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Abstract

We present a framework enabling dissection of the effects of motif structure (feedback or feedforward),
nature of the controller (mRNA or protein), and regulation mode (transcriptional, post-transcriptional or
translational) on the response to a step change in the input. We have used a common model framework for
gene expression where both motif structures have an activating input and repressing regulator, with the same
set of parameters to enable comparison of the responses. We studied the global sensitivity of the system
properties such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in
all motifs, overshoot correlated negatively whereas peak duration varied concavely, with peak time. Differences
in other system properties were found to be mainly dependent on the the nature of the regulator, than the
motif structure. Protein mediated motifs showed a higher degree of adaptation; feedforward motifs exhibited
perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited lower peaking
tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak
time compared to corresponding feedback motifs.

Keywords feedback, feedforward, steady state gain, adaptability, overshoot, peak time, peak duration.

1 Introduction

Gene regulation is one of the central processes that dic-

tates the behaviour of a cell and its responsiveness to the

environment. Since gene expression is a multi-step pro-

cess, different modes of regulation can affect the steady

state of a gene product by either controlling the forma-

tion rate or the degradation rate of the transcripts or

the proteins[1]. The controller employed by the regula-

tory mechanism could be a protein, or transcripts such

as different classes of non-coding RNAs[2, 3].

The interaction network of all the genes in the genome

is called the gene regulatory network (GRN). Despite its

complexity, the GRN has a higher representation of cer-

tain subnetworks that have a distinct pattern of connec-

tions known as network motifs[4]. Feedback and feed-

forward loops are two of the most commonly occuring

network motifs in the GRN[5, 6].

In a feedback loop, a gene regulates its own activity

and depending on whether the regulation is repressive

or activating, the motif is either called a negative or a

positive feedback loop, respectively. Feedbacks can be

direct, in which the output influences its own activity, or

indirect, in which it acts via an intermediary (controller).
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Fig. 1: The (A) Indirect Negative Feedback and (B) Type-1
Incoherent Feedforward loop, with three nodes. I refers to Input,
O refers to output and C refers to Controller. The input has a
positive effect and the controller has a negative effect on the output
in both the motifs.
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The same regulatory action, for example a negative effect

of the controller on the output, can be implemented via

several functionally equivalent motifs.

In feedforward loops, the input regulates the output

simultaneously via two regulatory paths. If the effects of

the two paths on the regulated gene are the same then

the motif is called a coherent feedforward motif and oth-

erwise, an incoherent feedforward motif. For example

the level of the output would be governed directly by the

input signal (input) and indirectly via the controller.

In this study we focus our analyses, for both feedfor-

ward and feedback motifs, on those cases in which the

action of the input is non-negative and that of the con-

troller is non-positive. Under most operating conditions,

the input is expected to cause an increase (or no change)

in the output signal for an unregulated system. Simi-

larly, an increase in the magnitude of the controller ac-

tion is expected to result in a decrease (or at the most

no change) of the output signal for a constant level of

the input signal. In particular, we have modelled and

compared the indirect negative feedback loop (NFBL)

and type-1 incoherent feedforward loop (I1-FFL) network

motifs (Fig. 1), in both of which there are three nodes

and the controller action is negative.

The I1-FFL motif is known to generate a dynamic

“pulse” in the output gene expression under certain con-

ditions. The shape and dynamics of the pulse depends

on various parameters such as the strength of activation

or repression, and other kinetic rate constants. If the

strength of the repression is strong enough then the out-

put expression may return back to the pre-activation lev-

els; this phenomenon is called adaptation[8].

NFBLs are also implicated in adaptation and it has

been shown using a mathematical model for a bacte-

rial chemotaxis system that negative feedback via inte-

gral control can lead to a perfect adaptation[14]. Ma et

al. have extensively studied different variants of feed-

forward and feedback motifs that lead to adaptation[12].

In another important study by Rosenfeld et al., it was

shown that negative autoregulatory motif has a short-

ened response time, compared to the unregulated sys-

tem, given the constraint that both the systems have the

same steady state level of the output[15]. However, these

models have not explicitly studied the effect of mode of

regulation or nature of the controller, on the dynamics

and steady state properties of the motif.

Robustness is a property of a system by virtue of which

a system can maintain its output, for a given input,

despite changes in intrinsic parameters. Most common

techniques of assessing robustness using mathematical

models include a local sensitivity analysis at the steady

state and parameter variation to study global effects. In

a study on the robustness of different feedforward motifs

by Wang et al., it was concluded that I1-FFL is one of

the most robust feedforward motifs[10]. Integral feedback

control in the bacterial chemotaxis model was also found

to exhibit some robustness[14]. Iadevaia et al., using mass

action kinetics based models, have studied the robustness

of the output gene expression for different types feedback,

feedforward and mixed motifs in cell signalling, to vari-

ations in parameters[13]. A summary of these different

models and analyses is presented in Tab. 1.

Since the role of RNA mediated regulation in cellular

processes is becoming increasingly evident, it is essential

to delineate their roles from strictly protein mediated reg-

ulation, as a part of these motifs. A significant number

of miRNA mediated gene regulatory pathways are also

enriched with feedback and feedforward motifs[16]. Duk

et al. have extensively studied the dynamics of different

types miRNA mediated FFLs with different underlying

mechanistic models[11]. However, they have limited their

analyses to just FFLs and a comparison with FBLs with

similar regulatory mechanism is not possible with their

model.

Though all these models and analyses have provided

fundamental insights about the properties of feedback

and feedforward motifs, a systematic comparison of mo-

tif properties along with the effect of parameter vari-

ation has not been done using a common mechanistic

model. Some of these studies have mentioned and anal-

ysed both feedback and feedforward motifs but have not

carried out an explicit comparison between them. Also,

many of these studies have modelled a generic network

and have not attributed any biological mechanism. To

our knowledge, there is no study that uses a mechanism-

based model to simultaneously evaluate the contributions

of motif structure, mode of regulation and the nature of

controller, on the dynamics and steady state response

of the output. Therefore, we have developed a frame-

work to simultaneously compare different properties of

protein or RNA mediated genetic feedforward (I1-FFL)

and feedback (NFBL) motifs using defined metrics. All

these motifs share a basic set of parameters which was

chosen from realistic estimates obtained from experimen-

tal data reported in the available literature. The sensi-

tivities of the different properties to parameter changes
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Reference
Motifs
studied

Metrics used
Mode of
regulation

Nature of
regulator

Parameter Sampling

Mangan & Alon[7] FFLs Response Time 7 7 7

Sontag[8] I1-FFL Adaptation 7 7 7

Goentoro et al.[9] I1-FFL Adaptation 7 7 3
(selected)

Wang et al.[10] FFLs
Input-Output

sensitivity
7 7 3

(selected)

Duk et al.[11] FFLs 7 3 3 3
(selected)

Ma et al.[12] FFLs, FBLs Adaptation 7 7 3
(method not described)

Iadevaia et al.[13]
FFLs, FBLs,

mixed
Robustness 7 7 3

(random)

Tab. 1: Summary of previous models on feedback and/or feedforward motifs.

have been studied by random multivariate sampling of all

the parameters in a defined range which is more informa-

tive than variation of individual parameters. Our model

reveals some previously unexplored features of feedback

and feedforward motifs while corroborating some of the

known properties. We find that while some properties

are dependent on motif structure, others are strongly de-

pendent on the nature of regulator. For every result,

we also assessed the effect of the choice of parameters,

in particular the protein degradation rate and therefore

abundance, which is known to vary over multiple orders

of magnitude[17].

2 Methods

2.1 Mathematical description of the response

metrics

Mathematical models were developed for feedforward

(FFL) motifs and feedback motifs (FBL) each regulated

by either a protein or an RNA at transcriptional, post-

transcriptional or translational levels. These twelve com-

binations are abbreviated using a six letter code as indi-

cated in Tab. 2.

All motifs (Fig. 2) contain four components – output

RNA (rout), controller RNA (rctrl), output protein (pout)

and controller protein (pctrl). Since unregulated motif

does not have any effect of the controller, rctrl and pctrl

are decoupled from the other components. Likewise, in

RNA mediated motifs, there is no role of the pctrl other

than as a marker for rctrl levels and is therefore not con-

sidered in further analyses.

Transcription of rout is activated by an input which

in turn leads to production of pout. In transcriptional

regulation, the controller, either RNA or protein, in-

hibits the transcription of rout whereas in translational

regulation the controller inhibits the production of pout.

Post-transcriptional motifs are modelled such that they

promote degradation of rout. In feedforward motifs the

transcription of controller RNA is activated by the input

whereas in feedback motifs it is activated by the output

protein.

The responses of these motifs to a step change in the

input were studied. At time, t=0, the system was initial-

ized at the steady state for a given value of input (initial

state). The input was stepped up and the dynamics of

the response was monitored. The motifs were compared

using different metrics (Fig. 3) which are defined as fol-

lows.

Steady state gain is defined as the ratio of the change

in the steady state level and the initial steady state level

of the output protein[18].

Gain =
p∗out − p0out

p0out
(1)

Here, p0out and p∗out denote the initial and final steady

state values of pout, respectively.

Response time (tresp), also called settling time, is the

time taken by the output protein to reach a defined tol-
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(A)     Unregulated

Input

rOut rCtrl

pCtrlpOut

Feedforward motifs

(B)     Transcriptional (Protein) (C)     Post-transcriptional (Protein) (D)     Translational (Protein)

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Feedback motifs

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

Input

rOut rCtrl

pCtrlpOut

(H)     Transcriptional (Protein) (I)     Post-transcriptional (Protein) (J)     Translational (Protein)

(E)     Transcriptional (RNA) (F)     Post-transcriptional (RNA) (G)     Translational (RNA)

(K)     Transcriptional (RNA) (L)     Post-transcriptional (RNA) (M)     Translational (RNA)

Input

rOut rCtrl

pCtrlpOut

Fig. 2: Motifs: (A) Unregulated. Protein (B-D) and RNA mediated (E-G) feedforward motifs. Protein (H-J) and RNA mediated (K-M)
feedback motifs. Output mRNA, Output protein, Controller mRNA and Controller protein are denoted as rout(lilac box), pout (purple oval),
rctrl (light green box) and pctrl (deep green oval), respectively. ∅ denotes the cellular pool of nucleotides and amino acids, which is assumed
to be infinite.
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erance zone of ±1% of the steady state[19, 18].

tresp = min
t∈[0,∞]

{ t | ∀ t′ ≥ t, pout(t
′) ∈ [0.99 p∗out, 1.01 p∗out]}

(2)

Overshoot is defined as the difference between the max-

imum peak height and the steady state level of the output

protein. This value was normalized to the steady state

to obtain a per-unit overshoot[19].

Overshoot
(Normalized)

= max
t∈[0,∞]

pout(t)− p∗out
p∗out

(3)

Peak time is defined as the time taken to reach the

maximum peak value[18]. For the analyses peak time was

normalized by the response time.

tpeak = arg max
t

pout(t)

Peak time
(Normalized)

=
tpeak
tresp

(4)

Peak duration represents the width of the peak and

is defined as follows. If x is the distance between the

upper bound of the tolerance zone and the maximum,

then peak duration is the difference between the times

at which x/2 is crossed first (during attainment of the

peak) and it is crossed second (during the descent from

the peak). Like peak time, peak duration was also nor-

malized by response time. This metric was adapted from

“peak duration” defined by Ahmet et al. in their analysis

of output responses to an input pulse for an open loop

network[20].

Motif structure Mode

Feedforward Feedback

tcFFLp tcFBLp Transcriptional

P
ro

te
in

m
ed

ia
te

d

ptFFLp ptFBLp Post-transcriptional

tlFFLp tlFBLp Translational

tcFFLr tcFBLr Transcriptional

R
N

A
m

ed
ia

te
d

ptFFLr ptFBLr Post-transcriptional

tlFFLr tlFBLr Translational

Tab. 2: Abbreviations for different motifs. First two letters of the
abbreviation indicate the mode of regulation, the next three (in
caps) denote the type of motif (feedback/feedforward) and the last
letter represents the nature of the controller (protein/RNA).

Response time

Peak
Duration

Overshoot

Tolerance zone

}

Time

O
u
tp

u
t 

P
ro

te
in Peak Time

p0
out

p*
out

Input Stepped up

x
2/

x
2/

Fig. 3: Illustration of the metrics measured after dynamic simula-
tion of different motifs. These metrics were used for the comparison
of these motifs. Steady state gain is not shown in this picture.

x = max
t∈[0,∞]

pout(t)− 1.01 p∗out

t1 = min
t∈[0,Peak time]

{
t
∣∣∣ pout(t) ≥ x

2
+ p∗out

}
t2 = min

t∈[Peak time,∞]

{
t
∣∣∣ pout(t) ≤ x

2
+ p∗out

}

Peak duration
(Normalized)

=
t2 − t1

Response time
(5)

All references henceforth, to overshoot, peak time and

peak duration would mean their normalized values.

A perfectly adapting system would have a steady state

gain of zero. In order to study the sensitivity of the dif-

ferent motifs to perturbation in different internal param-

eters (all parameters except input), the calculation of the

abovementioned metrics (Equations 1-5) were done with

10000 randomly sampled parameter sets, which gave a

distribution of these metrics. These analyses for feed-

forward and feedback motifs are presented in following

sections. The unregulated system is not considered in

these sections but some of its properties are shown in

Fig. 4C, for comparison.

2.2 Mathematical models for the motifs

The mathematical models are described by coupled or-

dinary differential equations (ODE) with rout, rctrl, pout

and pctrl as variables. The input was considered to be

a constant. The ODEs for different motifs are of this

general form:
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d[rout]

dt
= brout .Frout

(
[I], [rctrl], [pctrl]

)
− drout .[rout].Grout

(
[rctrl], [pctrl]

)
(6)

d[rctrl]

dt
= brctrl .Frctrl

(
[I], [pout]

)
− drctrl .[rctrl] (7)

d[pout]

dt
= bpout

.[rout].Fpout

(
[rctrl], [pctrl]

)
− dpout

.[pout] (8)

d[pctrl]

dt
= bpctrl

.[rctrl]− dpout .[pctrl] (9)

Here, brout
and drout

denote formation and degradation

rate constants for rout (similarly for others). The func-

tions, Frout , Grout , Fpout and Frctrl , for different motifs

are described in Tab. S1.

2.3 Parameter sampling and simulation

A default parameter set (Tab. S2) was chosen based

on data obtained from literature. 10000 parameter sets

were randomly sampled between an interval around the

default value (1/5 to 5 times the default value) to gen-

erate sets with different combination of parameter val-

ues. The sampling was done in the log transformed range

to avoid bias towards larger samples. These 10000 sets

were generated once using the sampling technique de-

scribed above, and the same sets were used for simula-

tions of different motif structures and regulation mech-

anisms. The model was simulated using Matlab (ver

7.6.0) ode15s solver for temporal dynamics and steady

state values were obtained analytically. In step-up simu-

lations, the initial values of the variables were set to the

steady state values at a low input value (corresponding

to 4000 molecules/cell). The response to setting the in-

put to 8000 molecule/cell was calculated by numerically

integrating the ODEs described in the equations 6−9.

Simulations and calculations were also done with the

default degradation rate constant of both the proteins

set to a lower (0.1× the original value) or a higher (10×,

100× and 1000×dp) value and the 10000 parameters sets

sampled around each of these new baseline values.

3 Results and Discussion

Protein mediated motifs show higher adaptation

in response to input compared to RNA mediated

motifs.

We used analytical expressions (Supplementary Section

1.3) for steady state to calculate the values of gain

(Eqn. 1) for different modes of motifs, for 10000 parame-

ter sets with each parameter varying from 1/5 to 5 times

the default value. As shown in Fig. 4A, protein mediated

motifs exhibited higher level of adaptation (indicated by

low gain) compared to the RNA mediated motifs, which

had a mild regulatory effect. This behaviour was consis-

tent when the parameters were varied in a broader range

(1/20 to 20 times the default values; Fig. S1). However,

protein mediated FFLs but not FBLs showed perfect or

near-perfect adaptation which set the two motif struc-

tures apart. Moreover, the gain distribution for FFLs

was broader than that of the FBLs with corresponding

mode of regulation.

We also tested this response for a range of protein

abundances. The gain distributions for protein mediated

FFLs were narrower with a strong peak at zero for higher

protein abundances (0.1×dp) while the corresponding

FBL motifs were unchanged from the 1× case (Fig. S7-

S8). With decreasing protein abundance the gain distri-

bution of all protein mediated motifs broadened (10×dp,

100×dp) and finally shifted towards 1 (1000×dp). The

gain of RNA mediated FFLs were unaffected whereas

the gain distribution of RNA mediated FFLs broadened

with lower mean values for 10 × dp and 100 × dp cases.

As expected at very low protein abundance (1000×dp)

all the regulatory mechanisms had a very mild effect and

the response tends to the unregulated response.

To see the effect of magnitude of input on gain, the

output was plotted as a function of input (Fig. 5A, Fig.

S2A). These plots (input-output or i/o characteristics)

reveal that the protein mediated FFLs show adaptability

for a wide range of inputs. The shape of i/o characteris-

tics for these motifs have the shape of a saturating func-

tion and the steady state value of the output saturates

at a low value of input for most parameter combinations.

A few cases of tcFFLr and ptFFLr also showed the sat-

urating behaviour. The i/o characteristics, especially in

case of the protein mediated FFLs were non-monotonic

for some parameter sets – the output initially increased

with the input and then decreased, though the descent

was not as steep as the ascent. This suggests that the
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Fig. 4: Steady state gain distributions for (A) feedforward motifs
and (B) feedback motifs. Distribution of steady state gain to input
step change from 4000 to 8000 molecules, with randomly sampled
parameter sets. The dashed vertical lines denote the gain values
corresponding to the default parameter set. µ and σ denote mean
and standard deviation of the distribution, respectively. Subfigure
(C) shows steady state gain distribution and input-output charac-
teristics of the unregulated motif (refer Fig. 5).

gain and sensitivity for FFLs depend on the the choice

of initial and final input values. Contrastingly, FBLs

(Fig. 5B) showed monotonically increasing i/o character-

istics which did not saturate for the range of the input

considered for this analysis (0 to 3×104 molecules); they

remained monotonic even with parameter variation in

the broader range (Fig. S2B). With lower protein abun-

dance, the non-monotonicity and saturation behaviour of

the i/o characteristics of protein mediated FFLs dimin-

ished whereas there was no significantly apparent change

in the i/o characteristics of FBLs (Fig. S9-S10).
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Fig. 5: Input-output characteristics for 200 randomly selected
cases of (A) feedforward and (B) feedback motifs. The steady
state values at each value of input, are normalized to the value at
the maximum value of input (30× 103). Black line represents the
characteristics of the default parameter set. Dashed vertical lines
(from left to right) denote input corresponding to 4000 and 8000
molecules respectively.

Protein mediated motifs exhibit high peaking ten-

dency, irrespective of the motif structure and

mode of regulation.

A motif is defined to exhibit peak if it has a non-zero

overshoot (Eqn. 3). Both feedforward and feedback mo-

tifs show peaks and protein mediated motifs exhibit a

high propensity to give peaks, as reflected by the total

number of peaks observed for the 10000 parameter com-

binations (Fig. 6). The RNA mediated motifs had very

low peaking tendency. Overall, peaking propensity only

depended on the nature of the controller. However, the

peaking tendencies of protein mediated motifs decreased

while that of the RNA mediated motifs increased with

decreasing protein abundance (Fig. S11-S12). With in-

creased abundance, the effect is even more pronounced

with none of the RNA mediated motifs exhibiting peaks.

To understand the characteristics of these peaks, their

properties i.e. overshoot, peak time (Eqn. 4) and peak
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Fig. 6: Peaking tendencies of (A) feedforward and (B) feedback
motifs. Y-axis denotes fraction of parameter sets among the 10000
that generate peaks.

duration (Eqn. 5) were measured. As mentioned previ-

ously, peak time and peak duration were normalized to

response time (distributions shown in Fig S3) and over-

shoot was normalized to the final steady state. Since

tlFFLr and tlFBLr showed a very low peaking tendency,

they are excluded from further analyses (their properties

are shown in Fig. S4).

All RNA mediated motifs, both FFL and FBL, showed

a very low mean overshoot which was close to the cut-off

limit i.e. 0.01 (Fig. 7). The protein mediated motifs had

a much broader distribution and higher mean overshoot.

Though the overshoot distribution for both protein medi-

ated FFLs and FBLs was skewed towards zero, the former

was broader with higher mean values of overshoot.

The peak time distributions (Fig. 8), however, fol-

lowed opposite trends between protein mediated FFLs

and FBLs. The distributions were narrower in case of

protein mediated FFLs with mean peak time at ∼0.18

while that for corresponding FBLs were much broader

with mean peak time at ∼0.4. RNA mediated motifs,

both FFL and FBL, showed higher mean peak time than

the protein mediated motifs. However, the RNA medi-

ated FBLs had a higher mean peak time and a narrower

distribution compared to corresponding FFLs. It can be

noted that peak time and overshoot depend on the na-

ture of controller and the motif structure but not to a

significant extent on the mode of regulation.

Overshoot distributions for all motifs moved closer to

zero with decreasing protein abundance (Fig. S13-S14)

while the peak time distribution for protein mediated

FFLs broadened (Fig S15-S16).

The distributions for the peak duration (Fig. 9B) for

the protein mediated feedbacks, exhibited apparent bi-

modality for the range of parameter variation at 1x pro-

tein degradation rates. All of them showed peaks close

to ∼0.3 and ∼0.45, but the ratio of first peak to second

peak reduced from tcFBLp, ptFBLp to tlFBLp. For all

these motifs, the value of peak duration corresponding
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Fig. 7: Distributions of overshoot for the parameter sets that
generate peaks in (A) feedforward and (B) feedback motifs. The
dashed vertical lines denote values corresponding to the default
parameter set if it exhibits peak. Y-axis denotes the fraction of
cases among the total number of instances that produce peaks.
µ and σ denote mean and standard deviation of the distribution,
respectively.

to the default parameter set overlapped with the second

peak. However, this bimodality seems to be dependent

on protein abundances as it could not be seen for the 0.1x,

100x and 1000x cases (Fig. S18). In contrast, the distri-

butions of peak duration for feedforward motifs showed

one sharp peak near 0.35. Moreover, the nature of the

regulator (Fig. 9A) and protein abundances (Fig. S17)

seemed to have no significant effect on the peak duration

distribution of FFLs.

Overshoot decreases whereas peak duration con-

cavely varies with peak time.

In order to have a better understanding of the peak dy-

namics the relationship between overshoot, peak dura-

tion and peak time was studied using scatter plots. For

both feedforward and feedback motifs, the overshoot ap-

parently decreases exponentially with peak time, though

the slope is steeper in case of the FFLs (Fig. 10). This is

clearly evident in case of protein mediated motifs but not
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Fig. 8: Distributions of peak time for the parameter sets that
generate peaks in (A) feedforward and (B) feedback motifs. The
dashed vertical lines denote values corresponding to the default
parameter set if it exhibits peak. Y-axis denotes the fraction of
cases among the total number of instances that produce peaks.
µ and σ denote mean and standard deviation of the distribution,
respectively.

so much in case of RNA mediated motifs because they

exhibit a very low overshoot.

The scatter plots between peak duration and peak time

(Fig. 11) showed a very interesting observation that peak

duration initially increases with peak time and then de-

creases. In other words peak duration seems to be a

concave function of peak time. This relationship was

observed in both protein mediated feedback and feedfor-

ward motifs and was independent of the mode of regula-

tion. This could also be seen in case of RNA mediated

FFL, although not as strikingly as the protein mediated

motifs. However, because RNA mediated FFLs show de-

layed peaks, the initial increase of peak duration with

peak time could not be observed.

Both these relationships were unaffected by protein

abundances (Fig. S19-S22).
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Fig. 9: Distributions of peak duration for the parameter sets that
generate peaks in (A) feedforward and (B) feedback motifs. The
dashed vertical lines denote values corresponding to the default
parameter set if it exhibits peak. Y-axis denotes the fraction of
cases among the total number of instances that produce peaks.
µ and σ denote mean and standard deviation of the distribution,
respectively.

4 Conclusion

In this study, we have used a simple and widely applied

model for gene expression to enable a direct comparison

between the incoherent-feedforward and negative feed-

back motifs in which the control is implemented at dif-

ferent levels of gene expression. To our knowledge, such

a study using a common model has not been reported.

The use of a common model with common parameter

sets allows a direct comparison between the steady state

and the dynamic properties of feedback and feedforward

motifs.

Our simulations reveal some previously reported fea-

tures such as adaptability, that are common between dif-

ferent modes of regulation. They also reveal features that

are common to diverse kinds of motifs and depend on the

level at which the control is implemented and inter-metric

relationships that are independent of motif structure and

mode of regulation.
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Fig. 10: Scatter plots between peak time and overshoot for (A)
feedforward and (B) feedback motifs. Asterisks denote the values
corresponding to the default parameter set if it exhibits peak

.

It was observed that while some properties depended

on the type of the motif, others were dependent on the

mode of regulation. Overall, it is apparent that all pro-

tein mediated feedforward motifs can show adaptation

whereas feedback motifs just tone down the output re-

sponse. Though negative integral feedback has been

shown to exhibit adaptation [14, 21], the analytical ex-

pressions for simple negative feedbacks considered in this

study show that these motifs do not exhibit adaptation.

It is interesting to note that while bacterial chemotaxis

employs the negative integral feedback, eukaryotic cells

such as Dictyostelium use the incoherent feedforward

loop[22, 23]. However, adaptability is not always desir-

able; in many situations the system is required to re-

spond, but in a controlled manner. Protein mediated

feedforward motifs show perfect adaptation at different

input ranges because input-output characteristics satu-

rates at a very low value of input. However, since the

saturation point is so small, any small stochastic increase

from zero input will lead to a sharp response which might

be a trade-off.
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Fig. 11: Scatter plots between peak time and peak duration for
(A) feedforward and (B) feedback motifs. Asterisks denote the
values corresponding to the default parameter set if it exhibits peak

.

RNA mediated control has a very mild effect and per-

haps just serves as a mechanism to fine tune the gene

expression[24, 25, 26]. The stronger response mediated by

regulatory proteins compared to RNAs is possibly be-

cause the regulatory signal gets amplified due to trans-

lation. This is also supported by the observation that

increasing the protein degradation rates, thereby reduc-

ing their abundances, reduces their regulatory effect. At

very high protein degradation rates, the system effec-

tively behaves like an unregulated system. miRNAs are

known to control regulation by both mRNA degrada-

tion and translational inhibition[27]. The translational

mode of regulation would be effective when the mRNA

concentration is less and the protein synthesis rate per

mRNA is high. In case of cells like neurons where the

nucleus is far from some cellular compartments like the

axon-termini and dendritic spines, translational inhibi-

tion, which happens locally, would be faster than tran-

scriptional control, which happens at the soma. Even

though post-transcriptional regulation might repress the

expression as fast as (or faster than) translational regula-
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tion, de-repression would still be slow because mRNA re-

accumulation would require its transport from the soma.

It has been shown experimentally, that mRNAs that

are translationally repressed by miRNAs in the synap-

tic compartments of neurons, are de-repressed upon sig-

nalling via the NMDA-receptor[28]. Overall, it can be

concluded that adaptation and i/o characteristics are de-

pendent on the motif structure and the nature of the

controller.

Ability to generate pulses is a useful feature in certain

conditions where the response should not persist at a high

level for a long time. Examples of such conditions include

heat shock and other kinds of acute stresses[29]. Both

feedforward and feedback motifs can generate pulses of

which the former can also adapt back to the original

state, as discussed previously. Overshoot reduces with

peak time, suggesting that faster the peak is attained,

higher will be its impact. The peak duration initially

increases with peak time and attains a maximum be-

fore decreasing, however, the overshoot is relatively low

at these values of peak time. Therefore a suboptimal

peak duration may be better for an effective response.

In protein mediated feedback motifs, the peak duration

shows apparent bimodality for certain range of param-

eters. It may be possible to switch from long lasting

peaks to sharp peaks by tweaking the parameters using

an extrinsic agent.

It can be concluded that while dynamic properties such

as peak time and peak duration are strongly dependent

on the motif structure as well as the mode of regulation,

peaking ability itself seems to be dependent only on the

nature of regulator. Moreover, the relationships between

peak duration, overshoot and peak time seem to follow a

paradigm that is universal to all the considered motifs.
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