Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

On the independent loci assumption in phylogenomic studies

W. Bryan Jennings
doi: https://doi.org/10.1101/066332
W. Bryan Jennings
Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 20940-040, Brazil.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Studies using multi-locus coalescent methods to infer species trees or historical demographic parameters usually require the assumption that the gene tree for each locus (or SNP) is genealogically independent from the gene trees of other sampled loci. In practice, however, researchers have used two different criteria to delimit independent loci in phylogenomic studies. The first criterion, which directly addresses the condition of genealogical independence of sampled loci, considers the long-term effects of homologous recombination and effective population size on linkage between two loci. In contrast, the second criterion, which only considers the single-generation effects of recombination in the meioses of individuals, identifies sampled loci as being independent of each other if they undergo Mendelian independent assortment. Methods that use these criteria to estimate the number of independent loci per genome as well as intra-chromosomal “distance thresholds” that can be used to delimit independent loci in phylogenomic datasets are reviewed. To compare the efficacy of each criterion, they are applied to two species (an invertebrate and vertebrate) for which relevant genetic and genomic data are available. Although the independent assortment criterion is relatively easy to apply, the results of this study show that it is overly conservative and therefore its use would unfairly restrict the sizes of phylogenomic datasets. It is therefore recommended that researchers only refer to genealogically independent loci when discussing the independent loci assumption in phylogenomics and avoid using terms that may conflate this assumption with independent assortment. Moreover, whenever feasible, researchers should use methods for delimiting putatively independent loci that take into account both homologous recombination and effective population size (i.e., long-term effective recombination).

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 28, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
On the independent loci assumption in phylogenomic studies
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
On the independent loci assumption in phylogenomic studies
W. Bryan Jennings
bioRxiv 066332; doi: https://doi.org/10.1101/066332
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
On the independent loci assumption in phylogenomic studies
W. Bryan Jennings
bioRxiv 066332; doi: https://doi.org/10.1101/066332

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4076)
  • Biochemistry (8749)
  • Bioengineering (6467)
  • Bioinformatics (23310)
  • Biophysics (11710)
  • Cancer Biology (9131)
  • Cell Biology (13224)
  • Clinical Trials (138)
  • Developmental Biology (7402)
  • Ecology (11357)
  • Epidemiology (2066)
  • Evolutionary Biology (15074)
  • Genetics (10390)
  • Genomics (13997)
  • Immunology (9106)
  • Microbiology (22018)
  • Molecular Biology (8767)
  • Neuroscience (47303)
  • Paleontology (350)
  • Pathology (1418)
  • Pharmacology and Toxicology (2480)
  • Physiology (3701)
  • Plant Biology (8041)
  • Scientific Communication and Education (1427)
  • Synthetic Biology (2206)
  • Systems Biology (6009)
  • Zoology (1246)