Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Transformation and model choice for RNA-seq co-expression analysis

View ORCID ProfileAndrea Rau, Cathy Maugis-Rabusseau
doi: https://doi.org/10.1101/065607
Andrea Rau
1GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andrea Rau
  • For correspondence: andrea.rau@jouy.inra.fr.
Cathy Maugis-Rabusseau
2Institut de Mathématiques de Toulouse, INSA de Toulouse, Université de Toulouse, 31400 Toulouse, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Although a large number of clustering algorithms have been proposed to identify groups of co-expressed genes from microarray data, the question of if and how such methods may be applied to RNA-seq data remains unaddressed. In this work, we investigate the use of data transformations in conjunction with Gaussian mixture models for RNA-seq co-expression analyses, as well as a penalized model selection criterion to select both an appropriate transformation and number of clusters present in the data. This approach has the advantage of accounting for per-cluster correlation structures among samples, which can be quite strong in real RNA-seq data. In addition, it provides a rigorous statistical framework for parameter estimation, an objective assessment of data transformations and number of clusters, and the possibility of performing diagnostic checks on the quality and homogeneity of the identified clusters. We analyze four varied RNA-seq datasets to illustrate the use of transformations and model selection in conjunction with Gaussian mixture models. Finally, we propose an R package coseq (co-expression of RNA-seq data) to facilitate implementation and visualization of the recommended RNA-seq co-expression analyses.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 24, 2016.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Transformation and model choice for RNA-seq co-expression analysis
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Transformation and model choice for RNA-seq co-expression analysis
Andrea Rau, Cathy Maugis-Rabusseau
bioRxiv 065607; doi: https://doi.org/10.1101/065607
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Transformation and model choice for RNA-seq co-expression analysis
Andrea Rau, Cathy Maugis-Rabusseau
bioRxiv 065607; doi: https://doi.org/10.1101/065607

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3502)
  • Biochemistry (7343)
  • Bioengineering (5319)
  • Bioinformatics (20258)
  • Biophysics (10008)
  • Cancer Biology (7735)
  • Cell Biology (11293)
  • Clinical Trials (138)
  • Developmental Biology (6434)
  • Ecology (9947)
  • Epidemiology (2065)
  • Evolutionary Biology (13315)
  • Genetics (9359)
  • Genomics (12579)
  • Immunology (7696)
  • Microbiology (19008)
  • Molecular Biology (7437)
  • Neuroscience (41011)
  • Paleontology (300)
  • Pathology (1228)
  • Pharmacology and Toxicology (2134)
  • Physiology (3155)
  • Plant Biology (6858)
  • Scientific Communication and Education (1272)
  • Synthetic Biology (1895)
  • Systems Biology (5311)
  • Zoology (1087)