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Abstract

Cellular signaling, predominantly mediated by phosphorylation through protein kinases, is
found to be deregulated in most cancers. Accordingly, protein kinases have been subject
to intense investigations in cancer research, to understand their role in oncogenesis and to
discover new therapeutic targets. Despite great advances, an understanding of kinase dys-
functioning in cancer is far from complete.
A powerful tool to investigate phosphorylation is mass-spectrometry (MS)-based phospho-
proteomics, which enables the identification of thousands of phosphorylated peptides in a
single experiment. Since every phosphorylation event results from the activity of a protein
kinase, high-coverage phosphoproteomics data should indirectly contain comprehensive in-
formation about the activity of protein kinases.
In this chapter, we discuss the use of computational methods to predict kinase activity
scores from MS-based phosphoproteomics data. We start with a short explanation of the
fundamental features of the phosphoproteomics data acquisition process from the perspec-
tive of the computational analysis. Next, we briefly review the existing databases with
experimentally verified kinase-substrate relationships and present a set of bioinformatic
tools to discover novel kinase targets. We then introduce different methods to infer ki-
nase activities from phosphoproteomics data and these kinase-substrate relationships. We
illustrate their application with a detailed protocol of one of the methods, KSEA (Kinase
Substrate Enrichment Analysis). This method is implemented in Python within the frame-
work of the open-source Kinase Activity Toolbox (kinact), which is freely available at
http://github.com/saezlab/kinact/.

†Corresponding author: p.cutillas@qmul.ac.uk and saezrodriguez@combine.rwth-aachen.de

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2016. ; https://doi.org/10.1101/066019doi: bioRxiv preprint 

http://github.com/saezlab/kinact/
mailto:p.cutillas@qmul.ac.uk
mailto:saezrodriguez@combine.rwth-aachen.de
https://doi.org/10.1101/066019
http://creativecommons.org/licenses/by-nc/4.0/


CONTENTS

Contents

1 Introduction 3

2 Phosphoproteomics Data Acquisition 5
2.1 Phosphopeptide Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Quantitative Phosphoproteomics . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Phosphosite Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Pifalls in the Analysis of MS-based Phosphoproteomics Data . . . . . . . . . 9

3 Computational Methods for Inference of Kinase Activity 11
3.1 Resources for Kinase-Substrate Relationships . . . . . . . . . . . . . . . . . . 11
3.2 GSEA (Gene Set Enrichment Analysis) . . . . . . . . . . . . . . . . . . . . . 13
3.3 KAA (Kinase Activity Analysis) . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 CLUE (CLUster Evaluation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 KSEA (Kinase Set Enrichment Analysis) . . . . . . . . . . . . . . . . . . . . 16
3.6 IKAP (Inference of Kinase Activity from Phosphoproteomics) . . . . . . . . 17

4 Protocol for KSEA 19
4.1 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Loading the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Loading the Kinase-Substrate Interactions . . . . . . . . . . . . . . . . . . . 24
4.4 KSEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.1 KSEA using the ’Mean’ method . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 KSEA using the alternative ’Mean’ method . . . . . . . . . . . . . . 26
4.4.3 KSEA using the ’Delta count’ method . . . . . . . . . . . . . . . . . 27

5 Notes 28

6 Closing Remarks 30

A Acknowledgements 32

B Bibliography 32

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2016. ; https://doi.org/10.1101/066019doi: bioRxiv preprint 

https://doi.org/10.1101/066019
http://creativecommons.org/licenses/by-nc/4.0/


1 INTRODUCTION

1 Introduction

Protein kinases are major effectors of cellular signaling, in the context of which they form
a highly complex and tightly regulated network that can sense and integrate a multitude of
external stimuli or internal cues. This kinase network exerts control over cellular processes
of fundamental importance, such as the decision between proliferation and apoptosis [Jør-
gensen and Linding, 2010]. Deregulation of kinase signaling can lead to severe diseases and
is observed in almost every cancer [Hanahan and Weinberg, 2011]. For instance, a single
constitutively active kinase, originating from the fusion of the BCR and ABL genes, can
give rise to and sustain chronic myeloid leukemia [Sawyers, 1999]. Accordingly, the small
molecule inhibitor of the BCR-ABL kinase, Imatinib, has shown unprecedented therapeutic
effectiveness in affected patients [Sawyers et al., 2002].
Fuelled by these promising clinical results, due to the essential role for kinases in the patho-
mechanism of cancer, and because kinases are in general pharmacologically tractable [Zhang
et al., 2009], a range of new kinase inhibitors has been approved or is in development for
different cancer types [Gonzalez de Castro et al., 2012]. However, not all eligible patients
respond equally well, and in addition, cancers often develop resistance to initially successful
therapies. This calls for a deeper understanding of kinase signaling and how it can be ex-
ploited therapeutically [Cutillas, 2015].
By definition, the activity of a kinase is reflected in the occurrence of phosphorylation events
catalyzed by this kinase. Thus, analysis of kinase activity was traditionally achieved by
monitoring the phosphorylation status of a limited number of sites known to be targeted by
the kinase of interest using immunochemical techniques [Bertacchini et al., 2014]. This, how-
ever, requires substantial prior-knowledge and yields a comparably low throughput. Other
approaches exist, e.g. protein kinase activity assays [Cutillas et al., 2006; Yu et al., 2009] or
attempts to measure kinase activity with chromatographic beads functionalized with ATP
or small molecule inhibitors [McAllister et al., 2013].
Mass spectrometry-based techniques to measure phosphorylation can identify thousands of
phosphopeptides in a single sample with ever increasing coverage, throughput, and quality,
nourished by technological advances and dramatically increased performance of MS instru-
ments in recent years [Doll and Burlingame, 2015; Choudhary and Mann, 2010; Sabidó et al.,
2012]. High-coverage phosphoproteomics data should indirectly contain information about
the activity of many active kinases. The high-content nature of phosphoproteomics data,
however, poses challenges for computational analysis. For example, only a small subset of the
described phosphorylation sites can be explicitly associated with functional impact [Beltrao
et al., 2012].
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1 INTRODUCTION

As a means to extract functional insight, methods to infer kinase activities from phosphopro-
teomics data based on prior-knowledge about kinase-substrate relationships have been put
forward [Qi et al., 2014; Casado et al., 2013; Yang et al., 2015; Mischnik et al., 2015]. The
knowledge about kinase-substrate relationships, compiled in databases like PhosphoSitePlus
[Hornbeck et al., 2015] or Phospho.ELM [Dinkel et al., 2011], covers only a limited set of
interactions. Alternatively, computational resources to predict kinase-substrate relationships
based on kinase recognition motifs and contextual information have been used to enrich the
collections of substrates per kinase [Horn et al., 2014; Song et al., 2012], but the accuracy
of such kinase-substrate relationships has not been validated experimentally for most cases.
The inferred kinase activities can in turn be used to reconstruct kinase network circuitry
or to predict therapeutically relevant features such as sensitivity to kinase inhibitor drugs
[Casado et al., 2013].
In this chapter, we start with a brief description of phosphoproteomics data acquisition,
highlighting challenges for the computational analysis that may arise out of the experimen-
tal process. Subsequently, we will present different computational methods for the estimation
of kinase activities based on phosphoproteomics data, preceded by the kinase-substrate re-
sources these methods use. One of these methods, namely KSEA (Kinase-Substrate Enrich-
ment Analysis), will be explained in more detail in the form of a guided, stepwise protocol,
that is available as part of the Python open-source Toolbox kinact (Toolbox for Kinase
Activity Scoring) at http://www.github.com/saezlab/kinact/.
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2 PHOSPHOPROTEOMICS DATA ACQUISITION

2 Phosphoproteomics Data Acquisition

For a summary of technical variations or available systems for the experimental setup of
phosphoproteomics data acquisition, we would like to refer the interested reader to dedicated
publications such as [Riley and Coon, 2016; Nilsson, 2012]. We provide here a short overview
about the experimental process to facilitate the understanding of common challenges that
may arise for the data analysis that we will focus on.
Mass spectrometry-based detection of peptides with post-translational modifications (PTM)
usually requires the same steps, independent of the modification of interest: (i) cell lysis and
protein extraction with special focus on PTM preservation, (ii) digestion of proteins with
an appropriate protease, (iii) enrichment of peptides bearing the modification of interest,
and (iv) analysis of the peptides by LC-MS/MS [Hennrich and Gavin, 2015]. After the
experimental work, additional data processing steps are required to identify the position of
the modification, e.g. the residue that is phosphorylated. For almost every step, different
protocols are available, starting from various proteases for protein digestion to different data
acquisition methods for MS [Riley and Coon, 2016].

2.1 Phosphopeptide Enrichment

Naturally, the enrichment of phosphopeptides is a pivotal step for phosphoproteomics. Next
to the enrichment method used, the choice of the protease [Giansanti et al., 2015] or the MS
ionization method [Ruprecht et al., 2016] also seem to have an impact on the part of the
phosphoproteome that is sampled. For phosphopeptide enrichment, the field is dominated
by immobilized metal affinity chromatography (IMAC) and metal oxide affinity chromatog-
raphy (MOAC), which all exploit the affinity of the phosphorylation towards metal ions.
Popular techniques include Fe3+-IMAC, Ti4+-IMAC [Zhou et al., 2013], or TiO2-MOAC.
Alternatively, more traditional biochemical methods involving immunoaffinity purification
are also in use for enrichment of phosphopeptides, although these are generally limited to
studies of phosphotyrosine [Rush et al., 2005].
Of note, the different enrichment methods show limited overlap in the detected phosphopep-
tides, although this can also be observed for replicates of runs using the identical enrichment
method, as discussed below [Ruprecht et al., 2015].
After enrichment, the phosphopeptides are separated chromatographically, usually by re-
versed phase liquid chromatography (RPLC), and then enter the mass spectrometer for
tandem MS analysis (MS/MS), completing the workflow of LC-MS/MS. Variations in the
chromatography method used as well as the multitude of mass spectrometry instrument
types are reviewed in detail elsewhere [Riley and Coon, 2016]. Generally, the quality of the
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2 PHOSPHOPROTEOMICS DATA ACQUISITION

chromatographic separation will have a big impact on the number of phosphopeptides that
can confidently be identified. Chromatography runs of higher quality also take more time,
so that a trade-off between resolution and throughput must be devised for each experiment.

2.2 Data Acquisition

For most phosphoproteomics studies so far, the MS instrument is operated in the data-
dependent acquisition (DDA) mode. Therein, precursor ions from a first survey scan are
selected -typically based on relative ion abundance- in order to generate fragmentation spec-
tra in a second MS run [Domon and Aebersold, 2006], for which a database search yields the
corresponding peptide sequences [Nesvizhskii, 2007]. As a result, peptide detection in DDA is
on the one hand biased towards high abundance species, but also considerably irreproducible
due to stochastic precursor ion selection [Liu et al., 2004]. This inherent under-sampling of
DDA usually leads to missing data points in LC-MS/MS datasets. However, this problem
may be solved to some extent by extracting ion chromatograms of the peptides that are
missing in some of the runs that are being compared [Cutillas and Vanhaesebroeck, 2007;
Cutillas et al., 2005; Bateman et al., 2014; Alcolea et al., 2012], by matching across samples
[Cox et al., 2014], or with the accurate mass and retention tag method [Strittmatter et al.,
2003].
In an alternative operation mode, selected reaction monitoring/multiple reaction monitoring
(SRM/MRM), the presence and abundance of only a limited set of pre-specified peptides
with known fragmentation spectra is surveyed [Lange et al., 2008]. This targeted approach
overcomes many of the issues of shotgun methods, but is usually not feasible for large-scale
investigation of the complete phosphoproteome.
Data-independent acquisition (DIA), e.g. SWATH-MS [Gillet et al., 2012] tries to address
the shortcoming of both established data acquisition strategies in order to combine the
throughput of DDA with the reproducibility of SRM. In DIA, fragmentation spectra are
generated for all precursor ions in a specific window of m/z ratios, leading to a complete
map of fragmentation spectra, followed by computational extraction of quantitative infor-
mation for known spectra. For phosphoproteomics, DIA-MS has already been applied to
investigate insulin signaling [Parker et al., 2015] or histone modifications [Sidoli et al., 2016].
However, the spectra generated by DIA-MS are usually highly complex and require intricate
data extraction techniques, which is even more challenging for modified peptides. Recently,
a computational resource for the detection of modified peptides has been put forward [Keller
et al., 2016]. Overall, the available methods for DIA have as yet to mature in order to
challenge the use of DDA in large-scale studies of the phosphoproteome [Riley and Coon,
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2 PHOSPHOPROTEOMICS DATA ACQUISITION

2016].

2.3 Quantitative Phosphoproteomics

As for regular proteomics, several experimental methods or post-acquisition tools exist to
quantitate detected phosphopeptides. Those can roughly be divided into isotope labeling
and label-free quantitation. In general, stable isotope labeling requires more experimental
effort than label-free quantitation, but at the same time enables multiplexing of samples
with different isotopes or combinations.
Stable isotope labeling by metabolic incorporation of amino acids (SILAC) is mainly used
for cell cultures, in the medium of which different stable isotopes are provided that will
be incorporated into the proteins of the cells. At the point of analysis, cell extracts are
mixed and then jointly investigated with mass spectrometry. Mass differences between pep-
tide pairs due to the isotopic labeling can be exploited for relative quantitation [Ong et al.,
2002]. Currently, up to three conditions (light, medium, heavy) can be multiplexed. Further
developments of SILAC even produced an in-vivo SILAC mouse model for the proteomic and
phosphoproteomic analysis of skin cancerogenesis [Zanivan et al., 2013] and super-SILAC for
the analysis of tissues [Shenoy and Geiger, 2015], in which a metabolically labeled, tissue-
specific protein mix from several cell lines, representing the complexity of the investigated
proteome, is mixed with the tissue lysate as internal standard for quantification.
Chemical modification of peptides with tandem mass tags (TMT) or isobaric tags for relative
and absolute quantitation (iTRAQ) are two different methods based on tags with reactive
groups that bind to peptidyl amines in the peptides after protein digestion. Again, different
samples are mixed before mass spectrometry analysis, whereas for TMT or iTRAQ up to 8
samples can be multiplexed. In the first MS run, the peptides with different isobaric tags
are indistinguishable, but upon fragmentation in the second MS run, each tag generates a
unique reporter ion fragmentation spectrum, which can be used for relative quantitation of
the tagged peptides [Thompson et al., 2003; Ross et al., 2004].
Label-free quantitation (LFQ), on the other hand, relies mainly on post-acquisition data
analysis, so that no modification of the essential experimental workflow needs to be imple-
mented. Comparison of an -in theory- unlimited number of different samples is therefore
possible, which is associated with the downside of prolonged analysis time as multiplexing
samples is not possible. While label-free approaches usually provide a deeper coverage of the
proteome than label-based methods, the reproducibility and precision of quantification are
inferior, so that more technical replicates are needed for confident quantification in LFQ [Li
et al., 2012]. Typically, label-free quantitation is achieved by integration of peak area mea-
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2 PHOSPHOPROTEOMICS DATA ACQUISITION

surements, i.e. the area under the curve, for individual peptides [Chelius and Bondarenko,
2002] or spectral counting, which reflects that the probability to sample more abundant pep-
tides is higher [Neilson et al., 2011].
For the case of phosphoproteomics, in contrast to regular proteomics, an additional challenge
for quantitation arises from the fact that information from different peptides of the same
protein cannot be integrated. While in regular proteomics the abundances of every peptide
in the protein can be combined, the quantitation of a single phosphosite depends on direct
measurements of peptides with the specific modification. Therefore, the sample sizes in
phosphoproteomics quantitation are much smaller and can even consist of the measurement
of only a single peptide.
Furthermore, different phosphosites within the same protein will most probably not show
similar pattern of phosphorylation. This may give rise to problems for subsequent analysis,
if this analysis is conducted on protein rather than on phosphosite level.

2.4 Phosphosite Assignment

Phosphopeptides in large-scale phosphoproteomics experiments are identified from LC-MS/MS
runs by interpreting MS/MS spectra using a suitable search engine. Several of such search
engines now exist; popular ones include Mascot, Sequest, Protein Prospector and Andromeda
[Perkins et al., 1999; Clauser et al., 1999; MacCoss et al., 2002; Cox et al., 2011]. The pro-
cess of determining peptide sequences from MS/MS data involves matching the mass to
charge ratios of fragment ions in MS/MS spectra to the theoretical fragmentation of all
protein-derived peptides in protein databases. Depending on the organism being investi-
gated, protein databases from UniProt or NCBI are used. Each search engine has its own
scoring system to reflect the confidence of peptide identification, which is a function of MS
and MS/MS spectral quality. False discovery rate (FDR) may be determined by performing
parallel searches against scrambled or reversed protein databases containing the same num-
ber of sequences as the authentic protein database. The FDR is then calculated as the ratio
of positive peptide identifications in the decoy database divided by those derived from the
forward search. A FDR of 1% at the peptide level is normally considered adequate.
Deriving peptide sequences with these methods is a relatively straightforward process. How-
ever, site localization can be a problem when peptide sequences contain more than one amino
acid residue that can be phosphorylated. To address this problem, several methods to deter-
mine precise localization of phosphorylation within a phosphopeptide have been published.
Ascore uses a probabilistic approach to assess correct site assignment [Beausoleil et al., 2006]
and the algorithm has been applied alongside the Sequest search engine. The Mascot delta
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2 PHOSPHOPROTEOMICS DATA ACQUISITION

score, introduced by the Kuster group, simply determines the differences in Mascot scores
between the different possibilities for phosphosite localization within a phosphopeptide [Sav-
itski et al., 2011]. The larger the delta score, the greater the probability of correct site
assignment. Other similar methods have been published [Chalkley and Clauser, 2012] and
some of them are now incorporated into search engines [Baker et al., 2011]. The output
of the phosphopeptide identification step generally contains scores for both probability of
correct peptide sequence identification as well as phosphosite localization.

2.5 Pifalls in the Analysis of MS-based Phosphoproteomics Data

Although the available experimental methods for MS-based phosphoproteomics data acqui-
sition have evolved considerably in the last years, leading to a steadily increasing number of
detected phosphosites, several limitations remain for the investigation of signaling processes
using phosphoproteomics data.
While it has been estimated that there are around 500,000 phosphorylation sites in the hu-
man proteome [Lemeer and Heck, 2009], the number of phosphosites that can be identified
in a single MS experiment usually ranks around 10,000 to up to 40,000 [Sharma et al., 2014].
Therefore, the sampled phosphoproteomic picture is incomplete. It has to be taken into
account though, that not all possible phosphorylation sites are expected to be modified at
the same time point, because their regulation is context-dependent, for example, some are
controlled differentially at each stage of the cell cycle, while others only change under specific
external stimulation mediated by exposition to growth factors or other effector molecules.
The hope is therefore, that a significantly larger portion of phosphosites could be achieved
with improving technology and by increasing the diversity of biologically relevant conditions
analyzed to study the role of phosphoregulation in cell signaling. So far though, in different
MS runs or replicates, usually a distinct set of phosphosites is detected, as the selection of
precursor ions is stochastic. This leads to incomplete datasets with a high number of missing
data points, challenging computational investigation of the data like clustering or correlation
analysis. However, as discussed above, approaches in which phosphopeptide intensities are
compared across MS runs post-acquisition minimizes this problem [Alcolea et al., 2012].
The functional impact of a phosphorylation event is known only in the minority of cases
[Beltrao et al., 2012]. Indeed, it has been hypothesized that a substantial fraction of phos-
phorylation sites are non-functional [Landry et al., 2009], since phosphorylation sites tend
to be poorly conserved throughout species [Beltrao et al., 2009]. Although approaches to
study the function of individual phosphorylation events have been proposed [Beltrao et al.,
2013], it may be that a large part of the detected phosphosites serves no function at all.
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2 PHOSPHOPROTEOMICS DATA ACQUISITION

Thus, non-functional sites add a substantial amount of noise to phosphoproteomics data and
complicate the computational analysis.
The inference of kinase activity from phosphoproteomics data that will be described in the
next section aims to overcome these limitations, by integration of the information from many
phosphosites, along prior knowledge on kinases-substrate relationships, into a single measure
for the kinase activity. However, a general caveat determined by the experimental workflow
remains for the inference of kinase activities. Since highly abundant precursor ions are more
likely to be selected for fragmentation and therefore detection, all methods preferentially
detect highly active kinases.
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3 COMPUTATIONAL METHODS FOR INFERENCE OF KINASE ACTIVITY

3 Computational Methods for Inference of Kinase Activ-

ity

Traditionally, biochemical methods have been common to study kinase activities in vitro
and are still broadly used [Newman et al., 2014; Glickman, 2012]. However, on the one hand
those methods are generally limited in throughput and time-consuming. On the other hand
in vitro methods might not accurately reflect the in vivo activities of kinases in a specific
cellular context. MS-based methods have also been applied for assays of kinase activity
[Cutillas et al., 2006; Yu et al., 2009], in which the abundance of known target phosphosites
are monitored by MS after an in vitro enzymatic reaction.
Since every phosphorylation event results –by definition- from the activity of a kinase, phos-
phoproteomics data should be suitable to infer the activity of many kinases from comparably
low experimental effort. This task requires computational analysis of the detected phospho-
rylation sites (phosphosites), since thousands of phosphosites can routinely be measured in
a single experiment. Several methods have been proposed in recent years, all of which utilize
prior-knowledge about kinase-substrate interactions, either from curated databases or from
information about kinase recognition motifs.

3.1 Resources for Kinase-Substrate Relationships

As the large-scale detection of phosphorylation events using mass spectrometry became rou-
tine, many freely available databases that collect experimentally verified phosphosites have
been set up, including PhosphoSitePlus [Hornbeck et al., 2015], Phospho.ELM [Dinkel et al.,
2011], Signor [Perfetto et al., 2016], or PHOSIDA [Gnad et al., 2011], to name just a few.
The databases differ in size and aim; PHOSIDA for example provides a tool for prediction of
putative phosphorylation or recently also acetylation sites. Phospho.ELM computes a score
for the conservation of a phosphosite and Signor is focused on interactions between proteins
participating in signal transduction. The arguably most prominent database for expert-
edited and curated interactions between kinases and individual phosphosites (that have not
been derived from in vitro studies) is PhosphoSitePlus, currently encompassing 16,486 indi-
vidual kinase-substrate relationships [04-2015]. For Saccharomyces cerevisiae, the database
PhosphoGRID provides analogous information [Sadowski et al., 2013]. PhosphoNetworks
also contains information about kinase-substrate interactions, but on protein, not on single
phosphosite level [Hu et al., 2014]. Specific information about targets of phosphatases can
be found in DEPOD [Duan et al., 2015]. Also in the Phospho.ELM database, phosphosites
have been associated with regulating kinases, although this information is available for only
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3 COMPUTATIONAL METHODS FOR INFERENCE OF KINASE ACTIVITY

about 10% of the 37,145 human phosphosites in the database [04-2015].
As it has been estimated that there are between 100,000 [Zhang et al., 2002] and 500,000
[Lemeer and Heck, 2009] possible phosphosites in the human proteome, the evident low cov-
erage of the curated databases motivated the development of computational tools to predict
in vivo kinase-substrate relationships. These methods identify putative new kinase-substrate
relationships based on experimentally derived kinase recognition motifs, which was pioneered
by Scansite [Obenauer et al., 2003] that uses position-specific scoring matrices (PSSMs) ob-
tained by positional scanning of peptide libraries [Chen and Turk, 2010] or phage display
methods [Sidhu and Koide, 2007]. Another approach, Netphorest [Miller et al., 2008] tries to
classify phosphorylation sites according to the relevant kinase family instead of predicting in-
dividual kinase-substrate links. However, the in vitro specificity of kinases differs significantly
from the kinase activity inside of the cell, biasing the experimentally identified kinase recog-
nition motifs [Hjerrild et al., 2004]. The integration of contextual information, for example
co-expression, protein-protein interactions, or subcellular co-localization, markedly improves
the accuracy of the predictions [Newman et al., 2014]. The software packages NetworKIN
[Linding et al., 2008] (recently extended in the context of the resource KinomeXplorer [Horn
et al., 2014], correcting for biases caused by over-studied proteins) and iGPS [Song et al.,
2012] are examples for methods that combine information about kinase recognition motifs,
in vivo phosphorylation sites, and contextual information, e.g. from the STRING database
[Szklarczyk et al., 2015]. Recently, Wagih et al. presented a method to predict kinase speci-
ficity for kinases without any known phosphorylation sites [Wagih et al., 2016]. Based on
the assumption that functional interaction partners of kinases (derived from the STRING
database) are more likely to be phosphorylated by the respective kinase, they should there-
fore contain an amino acid motif conferring kinase specificity. This can then be uncovered
by motif enrichment.
The described methods provide predictions that are very valuable but not free from error,
for example due the described differences in in vitro and in vivo kinase specificity or the in-
fluence of sub-cellular localization. Thus, the predicted kinase-substrate interactions should
be considered hypotheses to be tested experimentally [Linding et al., 2007].
We hereafter present five computational methods to infer kinase activities from phospho-
proteomics data, which use either curated or computationally predicted kinase-substrate
interactions.
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3 COMPUTATIONAL METHODS FOR INFERENCE OF KINASE ACTIVITY

3.2 GSEA (Gene Set Enrichment Analysis)

Methodologically, inference of kinase activity from phosphoproteomics data is related to the
inference of transcription factor activity based on gene expression data. A plethora of dif-
ferent methods has been developed for the prediction of transcription factor activity, e.g.
the classical gene set enrichment analysis [Subramanian et al., 2005] or elaborated machine
learning methods [Schacht et al., 2014].
For example, Drake et al. [Drake et al., 2012] analyzed the kinase signaling network in
castration-resistant prostate cancer with GSEA. They predicted the kinases responsible for
each phosphosite with kinase-substrate interactions from PhosphoSitePlus, kinase recogni-
tion motifs from PHOSIDA, and predictions from NetworKIN. Subsequently, they computed
the enrichment of each kinases’ targets with the gene set enrichment algorithm after Subra-
manian et al. [Subramanian et al., 2005], which corresponds to a Kolmogorov–Smirnov-like
statistic. The significance of the enrichment score is determined based on permutation tests,
whereas the p-value depends on the number of permutations.
Alternatively, the gene set enrichment web-tool Enrichr [Chen et al., 2013; Kuleshov et al.,
2016] can also be used for kinases [Lachmann and Ma’ayan, 2009]. The authors compiled
kinases-substrate interactions from different databases and extracted additional interactions
manually from the literature in order to generate kinase-targets sets. Furthermore, they
added protein-protein interactions involving kinases from the Human Protein Reference
Database (HPRD) [Keshava Prasad et al., 2009], based on the assumption that those are
highly enriched in kinase-substrate interactions. Using this prior knowledge, the enrichment
of the targets of a kinase is then computed with Fisher’s exact test as described in [Chen
et al., 2013].

3.3 KAA (Kinase Activity Analysis)

Another approach to link phosphoproteomics data with the activity of kinases was presented
in a publication from Qi et al. [Qi et al., 2014], which they termed kinase activity analysis
(KAA).
In this study, the authors collected phosphoproteomics data from adult mouse testis in order
to investigate the process of mammalian spermatogenesis. With the software package iGPS
[Song et al., 2012] they predicted putative kinase-substrate relationships for the detected
phosphosites. The authors hypothesized that the number of links for a given kinase in the
predicted kinase-substrate network can serve as proxy for the activity of this kinase in the
specific cell type. This activity was then compared to the kinase activity background which
was calculated by computing the number of links in the background kinase-substrate network
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3 COMPUTATIONAL METHODS FOR INFERENCE OF KINASE ACTIVITY

based on the mouse phosphorylation atlas by Huttlin et al. [Huttlin et al., 2010]. Qi and
colleagues predicted high activity of PLK kinases in adult mouse testis and could validate
this prediction experimentally.
However, there are several limitations of KAA. For once, it is mainly based on computational
predictions of kinase substrate relationships, which are known to be susceptible to errors
[Newman et al., 2014; Linding et al., 2007]. Additionally, in their method the activity of a
kinase is only dependent on the number of detected, putative targets. The abundance of the
individual phosphosites or the fold change between conditions is not taken into account.
De Graaf et al. [de Graaf et al., 2014] chose a comparable approach in a study of the
phosphoproteome of Jurkat T cells after stimulation with prostaglandin E2. However, they
did not explicitly calculate kinase activities; rather, they grouped phosphosites in different
clusters with distinct temporal profiles and used the NetworKIN algorithm [Linding et al.,
2008] to calculate the enrichment of putative targets of a given kinase in a specific cluster.
As a result, they associated kinases with temporal activity profiles based on the enrichment
in one of the detected clusters.

3.4 CLUE (CLUster Evaluation)

A method designed specifically for time-course phosphoproteomics data is the knowledge-
based CLUster Evaluation approach, in short CLUE [Yang et al., 2015]. This method is
based on the assumption that phosphosites targeted by the same kinase will show similar
temporal profiles, which is utilized to guide a clustering algorithm and infer kinases associ-
ated to these clusters. As in the study by de Graaf et al. [de Graaf et al., 2014], kinases are
not associated with distinct values for activities but rather with temporal activity profiles.
The notable distinction of CLUE is that the clustering is found based on the prior-knowledge
about kinase-substrate relationships, as outlined below.
Methodologically, CLUE uses the k-means clustering algorithm to group the phosphopro-
teomics data into clusters in which the phosphosites show similar temporal kinetics. The
performance of k-means clustering is particularly sensitive to the parameter k, i.e. the number
of clusters. CLUE therefore tests a range of different values for k and evaluates them based
on the enrichment of kinase-substrate relationships in the identified clusters. The method
utilizes the data from the PhosphoSitePlus database in order to derive prior-knowledge about
kinase-substrate relationships. With Fisher’s exact test the enrichment of the targets of a
given kinase in a specific cluster is tested for significance. The implemented scoring system
penalizes distribution of the targets of a single kinase throughout several clusters, as well as
the combination of unrelated phosphosites in the same cluster.
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3 COMPUTATIONAL METHODS FOR INFERENCE OF KINASE ACTIVITY

CLUE is freely available as R package in the Comprehensive R Archive Network CRAN
under https://cran.r-project.org/web/packages/ClueR/index.html.
A limitation of CLUE is represented by the fact that possible ’noise’ in the prior-knowledge,
i.e. incorrect annotations, potentially derived from cell type specific kinase-substrate relation-
ships, can affect the performance of the clustering, although simulations showed reasonable
robustness. CLUE is tailored towards time-course phosphoproteomics data and associates
kinases with temporal activity profiles. Since the method does not provide singular activity
scores for each kinase, it may be only partly applicable to experiments in which the individual
responses of kinases to different treatments or conditions are of interest.
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Figure 1: Work-flow of methods to obtain Kinase activity scores such as
KSEA.
As prior-knowledge, the targets of a given kinase are extracted out of cu-
rated databases like PhosphoSitePlus. Together with the data of the de-
tected phosphosites, substrate sets are constructed for each kinase, from
which an activity score can be calculated.
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3.5 KSEA (Kinase Set Enrichment Analysis)

Casado et al. [Casado et al., 2013] presented a method for kinase activity estimation based
on kinase substrate sets. Using kinase-substrate relationships derived from the databases
PhosphoSitePlus and Phospho.ELM, all phosphosites that are targeted by a given kinase
can be grouped together into a substrate set (see Figure 1 for an outline of the work flow).
In theory, these phosphosites should show similar values, since they are targeted by the
same kinase. However, due to the transient nature of phosphorylation, additional biological
variability like cell cycle status, and the possibility that the reported kinase-substrate link
may not be present in the specific cell type of interest, phosphoproteomics measurements can
be considered inherently noisy. Therefore, Casado and colleagues proposed integrating the
information from all phosphosites in the substrate set in order to enhance the signal-to-noise
ratio by signal averaging [Wilm and Mann, 1996].
For KSEA, log2-transformed fold change data is needed, i.e. the change of abundance in a
phosphosite between initial and treated state, initial and later time point, or between two
different cell types. Therefore, KSEA activity scores describe the activity of a kinase in one
condition relative to another.
The authors suggested three possible metrics (mean score, alternative mean score, and delta
score) that can be extracted out of the substrate set and serve as proxy for kinase activity: (i)
The main activity score, also used in following publications [Wilkes et al., 2015], is defined as
the mean of the log2 fold changes of the phosphosites in the substrate set; (ii) alternatively,
only phosphosites with significant fold changes can be considered for the calculation of the
mean; and (iii) for the last approach, termed ’delta count’, the occurrence of significantly up-
regulated phosphosites in the substrate set is counted, from which the number of significantly
down-regulated sites is subtracted. For each method, the significance of the kinase activity
score is tested with an appropriate statistical test. In the publication of Casado et al., all
three measures were in good agreement, even if spanning different numerical ranges (see
Figure 2). The implementation of these three methods is discussed in detail in the following
section.
Like the other methods described in this section, KSEA strongly depends on the prior-
knowledge kinase-substrate relationships available in the freely accessible databases. These
are far from complete and therefore limit the analytical depth of the kinase activity analysis.
Additionally, databases are generally biased towards well-studied kinases or pathways [Horn
et al., 2014], so that the sizes of the different substrate sets differ considerably. Casado et al.
tried to address these limitations by integrating information about kinase recognition motifs
and obtained comparable results.
A detailed protocol on how to use KSEA is provided in the next section.

16

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2016. ; https://doi.org/10.1101/066019doi: bioRxiv preprint 

https://doi.org/10.1101/066019
http://creativecommons.org/licenses/by-nc/4.0/


3 COMPUTATIONAL METHODS FOR INFERENCE OF KINASE ACTIVITY

3.6 IKAP (Inference of Kinase Activity from Phosphoproteomics)

Recently, Mischnik and colleagues introduced a machine-learning method to estimate kinase
activities and to predict putative kinase-substrate relationships from phosphoproteomics data
[Mischnik et al., 2015].
In their model for kinase activity, the effect e of a given kinase j on a single phosphosite i is
modeled with

eji = kj ∗ pji

as product of the kinase activity k and the affinity p of kinase j for phosphosite i. The
abundance P of the phosphosite i is expressed as mean of all effects acting on it, since
several kinases can regulate the same phosphosite:

Pi =
m∑

(j=1)

eji/
m∑

(j=1)

pji.

The information about the kinase-substrate relationships is also derived from the Phospho-
SitePlus database. Using a non-linear optimization routine, IKAP estimates the described
parameters while minimizing a least square cost function between predicted and measured
phosphosite abundance throughout time points or conditions. For this optimization, the
affinity parameters are estimated globally, while the kinase activities are fitted separately
for each time point.
In a second step, putative new kinase-substrate relationships are predicted based on the
correlation of a phosphosite with the estimated activity of a kinase throughout time points
or conditions. These predictions are then tested by database searches and by comparison to
kinase recognition motifs from NetworKIN.
In contrast to KSEA, which computes the kinase activity based on the fold changes of the
phosphosites in the respective substrate set, IKAP is built on a heuristic machine learning
algorithm and tries to fit globally the described model of kinase activity and affinity to the
phosphoproteomics data. Therefore, the output of IKAP is not only a score for the activity
of a kinase, but also a value representing the strength of a specific kinase-substrate interac-
tion in the investigated cell type. On the other hand, the amount of parameters that have
to be estimated is rather large, so that a fair number of experimental conditions or time
points are needed for unique solutions. Mischnik et al. included a function to perform an
identifiable analysis of the obtained kinase activities and could show in the case of the two
investigated example datasets that the found solutions are indeed unique on the basis of the
phosphoproteomics measurements.
The MATLAB code for IKAP can be found online under www.github.com/marcel-mischnik/
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3 COMPUTATIONAL METHODS FOR INFERENCE OF KINASE ACTIVITY

IKAP, accompanied by an extensive step-by-step documentation, which we recommend as ad-
ditional reading to the interested reader.
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4 PROTOCOL FOR KSEA

4 Protocol for KSEA

In this section, we present a stepwise, guided protocol for the KSEA approach to infer kinase
activities from phosphoproteomics data. This protocol (part of the Kinase Activity Toolbox
under https://github.com/saezlab/kinact) is accompanied by a freely available script,
written in the Python programming language (Python version 2.7.x) that should enable
the use of KSEA for any phosphoproteomics dataset. We plan to expand kianct to other
methods in the future. We are going to explain the performed computations in detail in the
following protocol to facilitate understanding and to enable a potential re-implementation
in other programming languages.
As example application, we will use KSEA on the phosphoproteomics dataset from de Graaf
et al., 2014 [de Graaf et al., 2014], which was derived from Jurkat T cells stimulated with
prostaglandin E2 and is available as supplemental information to the article online at http:
//www.mcponline.org/content/13/9/2426/suppl/DC1.

4.1 Quick Start

As a quick start for practiced Python users, we can use the utility functions from kinact to
load the example dataset. The data should be organized as Pandas DataFrame containing
the log2-transformed fold changes, while the columns represent different conditions or time
points and the row individual phosphosites. The p-value of the fold change is optional, but
should be organized in the same way as the data.

import kinact
data_fc , data_p_value = kinact . get_example_data ( )
print data_fc . head ( )
>>> 5min 10min 20min 30min 60min
>>> ID
>>> A0AVK6_S71 −0.319306 −0.484960 −0.798082 −0.856103 −0.928753
>>> A0FGR8_S743 −0.856661 −0.981951 −1.500412 −1.441868 −0.861470
>>> A0FGR8_S758 −1.445386 −2.397915 −2.692994 −2.794762 −1.553398
>>> A0FGR8_S691 0.271458 0.264596 0.501685 0.461984 0.655501
>>> A0JLT2_S226 −0.080786 1.069710 0.519780 0.520883 −0.296040

The kinase-substrate relationships have to be loaded as well with the function get_kinase

_targets(). In this function call, we can specify with the sources-parameter, from which
databases we want to integrate the information about kinase-substrate relationships, e.g.
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PhosphoSitePlus, Phospho.ELM or Signor. The function uses an interface to the pypath

package, which integrates several resources for curated signaling pathways [Turei et al., 2016]
(see Note 1).

kin_sub_interact ions = kinact . get_kinase_targets ( sour c e s =[ ’ a l l ’ ] )

An important requirement for the following analysis is, that the structure of the indices of
the rows of the data and the prior-knowledge need to be the same (see below for more detail).
As an example, KSEA can be performed for the condition of 5 minutes after stimulation in
the de Graaf dataset using:

a c t i v i t i e s , p_values = kinact . ksea . ksea_mean ( data_fc [ ’ 5min ’ ] ,
k in_sub_interact ions , mP=data_fc . va lue s . mean ( ) ,
d e l t a=data_fc . va lue s . s td ( ) )

print a c t i v i t i e s . head ( )
>>> AKT1 0.243170
>>> AKT2 0.325643
>>> ATM −0.127511
>>> ATR −0.141812
>>> AURKA 1.783135
>>> dtype : f l o a t 6 4

Besides the data (data_fc[’5min’]) and kinase-substrate interactions (kin_sub_inter-
actions), the variables mP and delta are needed to determine the z-score of the enrichment.
The z-score builds the basis for the p-value calculation. The p-values for all kinases are cor-
rected for multiple testing with the Benjamini-Hochberg procedure [Benjamini and Hochberg,
2000].
In Figure 2, the different activity scores for the Casein kinase II alpha, which de Graaf et al.
had associated with increased activity after prolonged stimulation with prostaglandin E2,
are shown together with the log2 fold change values of all phosphosites that are known to
be targeted by this kinase. For the methods that use the mean, the median as more robust
measure can be calculated alternatively. The qualitative changes of the kinase activities
(Figure 2A, B, and C) are quite similar regardless of the method, and would not be apparent
from looking at any specific substrate phosphosite alone (Figure 2D).

4.2 Loading the Data

In the following, we walk the reader step by step through the procedure for KSEA. Firstly,
we need to organize the data so that the KSEA functions can interpret it.
In Python, the library Pandas [Mckinney, 2010] provides useful data structures and powerful
tools for data analysis. Since the provided script depends on many utilities from this library,
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Figure 2: KSEA activity scores for Casein kinase II subunit alpha A: Ac-
tivity scores for Casein kinase II subunit alpha over all time
points of the de Graaf data set [de Graaf et al., 2014], calcu-
lated as the mean of all phosphosites in the substrate set. In
yellow, the median has been used. B: Activity scores for Ca-
sein kinase II subunit alpha over all time points of the de Graaf
data set, calculated as the mean of all significantly regulated
phosphosites in the substrate set. The median is again shown
in yellow. C: Delta score for Casein kinase II subunit alpha over
all time points of the de Graaf data set, calculated as number
of significantly upregulated phosphosites minus the number of
significantly down-regulated phosphosites in the substrate set.
D: The log2 fold changes for all time points for all phosphosites
in the substrate set of the Casein kinase II subunit alpha.
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we would strongly advice the reader to have a look at the Pandas documentation, although
it will not be crucial in order to understand the presented protocol. The library, together
with the NumPy [Van Der Walt et al., 2011] package, can be loaded with:

import pandas as pd
import numpy as np

The data accompanying the article is provided as Excel spreadsheet and can be imported
to python using the pandas read_excel function or first be saved as csv-file, using the ’Save
As’ function in Excel in order to use it as described below. For convenience, in the referenced
Github repository, the data is already stored as csv-file, so that this step is not necessary.
The data can be loaded with the function read_csv, which will return a Pandas DataFrame
containing the data organized in rows and columns.

data_raw = pd . read_csv ( ’FILEPATH ’ , sep=’ , ’ )

In the DataFrame object data_raw, columns represent the different experimental condi-
tions or additional information and the row’s unique phosphosites. A good way to gain an
overview about the data stored in a DataFrame or to keep track of changes are the following
functions:

print data_raw . head ( ) # to show the f i r s t f i v e rows o f the DataFrame
or

print data_raw . shape # in order to show the dimensions o f the
DataFrame

Phosphosites that can be matched to different proteins or several positions within the
same protein are excluded from the analysis. In this example, ambiguous matching is indi-
cated by the presence of a semicolon that separates multiple possible identifiers.

data_reduced = data_raw [~data_raw [ ’ Prote in s ’ ] . str . c onta in s ( ’ ; ’ ) ]

For more convenient data handling, we will index each phosphosite with an unambiguous
identifier comprising the UniProt accession number, the type of the modified residue, and
the position within the protein. For the example of a phosphorylation of the serine 59 in
the Tyrosine-protein kinase Lck, the identifier would be P06239_S59. The identifier can be
constructed by concatenating the information that should be provided in the dataset. In the
example of de Graaf et al., the UniProt accession number can be found in the columns ’Pro-
teins’, the modified residue in ’Amino acid’, and the position in ’Positions within proteins’.
The index is used to access the rows in a DataFrame and will later be needed to construct the
kinase-substrate sets. After creation of the identifier, the DataFrame is indexed by calling
the function set_index.
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data_reduced [ ’ ID ’ ] = data_reduced [ ’ Pro te in s ’ ] + ’_’ +
data_reduced [ ’Amino ac id ’ ] +
data_reduced [ ’ Po s i t i on s with in p r o t e i n s ’ ]

data_indexed = data_reduced . set_index ( data_reduced [ ’ ID ’ ] )

Mass spectrometry data is usually accompanied by several columns containing addi-
tional information about the phosphosite (e.g. the sequence window) or statistics about
the database search (for example the posterior error probability), which are not necessarily
needed for KSEA. We therefore extract only the columns of interest containing the processed
data. In the example dataset, the names of the crucial columns start with Average, enabling
selection by a simple if statement. Generally, more complex selection of column names can
be achieved by regular expressions with the python module re.

data_intens i ty = data_indexed [ [ x for x in data_indexed i f x . s t a r t sw i t h
( ’ Average ’ ) ] ] # see Note 2

Now, we can compute the fold change compared to the control, which is the condition
of 0 minutes after stimulation. With log(a/b) = log(a)− log(b), we obtain the fold changes
by subtracting the column with the control values from the rest using the sub function of
Pandas (see Note 3).

data_fc = data_intens i ty . sub ( data_intens i ty [ ’ Average Log2 I n t e n s i t y 0
min ’ ] , a x i s =0)

Further data cleaning (re-naming columns and removal of the columns for the control
time point) results in the final dataset:

data_fc . columns = [ x . s p l i t ( ) [−1] for x in data_fc ] # Rename columns
data_fc . drop ( ’ 0min ’ , ax i s =1, i np l a c e=True ) # Delete c on t r o l column
print data_fc . head ( )
>>> 5min 10min 20min 30min 60min
>>> ID
>>> A0AVK6_S71 −0.319306 −0.484960 −0.798082 −0.856103 −0.928753
>>> A0FGR8_S743 −0.856661 −0.981951 −1.500412 −1.441868 −0.861470
>>> A0FGR8_S758 −1.445386 −2.397915 −2.692994 −2.794762 −1.553398
>>> A0FGR8_S691 0.271458 0.264596 0.501685 0.461984 0.655501
>>> A0JLT2_S226 −0.080786 1.069710 0.519780 0.520883 −0.296040

If the experiments have been performed with several replicates, statistical analysis enables
estimation of the significance of the fold change compared to a control expressed by a p-value.
The p-value will be needed to perform KSEA using the ’Delta count’ approach but may be
dispensable for the mean methods. The example data set contains a p-value (transformed
as negative logarithm with base 10) in selected columns and can be extracted using:
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4 PROTOCOL FOR KSEA

data_p_value = data_indexed [ [ x for x in data_indexed i f x . s t a r t sw i t h ( ’
p value ’ ) ] ]

data_p_value = data_p_value . astype ( ’ f l o a t ’ ) # see Note 4

4.3 Loading the Kinase-Substrate Interactions

Now, we load the prior knowledge about kinase-substrate relationships. In this example,
we use the information provided in the PhosphoSitePlus database (see Note 5), which can
be downloaded from the website www.phosphosite.org. The organization of the data from
comparable databases, e.g Phospho.ELM, does not differ drastically from the one from Phos-
phoSitePlus and therefore requires only minor modifications. Using pd.read_csv again, we load
the downloaded file with:

ks_rel = pd . read_csv ( ’ f i l e p a t h ’ , sep=’ \ t ’ ) # see Note 6

In this file, every row corresponds to an interaction between a kinase and a unique
phosphosite. However, it must first be restricted to the organism of interest, e.g. ’human’
or ’mouse’, since the interactions of different organisms are reported together in Phospho-
SitePlus.

ks_rel_human = ks_rel . l o c [ ( ks_rel [ ’KIN_ORGANISM’ ] == ’human ’ ) & (
ks_rel [ ’SUB_ORGANISM’ ] == ’human ’ ) ]

Next, we again construct unique identifiers for each phosphosite using the information
provided in the data set. The modified residue and its position are already combined in the
provided data.

ks_rel_human [ ’ p s i t e ’ ] = ks_rel_human [ ’SUB_ACC_ID’ ] + ’_’ +
ks_rel_human [ ’SUB_MOD_RSD’ ]

Now, we construct an adjacency matrix for the phosphosites and the kinases. In this
matrix, an interaction between a kinase and a phosphosite is denoted with a 1, all other
fields are filled with a 0. For this, the Pandas function pivot_table can be used:

ks_rel_human [ ’ va lue ’ ] = 1 # see Note 7
adj_matrix = pd . p ivot_table ( ks_rel_human , va lue s=’ va lue ’ , index=’ p s i t e

’ , columns=’GENE’ , f i l l _ v a l u e =0)

The result is an adjacency matrix of the formm×n withm being the number of phospho-
sites and n the number of kinases. If a kinase is known to phosphorylate a given phosphosite,
the corresponding entry in this matrix will be a 1, otherwise a 0. A 0 does not mean, that
there cannot be an interaction between the kinase and the respective phosphosite, but rather
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4 PROTOCOL FOR KSEA

that this specific interaction has not been reported in the literature. As sanity check, we
can print the number of known kinase-substrate interactions for each kinase saved in the
adjacency matrix:

print adj_matrix .sum( ax i s =0) . sort_values ( ascending=False ) . head ( )
>>> GENE
>>> CDK2 541
>>> CDK1 458
>>> PRKACA 440
>>> CSNK2A1 437
>>> SRC 391
>>> dtype : in t64

4.4 KSEA

In the accompanying toolbox, we provide for each method of KSEA a custom python func-
tion that automates the analysis for all kinases in a given condition. Here, however, we
demonstrate the principle of KSEA by computing the different activity scores for a single
kinase and a single condition. As example, the Cyclin-dependent kinase 1 (CDK1, see Note
8) and the condition of 60 minutes after prostaglandin stimulation shall be used.

data_condit ion = data_fc [ ’ 60min ’ ] . copy ( )
p_values = data_p_value [ ’p value_60vs0min ’ ]
k inase = ’CDK1 ’

First, we determine the overlap between the known targets of the kinase and the detected
phosphosites in this condition, because we need it for every method of KSEA. Now, we benefit
from having the same format for the index of the dataset and the adjacency matrix. We can
use the Python function intersection to determine the overlap between two sets.

subs t ra te_set = adj_matrix [ k inase ] . r ep l a c e (0 , np . nan ) . dropna ( ) . index #
see Note 9

detected_p_sites = data_condit ion . index
i n t e r s e c t = l i s t ( set ( subs t ra te_set ) . i n t e r s e c t i o n ( detected_p_sites ) )
print len ( i n t e r s e c t )
>>> 114

4.4.1 KSEA using the ’Mean’ method

For the ’mean’ method, the KSEA score is equal to the mean of the fold changes in the
substrate set mS.
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4 PROTOCOL FOR KSEA

The significance of the score is tested with a z-statistic using

z =
mS −mP ∗

√
m

δ

with mP as mean of the complete dataset, m being the size of the substrate set and δ the
standard deviation of the complete dataset. The ’mean’ method has established itself as the
preferred method in the Cutillas lab that developed the KSEA approach.

mS = data_condit ion . i x [ i n t e r s e c t ] . mean ( )
mP = data_fc . va lue s . mean ( )
m = len ( i n t e r s e c t )
d e l t a = data_fc . va lue s . s td ( )
z_score = (mS − mP) ∗ np . sq r t (m) ∗ 1/ de l t a

The z-score can be converted into a p-value with a function from the SciPy [Jones et al.,
2007] library:

from s c ipy . s t a t s import norm
p_value_mean = norm . s f (abs ( z_score ) )
print mS, p_value_mean
>>> −0.441268760191 9.26894825183 e−07

4.4.2 KSEA using the alternative ’Mean’ method

Alternatively, only the phosphosites in the substrate set that change significantly between
conditions can be considered when computing the mean of the fold changes in the substrate
set. Therefore, we need a cut-off, determining a significant increase or decrease respectively,
which can be a user-supplied parameter. Here, we use a standard level to define a significant
change with a cut-off of 0.05. The significance of the KSEA score is tested as before with
the z-statistic.

cut_of f = −np . log10 ( 0 . 0 5 )
se t_a l t = data_condit ion . i x [ i n t e r s e c t ] . where (

p_values . i x [ i n t e r s e c t ] > cut_of f ) . dropna ( )
mS_alt = se t_a l t . mean ( )
z_score_alt = (mS_alt − mP) ∗ np . sq r t ( len ( s e t_a l t ) ) ∗ 1/ de l t a
p_value_mean_alt = norm . s f (abs ( z_score_alt ) )
print mS_alt , p_value_mean_alt
>>> −0.680835732551 1.26298232031 e−13
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4 PROTOCOL FOR KSEA

4.4.3 KSEA using the ’Delta count’ method

In the ’Delta count’ method, we count the number of phosphosites in the substrate set that
are significantly increased in the condition versus the control and subtract the number of
phosphosites that are significantly decreased.

cut_of f = −np . log10 ( 0 . 0 5 )
score_de l ta = len ( data_condit ion . i x [ i n t e r s e c t ] . where (

( data_condit ion . i x [ i n t e r s e c t ] > 0) &
( p_values . i x [ i n t e r s e c t ] > cut_of f ) ) . dropna ( ) ) −

len ( data_condit ion . i x [ i n t e r s e c t ] . where (
( data_condit ion . i x [ i n t e r s e c t ] < 0) &
( p_values . i x [ i n t e r s e c t ] > cut_of f ) ) . dropna ( ) ) # see

Note 10

The p-value of the score is calculated with a hypergeometric test, since the number of
significantly regulated phosphosites is a discrete variable. To initialize the hypergeometric
distribution, we need as variables M = the total number of detected phosphosites, n = the
size of the substrate set, and N = the total number of phosphosites that are in an arbitrary
substrate set and significantly regulated.

from s c ipy . s t a t s import hypergeom
M = len ( data_condit ion )
n = len ( i n t e r s e c t )
N = len (np . where ( p_values . i x [ adj_matrix . index . t o l i s t ( ) ] > cut_of f ) [ 0 ] )
hypergeom_dist = hypergeom (M, n , N)
p_value_delta = hypergeom_dist . pmf ( len ( p_values . i x [ i n t e r s e c t ] . where (

p_values . i x [ i n t e r s e c t ] > cut_of f ) .
dropna ( ) ) )

print score_delta , p_value_delta
>>> −58 8.42823410966 e−119
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5 NOTES

5 Notes

1. The available sources for kinase-substrate interactions are ARN [Türei et al., 2015],
CA1 [Ma’ayan et al., 2005], dbPTM [Huang et al., 2016], DEPOD [Duan et al., 2015],
HPRD [Keshava Prasad et al., 2009], MIMP [Wagih et al., 2015], Macrophage [Raza
et al., 2010], NRF2ome [Türei et al., 2013], phosphoELM [Dinkel et al., 2011], Phos-
phoSite [Hornbeck et al., 2015], SPIKE [Paz et al., 2011], SignaLink3 [Fazekas et al.,
2013], Signor [Perfetto et al., 2016], and TRIP [Chun et al., 2014].

2. The provided code is equivalent to:

intens i ty_columns = [ ]
for x in data_indexed :

i f x . s t a r s tw i t h ( ’ Average ’ ) :
intens i ty_columns . append (x )

data_intens i ty = data_indexed [ intens i ty_columns ]

3. In our example it is not necessary to transform the data to log2 intensities, since the
data is already provided after log2-transformation. But for raw intensity values, the
following function from the NumPy module can be used:

data_log2 = np . log2 ( data_intens i ty )

4. Due to a compatibility problem with the output of Excel, Python recognizes the p-
values as string variables, not as floating point numbers. Therefore, this line is needed
to convert the type of the p-values.

5. The adjacency matrix can also be constructed based on kinase recognition motifs or
kinase prediction scores and the amino acid sequence surrounding the phosphosite. To
use NetworKIN scores for the creation of the adjacency matrix, kinact will provide
dedicated functions. In the presented example, however, we focus on the curated
kinase-substrate relationships from PhosphoSitePlus.

6. The file from PhosphoSitePlus is provided as text file in which a tab (\t) delimits the
individual fields, not a comma. The file contains a disclaimer at the top, which has to
be removed first. Alternatively, the option skiprows in the function read_csv can be
set in order to ignore the disclaimer.

7. This column is needed, so that in the matrix resulting from pd.pivot_table the value
from this column will be entered.
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5 NOTES

8. If necessary, mapping between protein names, gene names, and UniProt-Accession
numbers can easily be performed with the Python module bioservices, to the docu-
mentation of which we want to refer the reader [Cokelaer et al., 2013].

9. In this statement, we first select the relevant columns of the kinase from the connectiv-
ity matrix (adj_matrix[kinase]). In this column, we replace all 0 values with NAs
(replace(0, np.nan)), which are then deleted with dropna(). Therefore, only those
interactions remain, for which a 1 had been entered in the matrix. Of these interac-
tions, we extract the index, which is a list of the phosphosites known to be targeted
by the kinase of interest.

10. The where method will return a copy of the DataFrame, in which for those cases that
the condition is not true, a NA is returned. dropna() will therefore delete all those
occurrences, so that len() will count how often the condition is true.
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6 CLOSING REMARKS

6 Closing Remarks

In summary, the methods described in this review use different approaches to calculate ki-
nase activities or to relate kinases to activity profiles from phosphoproteomic datasets. All
of them utilize prior-knowledge about kinase-substrate relationships, either from curated
databases or from computational prediction tools. Using these methods, the noisy and com-
plex information from the vast amount of detected phosphorylation sites can be condensed
into a much smaller set of kinase activities that is easier to interpret. Modeling of signaling
pathways or prediction of drug responses can be performed in a straightforward way with
these kinase activities as shown in the study by Casado et al. [Casado et al., 2013].
The power of the described methods strongly depends on the available prior-knowledge about
kinase-substrate relationships. As our knowledge increases due to experimental methods like
in vitro kinase selectivity studies [Imamura et al., 2014] or CEASAR (Connecting Enzymes
And Substrates at Amino acid Resolution) [Newman et al., 2013], the utility and appli-
cability of methods for inference of kinase activities will grow as well. Additionally, the
computational approaches for prediction of possible kinase-substrate relationships are under
on-going development [Wagih et al., 2016; Creixell et al., 2015a], increasing the reliability of
the in silico predictions.
Phosphoproteomic data is not only valuable for the analysis of kinase activities: for ex-
ample, PTMfunc is a computational resource that predicts the functional impact of post-
translational modifications based on structural and domain information [Beltrao et al., 2012],
and PHONEMeS Wilkes et al. [2015]; Terfve et al. [2015] combines, similar to kinase-
activity methods, phosphoproteomics data with prior-knowledge kinase-substrate relation-
ships. However, instead of scoring kinases, PHONEMeS derives logic models for signaling
pathways at the phosphosite level.
For the analysis of deregulated signaling in cancer, mutations in key signaling molecules can
be of crucial importance. Recently, Creixell and colleagues presented a systematic classi-
fication of genomic variants that can perturb signaling, either by rewiring of the signaling
network or by destruction of phosphorylation sites [Creixell et al., 2015b]. Another approach
was introduced in the last update of the PhosphoSitePlus database, in which the authors
reported with PTMVar [Hornbeck et al., 2015] the addition of a dataset that can map mis-
sense mutation onto the post-translational modifications. With these tools, the challenging
task of creating an intersection between genomic variations and signaling processes may be
addressed.
It remains to be seen how the different scoring metrics for kinase activity relate to each other,
as they utilize different approaches to extract a kinase activity score out of the data. IKAP
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6 CLOSING REMARKS

is based on a non-linear optimization for the model of kinase-dependent phosphorylation,
KSEA on statistical analysis of the values in the substrate set of a kinase, and CLUE on the
k-means clustering algorithm together with Fisher’s exact test for enrichment. To assess the
different methods, they have to be benchmarked against ’gold standard’ datasets for which
the activity status of kinases is known. Such comprehensive comparison of applicability,
performance and drawbacks for the different methods would be very valuable for the most
effective use of phosphoproteomic data to infer kinase activities, from which to derive insights
into molecular cancer biology and many other processes controlled by signal transduction.
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