Abstract
Negative selection against deleterious alleles produced by mutation is the most common form of natural selection, which strongly influences within-population variation and interspecific divergence. However, some fundamental properties of negative selection remain obscure. In particular, it is still not known whether deleterious alleles affect fitness independently, so that cumulative fitness loss depends exponentially on the number of deleterious alleles, or synergistically, so that each additional deleterious allele results in a larger decrease in relative fitness. Negative selection with synergistic epistasis must produce negative linkage disequilibrium between deleterious alleles, and therefore, underdispersed distribution of the number of deleterious alleles in the genome. Indeed, we detected underdispersion of the number of rare loss-of-function (LoF) alleles in eight independent datasets from modern human and Drosophila melanogaster populations. Thus, ongoing selection against deleterious alleles is characterized by synergistic epistasis, which can explain how human and fly populations persist despite very high genomic deleterious mutation rates.
Footnotes
↵† Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf