively346

understand outbreaks, as in the recent outbreak of Ebola (Gire et al., 2014). Allowing inference347

before the end of the outbreak turns our method into a real-time, actionable approach.348

Our methodology is based on an explicit transmission model which makes a number of349

assumptions, some of which could be relaxed if required by specific applications. A first example350

is the fact that in our model the reproduction number R remains constant throughout the351

outbreak, whereas in many situations the reproduction number varies over time and quantifying352

these variations is of great epidemiological importance (Cori et al., 2013). This could be353

incorporated in our method relatively easily, for example assuming stepwise changes or some354

predetermined parametric function for R(t). A second example concerns the observation of355

cases, which we assumed to happen with probability π(t) for an individual infected at time356

t with π(t) reflecting the impossibility of observing cases happening after the time T when357

observation stops and the lower probability of observing cases soon before T (Equation 8). It is358

often difficult in epidemiological studies to know the real function π(t), but in situation where359

for example surveillance did not start before a certain date, the function π(t) we used here could360

be updated to reflect this. There are also a few other assumptions in our model that would be361

more difficult to relax, such as the complete transmission bottleneck which considers that only362

a single pathogen variant is transmitted from the donor to the recipient of each transmission363

event.364

A key feature of our methodology is that it proceeds in two steps – first, genomics data is used365

to reconstruct a phylogenetic tree, and second, likely transmission events given the phylogeny366

are inferred. There are both advantages and disadvantages to this approach, compared to the367

more theoretically accurate joint inference of phylogenetic and transmission trees (Hall et al.,368

2015). Our two-step approach makes it difficult to pass the uncertainty in the phylogenetic369

reconstruction on to the transmission analysis. This is especially relevant if the time-labelled370

phylogeny is inferred not using a point estimation procedure (Fourment and Holmes, 2014; To371

et al., 2016), but rather with a Bayesian sampling method (Drummond et al., 2012; Bouckaert372

et al., 2014). In this case, applying the transmission analysis separately to a sample of trees373

from the phylogenetic posterior can help account for uncertainty (Didelot et al., 2014). However,374

two problems remain: how to choose the tree prior in the phylogenetic reconstruction and how375

to combine the results from the separate transmission analyses. A solution may be to see the376

phylogenetic trees sampled in the first step as coming from a biased distribution, and correcting377

for this using importance sampling in the second step, such that the separate transmission378

analyses are correctly aggregated and the prior used in the first step is nullified (Meligkotsidou379

and Fearnhead, 2007). On a more positive note, it should be noted that our two-step approach380
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has significant advantages both computationally and conceptually. Computationally, we were381

able to analyse outbreaks with hundreds of cases in a matter of hours. Conceptually, working382

with a fixed phylogeny allows us to explore much more complex models for transmission trees,383

such as the partially sampled and ongoing scenarios. To date, no other transmission inference384

approaches handle these difficult scenarios.385

We have previously applied earlier versions of our approach to understanding a complex386

tuberculosis outbreak in a largely homeless Canadian population (Didelot et al., 2014; Hatherell387

et al., 2016), showing how reveals key individuals contributing to transmission and how its ability388

to time infection events can be used to declare a waning tuberculosis outbreak truly over. Here,389

we demonstrate our new methodology’s ability to identify unsampled cases. Finding such cases390

is critically important for tuberculosis control – not only does it allow us to seek out these391

individuals and connect them with treatment, but it allows us to extend our case-funding efforts392

to include a larger proportion of potentially exposed individuals. In our present analysis of the393

Hamburg dataset, we found that the generation time was relatively rapid, with the majority394

of infected individuals progressing to active disease and infecting others doing so within two395

years, with many progressing to active disease almost immediately. This is important data for396

outbreak management – if borne out by further reconstructions, it suggests a bound for the397

time over which an individual who has been exposed to tuberculosis should be followed up.398

In conclusion, we present a new method for the automated inference of person-to-person399

disease transmission events from pathogen genomic data, one which accounts for the complex400

and variable nature of sampling cases during an outbreak. When coupled to the routine401

genomic surveillance of key pathogens now in place at many public health agencies, such402

as Public Health England’s new genomic approach to tuberculosis diagnosis and laboratory403

characterisation (Pankhurst et al., 2016), our method has the potential to rapidly suggest the404

contact network underlying an outbreak. Given the significant resources associated with a405

contact investigation, any tool that can quickly assist in prioritising individuals for followup is406

an important contribution to the public health domain.407
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Figure 1. A: An illustrative example of transmission tree, with each horizontal line
representing a case, and the darkness of each point representing their changing infectivity over
time. Vertical arrows represent transmission from case to case. The red circles indicate which
individuals were sampled (1, 2, 4, 5 and 6) and when. B: An example of colored phylogeny
which corresponds to the transmission scenario shown in part A. Evolution within each host is
shown in a unique color for each individual, as indicated by the labels and on the righthand
side in part A. Red stars represent transmission events and correspond to the arrows shown in
part A. Tips of the phylogeny represent sampled cases as shown by the red circles in part A.
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Figure 2. A: Timed phylogeny showing the relationship between 100 genomes sampled with
density π = 0.5 in a simulated outbreak. B: Distribution of the posterior probability of direct
transmission inferred by our algorithm for pairs of individuals in which a link existed in the
simulation (red) and pairs of individuals which were not linked (blue).
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Figure 3. Inferred values of the reproduction number R (top) and the sampling proportion π
(bottom) in simulated datasets for which the correct value of R is 2, and the correct value of π
is increased from 0.1 to 1 (as shown on the x-axis). Dots represent the mean of the posterior
sample and bars the 95% credibility intervals.
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Figure 4. Inferred values of the sampling proportion π (top) and the reproduction number R
(bottom) in simulated datasets for which the correct value of π is 0.5, and the correct value of
R is increased from 1 to 11 (as shown on the x-axis). Dots represent the mean of the posterior
sample and bars the 95% credibility intervals.
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Figure 5. Consensus transmission tree for the tuberculosis outbreak. Filled dots represent
sampled individuals and unfilled dots represent unsampled inferred individuals.
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Figure 6. A: Outbreak plot showing the numbers of sampled and unsampled cases through
time in the posterior sample of transmission trees. While the posterior estimate of π is 0.93,
predicting that cases would eventually be detected with high probability, in the time period
just before sampling ended, the inferred transmission trees contain a number of unsampled
cases. The solid line represents the probability of sampling cases as a function of their
infection time, given that observation stops at T = 2011. B: Posterior generation times and
times between infection and sampling. Bars show histograms of the posterior quantities and
solid lines show the related prior densities.
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