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Abstract

When emerging pathogens encounter new host species for which they are poorly adapted, they

must evolve to escape extinction. Pathogens experience selection on traits at multiple scales,2

including replication rates within host individuals and transmissibility between hosts. We analyze

a stochastic model linking pathogen growth and competition within individuals to transmission4

between individuals. Our analysis reveals a new factor, the cross-scale reproductive number, that

quantifies how quickly mutant strains increase in frequency when they initially appear in the6

infected host population. This cross-scale reproductive number combines with viral mutation

rates, single-strain reproductive numbers, and transmission bottleneck width to determine the8
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likelihood of evolutionary emergence, and whether evolution occurs swiftly or gradually within

chains of transmission. We find that wider transmission bottlenecks facilitate emergence of2

pathogens with short-term infections, but hinder emergence of pathogens exhibiting cross-scale

selective conflict and long-term infections. Our results provide a framework to advance the4

integration of laboratory, clinical and field data in the context of evolutionary theory, laying the

foundation for a new generation of evidence-based risk assessment of emergence threats.6
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Introduction

Emerging infectious diseases are rising in frequency and impact and are placing a growing2

burden on public health and world economies [1–4]. Nearly all of these emergence events involve

pathogens that are exposed to novel environments such as zoonotic pathogens entering human4

populations from non-human animal reservoirs, or human pathogens exposed to antimicrobial

drugs [1]. In these novel environments, pathogens may experience new selective forces acting at6

multiple biological scales, leading to reduced replication rates within hosts or less efficient

transmission between hosts. When these novel environments are sufficiently harsh, emergence only8

occurs when the pathogen adapts sufficiently quickly to avoid extinction. As genetic sequencing of

pathogens becomes increasingly widespread, there are clear signs of such rapid adaptation [5–11],10

but we lack a cohesive framework to understand how this process might work across scales.

Theoretical studies have shed important insights into circumstances under which this evolutionary12

emergence is possible, but either have focused on the host-to-host transmission dynamics and

treated within-host dynamics only implicitly [12–15], or have accounted for explicit within-host14

dynamics only along a fixed transmission chain [16, 17]. Here, we introduce and analyze a model

explicitly linking these two biological scales and demonstrate how within-host viral competition,16

infection duration, transmission dynamics within a host population, and the size of transmission

bottlenecks determine the likelihood of evolutionary emergence. This analysis sheds new light on18

factors governing pathogen emergence, addresses long-standing questions about evolutionary

aspects of emergence, and lays the foundation for making risk assessments which integrate20

outcomes from in vitro and in vivo experiments with findings from sequence-based surveillance in

the field.22

Recent empirical findings have highlighted the need for a new generation of theory on pathogen

emergence, which addresses the current frontiers of dynamics within hosts and across scales. For24

most pathogens, and certainly for RNA viruses and single-stranded DNA viruses, individual hosts

often are not dominated by single pathogen genotypes [18, 19]. Furthermore, at the host26

population scale, pathogen allele frequencies at a given locus exhibit a range of dynamics from

rapid selective sweeps for drug resistance or immune escape [20–22] to gradually changing28
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frequencies [23, 24]. Together, these observations lead to the long-standing question of whether

adaptive evolution of viruses occurs within single hosts by rapid fixation of beneficial mutants, or2

more slowly by a gradual shift of allele frequencies along chains of transmission [25, 26]. A recent

wave of studies tracking changes in within-host genetic diversity through chains of transmission4

among hosts [27–34] provide unique opportunities to address this question, but a theoretical

framework is needed.6

Empirical studies, together with analyses at broader population scales, have highlighted the

crucial influence of the transmission process – and particularly the population bottleneck8

associated with transmission – in filtering viral diversity. The existence of transmission

bottlenecks has long been recognized, and is hypothesized to play a critical role in pathogen10

evolution [35–40]. Recent studies have reported that bottleneck widths vary considerably among

pathogens and routes of transmission [41, 42], and perhaps across different phases of host12

adaptation [43]. Narrow transmission bottleneck sizes of 1 to 2 viral genotypes are common for

HIV-1 [44–46] and hepatitis C virus [47, 48], and bottlenecks of 1 to 3 viruses are reported for14

influenza in ferret respiratory droplet transmission experiments [41, 42, 49] and in some studies of

natural human transmission [50, 51]. Much wider bottleneck estimates, of 30 to over 100 viruses,16

have been reported for natural transmission of influenza in horses [29] and swine [52]; for ferret

transmission experiments via direct contact [41, 42]; and for transmission of Ebola virus among18

humans [53]. While wide bottlenecks were also reported for natural influenza transmission among

humans [54, 55], this was determined to be a bioinformatic artefact [56].20

A major frontier in understanding viral adaptation is how the transmission process influences

evolution at population scales. Past work has emphasized the potentially deleterious effect of22

genetic drift [35, 37, 39], but a rising tide of studies reports direct selection for transmissibility.

This can arise as a strong selection bias at the transmission bottleneck, where strains present at24

low or undetectable frequencies in the donor host are preferentially transmitted to the

recipient [43, 49, 57, 58], or it can be measured directly via experimental infection and26

transmission studies [24, 59–61] (though we emphasize that enhanced transmissibility is not

inevitable, and depends on availability of suitable adaptive genotypes [62]). Overall transmission28
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rates can be viewed as being determined by total viral loads, weighted by genotype-specific

transmissibilities [58]. Importantly, the transmissibility trait can vary independently from viral2

replication fitness within hosts, so there is potential for conflicts in selection across scales. Indeed,

there is clear evidence that HIV-1 has certain genotypes that transmit more efficiently, but then4

the within-host population tends to evolve toward lower-transmission strains during an

infection [46, 58, 63–65]; a similar phenomenon has been reported for H5N1 influenza [49] and6

H9N2 influenza [66]. In an extreme example, Plasmodium parasites were found to rapidly evolve

resistance to an antimalarial drug, but at the cost of complete loss of transmissibility [67].8

Experimental evolution studies have highlighted how antagonistic pleiotropy can lead to tradeoffs

between viral replication and the extracellular survival that is required for transmission [68, 69],10

and a similar tradeoff has been postulated for environmental transmission of avian influenza in the

field [70]. Together these findings contribute to a growing evidence base that cross-scale conflicts12

in selection may inhibit the emergence of new viral strains in many systems [reviewed in 15].

Collectively these empirical findings highlight the need for a theory of evolutionary emergence14

that accounts explicitly for the within-host dynamics of competing viral strains, transmission

bottlenecks, and host-to-host transmission dynamics [71]. To this end, we introduce and analyze a16

model which integrates previous work on stochastic models of evolutionary emergence and

deterministic models explicitly coupling within- and between-host18

dynamics [12, 14, 16, 17, 60, 65, 72–75]. Our analysis allows us to address several fundamental

questions about the emergence of novel pathogens: What factors limit evolutionary emergence for20

pathogens with different life histories? Why do some apparently ‘nearby’ adaptive mutants fail to

emerge? How do bottleneck sizes influence the likelihood of emergence? Do evolutionary changes22

occur swiftly within individual hosts, or gradually across chains of transmission? Moreover, our

analysis allows us to examine the relative importance of genetic diversity in zoonotic reservoirs24

versus the acquisition of new mutations following spillover into humans [76–78]. Specifically, we

address the long-standing question of how much emergence risk is increased if the “spillover26

inoculum” includes some genotypes bearing adaptive mutations for the novel host? Finally, our
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analysis enables us to unify findings from previous theoretical studies, and propose mechanistic

interpretations of phenomenological parameters from earlier work.2

Models and Methods

Our stochastic multiscale model of evolutionary emergence follows a finite number of4

individuals in a large, susceptible host population exposed to a pathogen from a reservoir

population (Fig 1A). Although our framework represents many types of pathogens and can be6

extended to any number of strains, we focus on the case of a viral pathogen with two strains: a

wild-type maladapted for the novel environment and a mutant strain potentially adapted for the8

novel environment.

The cross-scale model with explicit within-host dynamics. Formally, the cross-scale model10

is a continuous time, age-dependent, multi-type branching process [79, 80]. The “type” of

individual corresponds to the composition of the initial virus population (i.e. the founding viral12

population that initiates the infection), and the “age” of an individual corresponds to the time

since their initial infection. Within an infected host, the viral dynamics determine how the viral14

load and viral composition change over time due to competition between strains and mutation

events. Transmission events are determined by the viral load and composition of the host and,16

consequently, are age-dependent. Below, we describe the model at each scale and the biological

processes we consider in detail. The mean-field analogue of our model is an age-structured partial18

differential equation of the general type introduced by Coombs et al. [73].

Within-host scale model. Infection of a host usually starts locally at the site of viral entry or first20

tissue contact. This local spread involves a small number of viruses, their infection of host cells at

the exposure interface and possibly the innate immune response to infection [81, 82]. During this22

period, infection is stochastic and establishment of infection is not guaranteed [82, 83]. When one

or more virions survive the period of initial local spread, they establish lineages that comprise the24

productive infection. These virions are termed as transmitted founder viruses [44]. Here, we

explicitly define the number of transmitted founder viruses that establish productive infection as26

the bottleneck width N . This quantity can be estimated using viral genetic sequencing data, for
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Figure 1. The cross-scale dynamic of evolutionary emergence. An individual is
initially infected from the reservoir host population (panel A) with only the wild
type viral strain (in blue). Within an infected individual (panel B), the viral load
increases at an exponential rate until saturating at day Te and ending after T days.
Mutations ensure individuals typically have a mixed infection with wild-type (blue)
and mutant (red) viral strains (panel B). The likelihood of transmission between
individuals, and the composition of the infecting dose (panel C), depend on the size
and composition of the infected individual’s viral load at the time of contact, and
on the transmissibility of each strain. As the infection spreads in the population
(panel A), the frequency of the mutant virions among infected individuals varies
(panel D) and, ultimately, determines whether evolutionary emergence occurs. In D,
each horizontal line marks the infectious period of an individual whose infection was
initiated with that percentage of the mutant strain and the vertical arrows represent
transmission events between individuals.

example in [44, 55]. Our within-host model starts with the transmitted founder viruses by

assuming an initial viral load N , and hence considers the period of established productive2

infection only (as with other within-host models [84, 85] and cross-scale deterministic models

[73]). The initial viral exposure and stochastic local infection process are implicitly incorporated4

into the transmission term in the population scale model as described below, and consequently, we

consider a successful transmission event as a transmission event leading to an established infection.6
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The within-host dynamics are modeled with coupled differential equations where

v(t) = (vw(t), vm(t)) denotes the vector of viral abundances2

(1)
dvi
dt

=

 (1− µ)rivi + µrjvj if vw + vm ≤ K

(1− µ)rivi + µrjvj − vi
vm+vw

(rwvw + rmvm) else

where i 6= j are either w or m, for wild-type and mutant strains respectively, and µ is the

mutation rate between these strains. At time t = 0, v(0) = (vw(0), vm(0)) corresponds to the4

initial viral load of an infected individual, and vw(0) + vm(0) = N . Our within-host model is

similar in structure to the quasi-species model of Lythgoe et al. [65].6

In this model, the viral population initially increases exponentially because of the availability of

a large number of target cells. The wild-type and mutant strains increase exponentially at rates,8

rw and rm, respectively. These dynamics are consistent with the viral dynamics predicted by

standard multistrain within-host models when target cells are abundant [86–88]. The viral load10

saturates at time Te with a maximal viral load K (Fig 1B). Without losing generality, we assume

that after Te, the viral population size stays constant at K, and the frequencies of the wild-type12

and the mutant change due to their fitness differences. We further assume that the infectious

period ends after T days. For acute infections, viral load usually decreases rapidly after viral14

peak, and thus T is close to Te. For chronic infections, such as HIV and Hepatitis C virus, viral

loads usually reach a set-point. In this case, T is much greater than Te. Overall, this within-host16

model serves as a flexible framework to describe a range of viral dynamics from both acute and

chronic infections, while maintaining simplicity to enable analysis.18

Population scale model. At the scale of the host population, the transmission dynamics are

modeled using a multi-type branching process. Each infectious individual encounters a20

Poisson-distributed number of susceptible individuals at a rate of β individuals per day. Then, the

number of contacts of an infected individual during the infectious period is Poisson distributed22

with mean βT . Each contact results in a successful transmission event with probability p(E)

where E is the effective viral load at the time t of transmission (see below). Similar to the24

deterministic model of Lythgoe et al. [65], p(E) is an increasing function of E. Our main analyses
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assume that the transmission function p(E) is linear, but nonlinear transmission functions yield

nearly identical results (Figs. Appendix–2 through 4).2

The effective viral load E is calculated as E = bwvw(t) + bmvm(t) , where bw and bm are the

transmissibilities of the wild-type and the mutant, respectively. Here bw and bm account for the4

survival of the viruses through a range of processes during transmission, including their likelihoods

of being shed from the donor host, surviving the environment outside of a host, and reaching and6

infecting the target cells in an uninfected host. Furthermore, as explained in the within-host

model section, these parameters also account for the likelihoods of the viruses to survive initial8

local infection and establish a productive infection in the recipient host. Viruses may face different

challenges and selection pressures to overcome the barriers in each of these processes. Here, for10

simplicity and generality, a single parameter is used to summarize the transmissibility of different

viruses because little is known or measured about the ability of a virus to overcome these barriers.12

More explicit models can be constructed as the relevant data become available.

In the event of successful transmission, there are N virions (the transmitted founder viruses)14

that establish the productive infection. In the model, these N virions are sampled binomially from

the source individual’s viral load weighted by the transmissibilities of the viral strains. Thus, the16

probability of infecting an individual with a viral load of ṽ = (ṽw, ṽm) with ṽw + ṽm = N equals

ψ(v(t), ṽ) =
N !

ṽw!ṽm!

(
bwvw(t)

bwvw(t) + bmvm(t)

)ṽw ( bmvm(t)

bwvw(t) + bmvm(t)

)ṽm
.

Under these assumptions, during their infectious period, an infected individual of type v(0)18

infects a Poisson distributed number of individuals with viral load ṽ, and the mean of this

distribution equals20

F (v(0), ṽ) =

∫ T

0

βψ(v(t), ṽ)p(bwvw(t) + bmvm(t)) dt.

Overall, by explicitly modeling the cross-scale dynamics, our model simultaneously tracks the

number of infected hosts and the viral loads within each infected host (Fig 1D). The structure of22

our stochastic model is similar to Peck et al. [16]’s stochastic model of molecular viral evolution

along transmission chains. However, our model accounts for stochastic transmission dynamics24

rather than conditioning on a chain of transmission, and explicitly accounts for the dynamics of
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competing viral strains. It also has similarities with Geoghegan et al. [17]’s cross-scale, stochastic

model of a single transmission event from a donor host to a recipient host. Like our model,2

Geoghegan et al. [17]’s model has constant transmission bottlenecks, multinomial sampling from

donor to host, and explicit within host dynamics with exponential growth and ceiling phases.4

Their model, however, focuses on a single transmission event and assumes that all virions are

equally likely to be transmitted from donor to host, i.e. it assumes no selection based on6

transmissibility.

Methods. To solve the probabilities of emergence, we use the discrete-time branching process8

given by censusing the infected population at the beginning of each generation of infection. This

discrete-time process is known as the embedded process [79, 80]. All the statistics of this10

embedded process are given by the probability generating map G : [0, 1]N+1 → [0, 1]N+1 where

N + 1 is the number of types of initial viral loads i.e. all combinations of wild-type and mutant12

virions for N virions [79, 80]. We index the coordinates by the initial number of mutant virions

0, 1, 2, . . . , N within an infected individual and have14

Gi(s) = exp

(∑
j

F ((i, N − i), (j,N − j))(sj − 1)

)
.

The i-th coordinate of

q(t) = Gt(0, . . . , 0)

is the probability of extinction by generation t when there is initially one infected individual with16

initial viral load (i, N − i). The probability of emergence is given by 1− q where q = limt→∞ q(t)

is the asymptotic extinction probability. The limit theorem of branching processes implies that18

q = (q0, . . . , qN) is the smallest (with respect to the standard ordering of the positive cone),

non-negative solution of the equation q = G(0, . . . , 0). These extinction probabilities can be20

non-zero if and only if the dominant eigenvalue of the Jacobian matrix DG(1, 1, . . . , 1) is greater

than one. Equivalently, the reproductive number given by the dominant eigenvalue of the next22

generation matrix of DG(1, 1, . . . , 1) is greater than one [89]. Note that the linear map
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s 7→ DG(1, 1, . . . , 1)s corresponds to the mean-field dynamics of the embedded multi-type

branching process.2

For the numerical work, we used linear, logarithmic, and saturating functions for the

transmission probability function p. All gave similar results but we present the linear case as most4

analytical results were derived for this case. To compute the asymptotic extinction probabilities,

we iterated the probability generating map G for 2, 000 generations. For the individual based6

simulations, we solved the within-host differential equations using matrix exponentials and

renormalizing these exponentials when the viral load reached the value K. Between host8

transmission events were determined by a time-dependent Poisson process with rate function

p(bwvw(t) + bmvm(t)), and multinomial sampling was used to determine the initial viral load of an10

infected individual.

Results12

The probability of evolutionary emergence. We first focus on the scenario of a single

individual in the host population getting infected by the wild-type strain. We assume that the14

mean number of individuals infected by this individual (the reproductive number Rw of the

wild-type) is less than one. Hence, in the absence of mutations, there is no chance of a major16

outbreak [89]. However, if the wild-type strain produces a mutant strain whose reproductive

number Rm is greater than one, there is a chance for a major outbreak. The mutant strain might18

have a higher reproductive number than the wild-type strain because it replicates more rapidly

within the host or because it transmits more effectively to new hosts (or both). We define these20

within-host and between-host selective advantages as s = rm − rw and τ = log(bm)− log(bw),

respectively.22

Consistent with theoretical expectations, a non-zero probability of evolutionary emergence

requires the mutant’s reproductive number Rm to be greater than one (Fig 2). However, the24

mixture of selective advantages or disadvantages of the mutant strain that give rise to Rm > 1

depends in a complex manner on the pathogen’s life history traits, such as the duration of the26

infection (Fig 2A,B vs. C,D) and the transmission bottleneck width (Fig 2A,C vs. B,D). Notably,
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Figure 2. The joint effects of within-host and between-host selective advantage of
the mutant on the probability of emergence for pathogens with short-term (A,B)
and long-term (C,D) infectious periods, and with transmission bottlenecks of size
N = 1 (A,C) and N = 25 (B,D). Colorations correspond to log10 of the emergence
probability. The critical value of the mutant reproductive number Rm equaling one is
drawn in solid red. Black contour lines correspond to log10 of the number of mutant
virions transmitted by an individual initially only infected with the wild strain. In
D, the critical value of the cross-scale reproductive number , α = 1, is shown as a red
dashed line and the black asterisks correspond to the τ and s values used in Fig 3.
Parameters: K = 107, βT = 30, T = 7.5 < 12.9 = Te (short-term infection) and
T = 30 > 12.9 = Te (long-term infection), bw chosen so that R0 = 0.75 for wild type,
rw = 1.25 and µ = 10−7.
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for long-term infections with a large transmission bottleneck size, the emergence probability can

be effectively zero (i.e. < 10−16) for mutant strains whose reproductive number exceeds one (white2

region bounded by the solid red curve in Fig 2D) – a finding not explained by classical theory.

To understand these complexities, we determine the conditions under which the mutant’s4

reproductive number Rm exceeds one, and then present analytic approximations for the emergence

probability when Rm > 1.6

Cross-scale selection and the mutant reproductive number Rm. The reproductive

numbers of the wild-type strain (Rw) and mutant strain (Rm) can be calculated as the product of8

the contact rate, the average transmissibility of the strain during the infectious period, and the

infection duration (see, Coombs et al. [73] and Appendix). These reproductive numbers are10

positively correlated with the contact rate, infection duration, transmissibility, and viral

per-capita growth rates. The influence of the maximal viral load K depends on the infection12

duration. For short-term infections, defined here as infections with a relatively short saturated

phase (i.e. T − Te � Te), increasing K has little effect on a strain’s reproductive number. For14

long-term infections, defined here as as infections with a long saturated phase (i.e. T − Te � Te),

reproductive numbers increase with K.16

Whether a selective advantage at either scale results in the mutant reproductive number Rm

exceeding one depends on the duration of the infection. For short-term infections, most18

transmissions occur towards the end of the infectious period T , when the infectious load is the

highest. By the end of the infectious period, the mutant viral density has increased approximately20

by a factor of esT more than the wild-type, and transmission for each mutant virion is exp(τ) more

likely than for a wild-type virion. Refining this intuition, we derive the approximation (Appendix)22

(2) logRm ≈ logRw + τ + s(T − 1/rw).

This approximation shows that a sufficiently strong selective advantage at either scale can result

in the mutant reproductive number exceeding one (Rm > 1) despite a selective disadvantage at24

the other scale (confirmed by exact calculations in Fig 2A,B). For short-term infections where

viral dynamics are dominated by the exponential phase, the longer the duration of infection, the26
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greater the influence of the within-host selective advantage compared to the between-host selective

advantage (e.g., steep contours in Fig 2A).2

For long-term infections, the viral load will tend to K for both purely wild-type or purely

mutant infections. Thus, the only difference will be in transmissibility and we get the4

approximation (Appendix)

(3) logRm ≈ logRw + τ.

This approximation implies that a between-host selective advantage is required for a long-term6

infection to be capable of evolutionary emergence (confirmed by exact calculations in Fig 2C).

When viral dynamics are dominated by the saturated phase at fixed K, a within-host selective8

advantage has little impact on the average viral load during the infectious period of an individual

solely infected with the mutant strain and, consequently, provides a minimal increase in the10

mutant reproductive number.

Going beyond the mutant reproductive number. When the mutant strain has a12

reproductive number greater than one, there is a non-zero probability of a major outbreak that is

well-approximated by the product of three terms (compare Fig. 2 to Fig. Appendix–6):14

(4)

{
mean size of a minor
outbreak due to the
wild type

}
×


mean # individuals infected
with one mutant virion by an
individual infected initially with
only the wild type

×

probability an indi-
vidual infected with
one mutant virion
causes a major out-
break


This expression, which can be viewed a multiscale extension of earlier theory [12, 13], highlights

three key ingredients, in addition to Rm > 1, for evolutionary emergence.16

First, the size of the minor outbreak produced by the wild type determines the number of

opportunities for the mutant strain to appear within a host. The average size of this minor18

outbreak equals 1
1−Rw

, as noted by earlier studies [12, 13]. If the wild strain is badly maladapted,

then it is expected not to spread to multiple individuals (e.g. if Rw < 1/2, then 1
1−Rw

< 2) and20

opportunities for transmission of mutant virions are very limited. Alternatively, if the wild strain

is only slightly maladapted to the new host, then, even without any mutations, the pathogen is22
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expected to spread to many individuals (e.g. if Rw = 0.95, then 1
1−Rw

= 20), thereby providing

greater opportunities for evolutionary emergence. Our analysis implies that higher contact rates,2

within-host viral growth rates, viral transmissibility, and maximal viral loads (for long infectious

periods) facilitate these larger reproductive values.4

Second, the mutant strain must be transmitted successfully to susceptible individuals — the

second term of our approximation (4). For an individual initially infected only with the wild-type6

strain, the mean number of transmission events with mutant virions equals the product of the

contact rate, the infection duration, and the likelihood that a mutant virion is transmitted during8

a contact event, averaged over the full course of infection (Appendix). The likelihood of

transmitting mutant virions on the tth day of infection is proportional to the product of the10

transmission bottleneck width (N), the within-host frequency of the mutant strain, and the

transmissibility bm of the mutant strain. This highlights an important distinction between12

short-term and long-term infections. For short-term infections where sT is small, there is

insufficient time for the frequency of mutants to rise within a host, so transmission events with14

mutant virions are rare (< 1/1, 000 for all black contour lines in Fig 2A,B). This is a key obstacle

to evolutionary emergence in short-term infections. In contrast, for long-term infections where the16

mutant strain has a substantial within-host selective advantage, the mutant strain is transmitted

frequently (e.g. the expected number of events > 1 for some contours in Fig 2C,D).18

Finally, even if the mutant strain is successfully transmitted, an individual infected with the

mutant strain needs to give rise to a major outbreak — the third term of equation (4). This20

requires the mutant strain to rise in frequency in the infected host population. A mean field

analysis for larger bottleneck sizes (N > 5 in the simulations) reveals that mutant frequency22

initially grows geometrically by a factor α that equals the number of mutant virions, on average,

transmitted by an individual initially infected with a single mutant virion and N − 1 wild type24

virions (Appendix). We call α the cross-scale reproductive number as it corresponds to the

number of mutant virions in the initial viral load at the beginning of the next disease generation26

produced by a mutant virion in the initial viral load of the current disease generation. If this

cross-scale reproductive number is greater than one, then each mutant virion replaces itself with28
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more than one mutant virion in the next generation of infection, and the frequency of mutant

virions increases in the infected host population. If the cross-scale reproductive number α is less2

than one, the frequency of mutants decreases, thereby hindering evolutionary emergence.

For short-term infections, the cross-scale reproductive number α is equal to the ratio of the4

basic reproductive numbers:

(5) α =
Rm

Rw

Thus for short-term infections there is no additional condition required for emergence. Whenever6

the mutant reproductive number Rm exceeds one, there is a mean tendency for the mutant strain

to increase in frequency once it has been successfully transmitted to susceptible individuals (i.e.8

α > 1 because Rm > 1 > Rw). The greater the ratio Rm/Rw, the more rapid the increase in

frequency.10

For long-term infections, there is sufficient time for within-host selection to change the

frequency of the mutant strain within a host. Larger transmission bottlenecks increase the12

likelihood that these changes in frequency are transmitted between hosts. For these long infectious

periods and larger bottlenecks, a within-host selective disadvantage reduces the cross-scale14

reproductive number α (Appendix):

(6) α ≈ exp(τ + sT/2) for s sufficiently small.

Hence, the cross-scale reproductive number α may be less than one even when the mutant16

reproductive number Rm is greater than one. This phenomenon, which arises from the interplay of

dynamics at within-host and between-host scales, moderated by the transmission bottleneck18

width, explains the puzzling behavior about the emergence probabilities noted earlier (the white

region bounded by solid and dashed red lines in Fig 2D).20

The importance of these frequency dynamics can be visualized via individual-based outbreak

simulations, and cobwebbing diagrams summarizing the mean field dynamics. When the mutant22

reproductive number Rm is greater than one but its cross-scale reproductive number α is less than

one, mutant virions may be transmitted but the resulting mixed infections are invariably taken24
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Figure 3. Frequency dynamics of the mutant strain in the host population. For long-
term infections with moderate to large transmission bottlenecks (N > 5), individual-
based simulations corresponding to three values of the cross-scale reproductive num-
ber α illustrate (A) the mutant strain decreasing in frequency (despite an index
case initially only infected with the mutant strain) when the cross-scale reproductive
number α is less than one, (B) a gradual sweep to fixation of the mutant strain when
α ≈ 1, and (C) fast sweeps to fixation for large values of α > 1. In these individual
based simulations, each horizontal line marks the infectious period of an individual
whose infection was initiated with that percentage of the mutant strain and the ver-
tical arrows represent transmission events between individuals. In the bottom half
of the figure, the mean field dynamics corresponding to each of the individual-based
simulations are plotted as cobwebbing diagrams. The solid black curves correspond
to the expected frequency of the mutant strain in the infected host population in the
next generation given the frequency in the current generation. Thin blue lines indi-
cate how the expected frequencies change across multiple generations. The colored
backgrounds represent the expected number of individuals infected with a certain
percentage of the mutant strain (vertical axis) by an individual with an initial per-
centage of the mutant strain (horizontal axis). Lighter colors correspond to higher
values. Parameter values as in Fig 2D indicated with black asterisks.

over by purely wild-type infections (Fig 3A). Only pure mutant infections can escape this

“relapse” to wild-type, and then only if the mutation rate µ is low enough that new wild-type2
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virions are very slow to appear. When the within-host selective disadvantage is weak and the

between-host selective advantage is strong, the cross-scale reproductive number may be slightly2

greater than one and the mutant strain can drift to higher frequencies within the infected host

population (Fig 3B). For large within-host selective advantages, the cross-scale reproductive4

number is large and the mutant strain can sweep rapidly to fixation in the infected host

population (Fig 3C). Thus, in addition to revealing a new condition needed for evolutionary6

emergence, the cross-scale reproductive number α summarizes the conditions under which

evolution occurs swiftly or gradually within chains of transmission.8

The dueling effects of transmission bottlenecks. Wider bottlenecks increase the likelihood

of evolutionary emergence for pathogens with a short infectious period, but can hinder or10

facilitate evolutionary emergence of long-term infections (Fig 4A,B). For short-term infections,

evolutionary emergence is constrained primarily by the transmission of mutant virions by12

individuals initially infected with only the wild strain. Wider transmission bottlenecks alleviate

this constraint, especially when the mutant strain is expected to increase rapidly within the14

infected population (α� 1; Fig 4A). When the mutant strain rises slowly in the infected host

population (α slightly greater than one), the emergence probability is insensitive to the bottleneck16

size, regardless of infection duration.

For long-term infections for which the mutant strain’s reproductive number Rm is greater than18

one, but the cross-scale reproductive number α is less than one, emergence probabilities decrease

sharply with bottleneck size (Fig 4B and Appendix). Because a mutant reproductive number Rm20

greater than one requires a between-host selective advantage (τ > 0) for a long-term infection, the

cross-scale reproductive number α is less than one only if there is a within-host selective22

disadvantage (s < 0) so that mixed infections tend to be taken over by the wild-type.

Consequently, the mutant virus can start an epidemic only when a host is infected with an initial24

viral load composed of mutant particles only, an event that becomes increasingly unlikely for

larger bottleneck sizes N .26

Mutant spillover events hasten evolutionary emergence. When the mutant strain is

circulating in the reservoir, the index case can begin with a mixed infection which invariably28
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Figure 4. Effects of bottleneck size and mixed infections of the index case on evolu-
tionary emergence of short-term and long-term infections. Different curves correspond
to different tendencies, as measured by the cross-scale reproductive number α, for the
mutant strain to increase in frequency in the infected host population. In (A) and
(B), bottleneck size has negative effect on emergence when the cross-scale reproduc-
tive number α is less than one and a positive effect when α is greater than one. In (C)
and (D), index cases initially infected with higher percentages of the mutant strain
are more likely to lead to emergence. −∞ corresponds to numerical values of 10−16

or smaller. Parameters: K = 107, βT = 150, T = 7.5 for short-term infections and
T = 30 for long-term infections, bw chosen so that R0 = 0.75 for the wild strain,
rw = 1.25, τ = 1, s chosen to achieve the α values reported in the legend, and
µ = 10−7. N = 25 in (C) and (D).

makes evolutionary emergence more likely (Fig 4C,D). For short-term infections, spillover doses

that contain low or high frequencies of mutants have a roughly equal impact on emergence, and2

the magnitudes of these increases are relatively independent of the cross-scale reproductive
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Figure 5. The major steps and barriers for evolutionary emergence.

number α (Fig 4C). This arises because the initial production and transmission of the mutant

strain is the primary constraint on evolutionary emergence for short-term infections with Rm > 12

(black contours in Fig 2A,B). Consequently, mutant spillover events of any size are sufficient to

overcome this constraint.4

For long-term infections, the impact of mutant spillover depends on the cross-scale reproductive

number α. When α is less than one, only spillover doses with high frequencies of mutants have a6

significant effect on emergence (i.e. bottom three curves in Fig 4D). When the cross-scale

reproductive number α is greater than one, the effect mimics short-term infections and mutant8

spillover events of any size can substantially increase the chance of emergence (top three curves in

Fig 4C,D).10
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Discussion

We have presented a cross-scale model for evolutionary emergence of novel pathogens, linking2

explicit representations of viral growth and competition within host individuals to viral

transmission between individuals. This framework integrates and extends the findings of past4

theory on this problem by including mixed infections, explicit transmission bottlenecks, and a

distinct trait of transmissibility for each viral genotype, phenomena that are highlighted by6

current empirical research as essential components of viral evolution. Our work identifies four

steps to evolutionary emergence (Fig 5) and four ingredients that govern these steps: (i) the8

reproductive number of the wild type which determines the size of a minor outbreak of this strain,

(ii) the rate at which individuals infected initially with the wild-type strain transmit the mutant10

strain, and (iii) the cross-scale reproductive number which corresponds to the mean number of

mutant virions transmitted by an individual whose initial infection only included one mutant12

virion, and (iv) the reproductive number of the mutant strain. Prior studies of evolutionary

emergence [12–15] identified the importance of the single strain reproductive numbers, Rm and14

Rw, and a phenomenological ‘mutation rate’, but ingredients (ii) and (iii) are new mechanistic

insights arising from the cross-scale dynamics. By analyzing these ingredients of evolutionary16

emergence, we show how the probability of emergence is governed by selection pressures at

within-host and between-host scales, the width of the transmission bottleneck, and the infection18

duration. We also map the conditions under which different broad-scale patterns are observed,

from rapid selective sweeps to slower diffusion of new types. While our study has focused on20

within-host and between-host scales of selection, it could be generalized readily to other types of

cross-scale dynamics where selection may act differently at different scales, such as within-farm22

and between-farm scales where genetic data have given insights into the emergence of

high-pathogenicity avian influenza strains [90].24

Previous theoretical studies of evolutionary emergence of novel pathogens [12–15] have assumed

infected individuals are, at any point in time, infected primarily by a single pathogen strain.26

Consequently, shifts from infection with one strain to infection with another must occur abruptly,

relative to other processes. Such abrupt shifts could correspond to within-host selective sweeps or,28
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if mutant strains remain at low frequency, to rare events in which only the mutant strain is

transmitted. The seminal studies [12, 13] showed that under these conditions the probability of2

emergence is proportional to the frequency of these events, which they bundled together into a

phenomenological “mutation rate”.4

Our cross-scale analysis identifies the mechanistic counterpart to this phenomenological

“mutation rate”, which is the probability that an individual infected initially with the wild-type6

strain ends up transmitting at least one virion of the mutant strain (Step 3 in Fig 5). This

quantity, which is approximated by the black contours in Fig 2, is governed chiefly by the ability8

of the mutant strain to reach an appreciable frequency within the host over the course of an

infection. This is evident from the strong dependence on the strength of within-host10

selection—which surprisingly is much stronger than the dependence on the transmission

advantage of mutant virions—and the higher values found for larger bottleneck widths, which12

favor transmission of low-frequency mutants through a straight-forward sampling effect. This

sampling effect is consistent with the theoretical work of Geoghegan et al. [17], and the14

experimental study of Frise et al. [42], who found larger bottlenecks increased the likelihood of

mutant viral strains being transmitted between hosts. The duration of infection plays a crucial16

role, and our analysis showed that achieving this first transmission of the adaptive mutant is a key

barrier to evolutionary emergence for short-term infections (Fig 2A,B). This finding aligns with18

the recent observation that putative immune-escape mutants of pandemic H1N1 influenza, which

should have a within-host fitness advantage, were generated readily in infected humans but did20

not reach high within-host frequency and have been detected very rarely at the consensus level

(i.e. they have failed to emerge) [91]. While more investigation is needed to determine the22

relevant s and τ parameters for these strains, these data are consistent with the mechanism we

identify whereby these variants may be adaptive but have insufficient time to reach high enough24

frequencies to avoid being lost in transmission bottlenecks.

Our analysis highlights an additional factor, the cross-scale reproductive number α, previously26

unrecognized in models neglecting within-host diversity and analyses centered on R0 for pure

infections. Even after the mutant strain has been transmitted, it needs to increase in frequency at28
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the scale of the infected host population (Step 4 in Fig 5). Specifically, each transmitted mutant

virion, on average, needs to replace itself with more than one transmitted mutant virion in the2

next generation of infected hosts. When this occurs, it sets up a positive feedback along chains of

infections: individuals with a higher frequency of the mutant strain tend to infect more4

individuals, which in turn provides more opportunities to transmit, on average, higher frequencies

of the mutant strain to the next generation. Conversely, when this between-generation cross-scale6

reproductive number is less than one, the positive feedback leads to lower and lower frequencies of

the mutant strain within the infected host population. This positive feedback mechanism is8

stronger for wider transmission bottlenecks (≥ 5 virions in our numerical explorations), which

better preserve the mutant frequency from one host to the next. Interestingly, this ≥ 5 virion10

threshold for transmission bottlenecks is consistent with the threshold eliminating fitness losses in

models of RNA virus evolution in plaque to plaque transfers of diluted viral solutions on plates of12

susceptible cells [40].

The directionality of the positive feedback is more complex, and depends on multiple factors14

including the infection duration and the presence or absence of cross-scale conflicts. For long-term

infections, mutant frequencies can drop deterministically within a host, and hence prevent16

emergence, even if the mutant strain has a reproductive number greater than one. This occurs

when the mutant strain has a within-host selective disadvantage and between-host selective18

advantage (upper left quadrant of Fig 2D); the long infectious period allows time for the

within-host disadvantage to drive the mutant strain to lower frequency and, thereby, set up the20

positive feedback effectively preventing evolutionary emergence. In contrast, for short-term

infections the mutant strain tends to rise in frequency whenever the mutant reproductive number22

is greater than one, because there is insufficient time for any within-host disadvantage to act. In

particular, evolutionary emergence may occur despite within-host selective disadvantages, a24

possibility excluded by previous theory [15]. Collectively these two results imply that, in the face

of cross-scale conflict and wide transmission bottlenecks, longer infectious periods can inhibit,26

rather than facilitate [14], evolutionary emergence (Fig 2B,D). Related to this result, Geoghegan

et al. [17] found that longer durations of the infectious period would lower the probability that a28
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donor would infect the recipient. In their case, this occurred because fitness of the mutant was

assumed to be lower in the donor host species and higher in the recipient species. Hence, a longer2

infectious period could purge any mutants arising in the donor and result in the recipient only

receiving wild-type virions.4

Previous theoretical studies examining the evolutionary consequences of cross-scale conflict [e.g.

65, 72, 73] differ from ours in several ways. Notably, they consider longer-term evolution for6

endemic diseases using deterministic models, rather than the inherently stochastic, shorter-term

dynamics of evolutionary emergence. Using multiscale endemic SIR models, Coombs et al. [73]8

found that pathogen strains competitively superior at the within-host scale could be displaced by

competitively inferior strains that had higher reproductive numbers at the epidemiological scale.10

This phenomenon was driven by non-equilibrium within-host dynamics, where early fluctuations

in strain frequencies could have disproportionate influence if host survival was short. Our work12

reveals the converse case, where strains with lower reproductive numbers at the epidemiological

scale (in fact, less than one) can prevent evolutionary emergence if they have a within-host14

advantage, by causing the adapted strains to have a cross-scale reproductive number α of less

than one. Consistent with our result, Lythgoe et al. [65] showed found that deterministic,16

multistrain models could produce equilibrium states dominated by strains that were competitively

superior at the within-host scale, despite reducing the reproductive number at the epidemiological18

scale. Parallel to our finding that cross-scale conflict occurred only for long-term infections,

Lythgoe et al. [65]’s short-sighted evolution was most pronounced when within-host dynamics20

occurred at a faster time-scale.

Our cross-scale analysis also enables us to address two long-standing and interrelated questions22

in emerging pathogen research, regarding the influence of transmission bottleneck size on

emergence probability and the importance of “pre-adapted” mutations circulating in the animal24

reservoir [17, 71, 76–78, 92]. In both cases, the answer depends on the cross-scale reproductive

number α that governs the frequency feedback. Under most circumstances, wider bottlenecks26

boost the probability of emergence (Fig 4A,B), because they favor the onward transmission of

mutant virions when they are rare; this is particularly vital for the first transmission of mutant28
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virions (i.e. Step 3 in Fig. 5). The exception is for long-term infections with α < 1, such that the

mutant tends to decline in frequency in the infected host population. Under these circumstances,2

wider bottlenecks hinder emergence by propagating reductions in the frequency of the mutant

strain more efficiently from host to host (Step 4 in Fig. 5). Conventional thinking about the4

influence of bottlenecks on viral adaptation emphasizes fitness losses due to genetic drift and the

effects of Muller’s ratchet [35–37, 39, 40], which become more severe for narrower bottlenecks.6

Contrary to these negative effects of narrow bottlenecks, our findings highlight that narrower

bottlenecks can aid emergence in long-term infections with a cross-scale conflict in selection8

(Fig 4B). Here the adaptive gain in transmissibility at population scales can be impeded by the

selective disadvantage at the within-host scale, but, intriguingly, this disadvantage is neutralized10

by genetic drift arising from narrow bottlenecks. Given the evidence for cross-scale evolutionary

conflicts for HIV-1 [58, 63, 64, 93], our results suggest the possibility that HIV-1’s narrow12

transmission bottleneck [44] could play a role in the emergence of novel strains (e.g. drug resistant

strains).14

Similar mechanisms dictate the influence of mutant viral strains circulating in the reservoir,

particularly for long-term infections (Fig 4C,D). If the cross-scale reproductive number α is16

greater than one, so that the mutant frequency rises easily in the infected host population, then

even low frequencies of mutants in the reservoir lead to substantial risk of emergence. Indeed, for18

long-term infections with α > 1, emergence becomes almost certain when there are mutants in the

initial spillover inoculum. Conversely, when the cross-scale reproductive number is less than one,20

emergence probability scales with the proportion of mutants in the initial dose, and when α� 1,

the initial dose must consist almost entirely of the mutant strain in order to pose any major risk.22

These findings yield direct lessons for the growing enterprise of conducting genetic surveillance on

zoonotic pathogens in their animal reservoirs [94–97]. A crucial requirement for effective genetic24

surveillance is the ability to identify genotypes of concern; the integration of various research

approaches to address this question, and estimate key quantities, is an on-going research26

challenge [98–100]. Risk to humans increases if there is any non-zero proportion of mutant viruses

in the spillover inoculum, so tracking the presence of such mutants is beneficial. Surprisingly, the28
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quantitative frequency of mutants in the initial dose has little impact on emergence probability in

most scenarios, with the one exception of long-term infections with α < 1. Collectively, these2

results suggest that any knowledge of the cross-scale reproductive number and mutant

reproductive numbers can help to refine our goals for genetic surveillance, and that in many4

circumstances presence/absence detection is sufficient.

While there are not sufficient data from past emergence events to test our model’s conclusions,6

recent studies combining animal transmission experiments with deep sequencing have exhibited

many phenomena aligned with our findings. Moncla et al. [43] conducted deep sequencing8

analyses of H1N1 influenza viruses, in the context of ferret airborne transmission experiments that

examined the adaptation of avian-like viruses to the mammalian host. Their results provide10

in-depth insights into selection within hosts and at transmission bottlenecks, for a range of

mutations on genetic backgrounds that change as adaptation proceeds (i.e. equivalent to12

numerous separate implementations of our model of a single mutational step). They observe a

fascinating range of dynamics: some mutations appeared to have α moderately above 1, exhibiting14

modest increases in frequency between generations, but achieved this outcome with different traits

(e.g. S113N on the HA190D225D background exhibited strong within-host selection and no16

evident transmission advantage, while D265V showed weak within-host selection but its frequency

rises in transmission). Another mutation (I187T on the ‘Mut’ background) appeared to have18

α� 1 and exhibited strong selection at both scales; notably, this mutation is widespread in 17/17

human-derived isolates of the post-emergence 1918 virus, consistent with the successful and rapid20

emergence our model would predict. Moncla et al. also present substantial evidence of cross-scale

conflict in selection, as one mutation (G225D on ‘Mut’ background) exhibited declining frequencies22

within ferrets but rose to fixation in 2/2 transmission events, while numerous mutations in the

HA2 region rose in frequency within the host but were eliminated in transmission. Another study24

examined a set of ‘gain-of-function’ mutations in H5N1 influenza in ferrets, and reported a slow

rise in frequency when the virus was passaged between ferrets by intranasal inoculation, then26

rapid fixation of these mutations during airborne transmission [24]; the airborne transmission data

are consistent with strong between-host selection and a high α value (though we emphasize that28
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circulating H5N1 viruses required substantial modification to the favorable genetic background

used in those experiments). Intriguingly, Moncla et al. synthesized their results with those of2

earlier studies [41, 49, 62] to hypothesize that the ‘stringency’ of the transmission bottleneck

varies systematically during the course of viral adaptation, with loose bottlenecks prevailing when4

viruses first encounter a new host species (and perhaps again when the virus is host-adapted), and

much tighter bottlenecks at the key juncture in host adaptation when a genotype with greater6

transmissibility is available to be selected. If this hypothesis is correct, then our findings can be

applied to each adaptive step independently, and may help to identify which viral traits are most8

crucial to adaptive steps subject to tighter or looser bottlenecks.

Our results focus on systems where there is one major rate-limiting step to emergence, and the10

viral population can be represented by one wild-type and one mutant strain. This is a

simplification of most viral emergence problems, but will apply directly to systems where a single12

large-effect mutation is the primary barrier to emergence of a supercritical strain, as for

Venezuelan equine encephalitis virus emerging from rodents to horses [101]. While it is possible to14

extend our exact computations and analysis of the cross-scale reproductive number to systems

with multiple mutational steps, the present analysis already provides insights into more complex16

evolutionary scenarios. For evolutionary trajectories that proceed through a fixed series of

genotypes, the probability of emergence can be approximated by extension of our equation (4), as18

in previous work [12, 13, 15]. If emergence requires multiple mutational steps which pass through

a fitness valley, then the scale at which this valley occurs matters. A within-host fitness valley in20

replication rates would hinder pathogens with long-term infections and larger bottleneck widths,

more than those with smaller bottlenecks. A between-host fitness valley in transmissibility could22

hinder evolutionary emergence of pathogens causing long-term infections more than those causing

short-term infections, unless the within-host landscape is sufficiently favorable to allow traversing24

the valley within a single host’s long-term infection. Recent studies have also highlighted the

importance of considering the broader genotype space, which can reveal indirect paths that26

circumvent fitness valleys [102], alternative genotypes that yield similar phenotypes [43], and the

costs imposed by deleterious mutants on higher mutation rates [103].28
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Our analysis also focuses on a simple “logistic-like” model for within-host viral dynamics. This

simplification allows us to study how evolutionary emergence is limited by different factors for2

pathogens dominated by exponential versus saturated phases of viral growth, while maintaining

analytical tractability. Future important extensions would be to allow within-host fitness to alter4

the carrying capacity in the saturated phase, as well as identifying the relative contributions of

stochastic within-host dynamics [17], immune responses, and host heterogeneity on viral6

emergence. Some of these aims would be addressed by using a more mechanistic model for the

within-host dynamics, incorporating resource limitation [72, 73] or immune pressure [104]. We8

have assumed that the bottleneck width N is fixed for a given pathogen. This is broadly

consistent with currently available data [44, 47, 48], but it will be important to explore the10

consequences of variation in bottleneck width arising from different routes of transmission, or

possibly from changing viral loads [38, 39]. The computational and analytical framework12

developed here can be extended to account for these additional complexities. Other important

extensions can explore the impact of clonal competition on emergence probabilities [105–108] or14

the potential for complementation to rescue pathogen strains from deep fitness valleys–a

mechanism that depends on wide transmission bottlenecks [109].16

Our cross-scale analysis opens the door for a new generation of integrative risk assessment

models for pathogen emergence, which will integrate growing streams of data collected in18

laboratories and field surveillance programs [97, 98, 100]. At present we rely on the intuition of

individual scientists to link together the discoveries from targeted experiments, massively parallel20

phenotypic screens, experimental evolution, clinical medicine, and field epidemiology and disease

ecology. Mathematical and computational models that connect biological scales using mechanistic22

principles can make unique contributions to this transdisciplinary enterprise, by formally

integrating diverse empirical findings and by identifying the crucial knowledge gaps to focus future24

research. The work presented here is a step on the path to realizing this potential.
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[105] N. Strelkowa and M. Lässig. Clonal interference in the evolution of influenza. Genetics, 192:
671–682, 2012.44

[106] P.J. Gerrish and R.E. Lenski. The fate of competing beneficial mutations in an asexual
population. Genetica, 102:127–144, 1998.46

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2019. ; https://doi.org/10.1101/066688doi: bioRxiv preprint 

https://doi.org/10.1101/066688


36

[107] B.H. Good, I.M. Rouzine, D.J. Balick, O. Hallatschek, and M.M. Desai. Distribution of fixed
beneficial mutations and the rate of adaptation in asexual populations. Proceedings of the2

National Academy of Sciences, 109:4950–4955, 2012.
[108] C Brandon Ogbunugafor and Margaret J Eppstein. Competition along trajectories governs4

adaptation rates towards antimicrobial resistance. Nature ecology & evolution, 1(1):0007,
2017.6

[109] R. Ke, J. Aaskov, E. C. Holmes, and J. O. Lloyd-Smith. Phylodynamic analysis of the
emergence and epidemiological impact of transmissible defective dengue viruses. PLOS8

Pathogens, 9:e1003193, 2013.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2019. ; https://doi.org/10.1101/066688doi: bioRxiv preprint 

https://doi.org/10.1101/066688


Appendix-1

Appendix

Derivation of the Single Strain Reproductive Numbers. When the within-host dynamics2

only exhibit exponential growth (i.e. N exp(riT ) < K) and there is a linear transmission function,

the basic reproductive numbers equal4

(A–1) Ri = βbiN
exp(riT )− 1

ri
for i = w,m.

When the within-host dynamics saturate (i.e. N exp(riT ) > K), the basic reproductive number

equals6

(A–2) Ri = βbi

(
K −N
ri

+KTs

)
where Te = log(K/N)/ri is the length of exponential phase and Ts = T − Te is the length of

saturated phase. These expressions for the single strain reproductive numbers are equivalent to8

evaluating the integral presented in equation (22) of Coombs et al. [73] for our within-host model.

We also note that our assumption of small mutation rates and Rw < Rm implies that the10

multiscale reproductive number R0 in the sense of Coombs et al. [73] and Lythgoe et al. [65] (i.e.

the dominant eigenvalue of the next generation matrix of DG(1, 1, . . . , 1) is (approximately) Rm.12

We derive two approximations of Ri under the assumption that s is small, exp(riT )� 1, and

K � N . First, assume that the infection is short-term in which case Te = T . Then provided s is14

sufficiently small to ensure that the mutant type doesn’t saturate, Ri are given by (A–1). The log

ratio, provided exp(riT )� 1, satisfies16

log
Rm

Rw

≈ log
βbmN exp((rw + s)T )/(rw + s)

βbwN exp(rwT )/rw

= τ + sT + log
rw

rw + s

≈ τ + s(T − 1/rw)

which yields (2) in the main text.

Now assume that the infection is long-term in which case Te < T , and that if s < 0, |s| is18

sufficiently small to ensure that the mutant type also saturates before time T . Then the basic
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reproductive numbers Ri are given by (A–2). If K � N , then

log
Rm

Rw

≈ log
βbmK

(
1

rw+s
+ T − 1

rw+s
log K

N

)
βbwK

(
1
rw

+ Ts

)
= τ + log

rw
rw+s

+ Trw − rw
rw+s

log K
N

1 + rwTs
.

Assume that |s| � rw. Then2

log
Rm

Rw

≈ τ + log
1− s

rw
+ Trw − (1− s

rw
) log K

N

1 + rwTs
.

As T = Ts + Te and

(1− s

rw
) log

K

N
=
rw − s
rw

log
K

N
= (rw − s)Te,

it follows that4

log
Rm

Rw

≈ τ + log

(
1 +

s

rw

rwTe − 1

1 + rwTs

)
.

As log(1 + x) ≈ x for small x and |s| � rw by assumption, we obtain

log
Rm

Rw

≈ τ +
s

rw

rwTe − 1

rwTs + 1
.

Equation (3) in the main text follows in the case that Ts � Ts in which case the second term is6

approximately zero.

Derivation of the Emergence Probability Approximation. For small mutation likelihood8

µ, we derive a mathematically explicit version of the approximation (4) for the emergence

probability from the main text. As stated in the main text, this approximation is given by the10

product of three terms: the expected number of secondary, wild-type cases produced during a

fade-out, the mean number of individuals infected with mutant virions by an individual initially12

infected only with the wild-type, and the probability of emergence from an individual infected

with a single mutant virion. As noted in the main text, the first term is given by 1
1−Rw

. The14

second term requires more work. To derive an analytic approximation for this term, notice that

the mean number of individuals infected with ` mutant virions by an individual only infected with16
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the wild type equals ∫ T

0

βp (vw(t)bw + vm(t)bm)ψ((vw(t), vm(t)), (N − `, `))dt

where vw(t), vm(t) is the solution of the within host viral dynamics with vw(0) = N, vm(0) = 0,2

and ψ((vw, vm), (ṽw, ṽm)) is the probability of an individual with viral load (vw, vm) infecting an

individual with a viral load of (ṽw, ṽm) where ṽw + ṽm = N . The solution (vm(t), vm(t)) is given by4

vi(t) = Vi(t) if Vw(t) + Vm(t) ≤ K and K
Vi(t)

Vw(t) + Vm(t)
otherwise

where Vw(t), Vm(t) are the solutions to

dVw
dt

= rw(1− µ)Vw + rmµVm Vw(0) = N

dVm
dt

= rm(1− µ)Vm + rwµVw Vm(0) = 0.

Ignoring back mutations (i.e. setting rmµ = 0 and rm(1− µ) to rm), the solutions for Vw(t), Vm(t)6

are approximately

Vw(t) ≈ N exp(rwt)

Vm(t) ≈ µN
rw

rw − rm
(exp(rwt)− exp(rmt))

if rw 6= rm, and8

Vm(t) ≈ µNrwt exp(rwt)

if rw = rm = r. Since x
a+x
≈ x/a to first order near 0, the weighted frequency, xm(t), of mutant

strain is approximately10

xm(t) =
bmVm(t)

bwVw(t) + bmVm(t)
≈ exp(τ)µrw

exp(st)− 1

s
where s = rm − rw and

bm
bw

= exp(τ)

if s 6= 0, and

xm(t) ≈ µrwt exp(τ)

if s = 0. We have12

ψ((vw(t), vm(t)), (N − `, `)) =
N !

`!(N − `)!
xw(t)N−`xm(t)`.
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For ` ≥ 2, these terms are of order µ2 and therefore will be ignored. Hence, the only term of

interest is ` = 1:2

ψ((vw(t), vm(t)), (N − 1, 1)) ≈ µNrw exp(τ)
exp(st)− 1

s
if s 6= 0 and µNrwt exp(τ) otherwise

We also can approximate (assuming p is differentiable)

p(bwVw(t) + bmVm(t)) ≈ p(bwVw(t)) +O(µ) = p(bw min{K,N exp(rwt)}) +O(µ)

We drop the O(µ) term as it will only lead to higher order terms in the approximation.4

Putting all of this together gives the following approximation for the mutant force of infection

(A–3) β

∫ T

0

µp(bw min{K,N exp(rwt)})Nrw exp(τ)
exp(st)− 1

s
dt

if s 6= 0, and6

(A–4) β

∫ T

0

µp(bw min{K,N exp(rwt)})Nrw exp(τ)tdt

if s = 0.

In the case of a linear transmission function p(x) = x, we can write down explicit expressions8

for (A–3) and (A–4). There are two cases to consider. First suppose that N exp(rwT ) ≤ K i.e. the

infection is short-term. Then, integrating and simplifying yields the following approximation for10

the mutant force of infection

βµN2bw
rw
s

exp(τ)

(
exp((rw + s)T )− 1

rw + s
− (exp(rwT )− 1

rw

)
.

Assuming rw � s (and thus rw/(rw + s) ' 1− s/rw),12

(A–5) βµN2bw exp(τ)

 exp(sT )− 1

s︸ ︷︷ ︸
≈ (for small s) (1+sT/2)T

exp(rwT )− exp((rw + s)T )− 1

rw


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if s 6= 0 and

βµN2bw exp(τ)

(
T exp(rwT )− exp(rwT )− 1

rw

)
if s = 0. Now rather than writing out the entire expression for the case N exp(rwT ) ≥ K, lets2

write down things for when the time in the saturated phase is much, much longer than the time in

the exponential phase. Then, integrating and simplifying yields the following approximation for4

the mutant force of infection

(A–6) βµNKbwrw exp(τ)

(
exp(sT )− 1

s
− T

)
/s︸ ︷︷ ︸

≈ (small s) (1+sT/3)T 2/2

if s 6= 0, and6

βµNKbwrw exp(τ)T 2/2

otherwise.

Putting this all together, (4) for an short-term (respectively long-term) infection with s 6= 08

becomes the product of 1
1−Rw

, (A–5) (respectively (A–6)), and the probability of an outbreak

starting with one individual infected with N − 1 wild type virions and 1 mutant type virions. The10

final probability term can be calculated exactly using the generating functions described in the

Models and Methods section of the main text. Fig Appendix–6 illustrates the effectiveness of this12

approximation, and Fig Appendix–7 plots the the error in the approximation.

Derivation of the Mean Field Frequency Dynamics. To understand how the viral14

composition of infected individuals change across generations, we derive a mean field

approximation for the dynamics of the mean mutant viral load at the beginning of each generation16

of disease spread. To this end, we define a map from h : [0, 1]→ [0, 1] where x ∈ [0, 1] represents

the current mean mutant viral load in the population at the beginning of the infectious period and18

h(x) is the mean at the beginning of infectious period in the next generation. Our derivation of

this mean field dynamic is done in the limit of large N ↑ ∞ and µ ↓ 0. None-the-less, as shown by20

the dashed red line in Fig 2D, this approximation works quite well away from this limit.
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We begin by approximating the mean initial mutant viral count in individuals infected by an

individual with Vw(0) = N − ` and Vm(0) = `. Recall, the force of infection for producing2

individuals initially infected with j mutant viral particles is given by

F ((N − `, `), (N − j, j)) = β

∫ T

0

p(
∑
i

bivi(t))
N !

(N − j)!j!
y(t)j(1− y(t))jdt

where y(t) = bmvm(t)
bwvw(t)+bmvm(t)

is the within-host frequency of the mutant strain, and (vw(t), vm(t)) is4

the solution of the within-host viral dynamics with initial condition vw(0) = N − `, vm(0) = `.

Weighting this term by j and summing over j yields the expected number of mutant viral6

particles in an individual infected by our type (N − `, `) infected individual:

β

∫ T

0

p(
∑
i

bivi(t))
∑
j

j
N !

(N − j)!j!
y(t)j(1− y(t))jdt = β

∫ T

0

p(
∑
i

bivi(t))Ny(t)dt

Now if we let x = `/N denote the initial fraction, then dividing the previous integral by the net8

number of viral particles infecting new individuals yields our desired update rule

(A–7) h(x) :=
β
∫ T
0
p(
∑

i bivi(t))Ny(t)dt

β
∫ T
0
p(
∑

i bivi(t))Ndt
=

∫ T
0
p(
∑

i bivi(t))y(t)dt∫ T
0
p(
∑

i bivi(t))dt

Note that h(x) is a function of x as the solution of (Vw(t), Vm(t)) depends on its initial condition10

Vw(0) = (1− x)N, Vm(0) = xN .

The points x = 0 and x = 1 are fixed points for h corresponding to a mutant-free and12

wild-type-free states. Stability of the fixed point x = 0 is determined by

h′(0) =

∫ T
0

∂
∂x
p(
∑

i bivi(t))y(t)dt
∫ T
0
p(
∑

i bivi(t))dt
∣∣∣
x=0(∫ T

0
p(
∑

i bivi(t))dt
)2 ∣∣∣

x=0

−

∫ T
0
p(
∑

i bivi(t))dt
∫ T
0
p(
∑

i bivi(t))y(t)dt
∣∣∣
x=0(∫ T

0
p(
∑

i bivi(t))dt
)2 ∣∣∣

x=0

=
β
∫ T
0

∂
∂x
p(
∑

i bivi(t))y(t)dt
∣∣∣
x=0

β
∫ T
0
p(bwvw(t))dt

≈
β
∫ T
0
p(
∑

i bivi(t))y(t)dt
∣∣∣
x=1/N

β
∫ T
0
p(bwvw(t))dt
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for N � 1. h′(0) corresponds to α described in the main text and the final expression has the

verbal interpretation given in the main text.2

In the special case of a linear transmission function, p(x) = x, we get the simplified expression

(A–8) h(x) =

∫ T
0
bmvm(t)dt∫ T

0

∑
i bivi(t)dt

where4

vw(t) = N(1− x)erwt if vw(t) + vm(t) ≤ K, otherwise K
(1− x)erwt

(1− x)erwt + xermt

vm(t) = Nxermt if vw(t) + vm(t) ≤ K, otherwise K
xermt

(1− x)erwt + xermt

Carrying out the integration, in general, is complicated by the fact that the time at which

Vw(t) + Vm(t) = K has no explicit formula when s 6= 0 and, in general, this saturation time will6

depend on x.

In the special case of short-term infections (i.e. there is only exponential growth), we get8

h(x) =
ηx

(η − 1)x+ 1

where

η = exp(τ)
rw

exp(rwT )− 1

exp(rmT )− 1

rm
=
Rm

Rw

α is defined as h′(0), which here is equal to η, thus for short-term infections, α = Rm/Rw.10

Since Rw < 1 by assumption and Rm > 1 is necessary for emergence, we always have α > 1 and

so the frequency dependent dynamics at the scale of the host population can not significantly12

impede emergence.

Now, lets consider the more difficult case of a long-term infection with a saturated phase to the14

within-host viral dynamics. Then

h′(0) = bm

∫ T
0

∂vm(t)
∂x

∣∣∣
x=0

dt∫ T
0
bwvw(t)

∣∣∣
x=0

dt
.
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For x close to 0, we have the time at which the dynamics saturate, Te, is given approximately by

Te ≈
1

rw
log

K

N

in which case2

∂vm(t)

∂x

∣∣∣
x=0
≈

 N exp(rmt) for t ≤ Te

K exp(st) else.

Let Ts = T − Te and assume that T � Te, T̃e where T̃e is the length of the exponential phase for

an individual infected only with the mutant strain. Then4

α = h′(0) ≈ eτ
0 +K exp(sT )−1

s

0 +KT
= eτ

exp(sT )− 1

sT

≈ eτ (1 + sT/2)

as claimed in the main text.

Estimating the Probability of Emergence when α < 1. When α is less than 1, the6

frequency of mutant virus decrease in an infected host, and consequently, even if the adapted virus

may emerge, the probability of emergence is very low, and even lower when the bottleneck size, N ,8

increases. Here, we provide an approximation for the emergence probability when α < 1, which

explains why the probability of emergence decreases dramatically when N increases.10

When the outbreak starts, the first individual is infected with wild-type only. When s < 0, the

mutation-selection balance can be reached relatively quickly, and for s negative enough, the12

proportion of mutant is small. So the probability to transmit at least one mutant is roughly equal

to the probability to transmit one mutant, which is N exp(τ)rwµ/|s| where rwµ/|s| is the14

proportion of the mutant type, and exp(τ) is its relative transmissibility. Then, if s is small

enough, then the reproductive number of an individual with a mixed transmission is close to Rw16

of the wild-type. Thus, the number of transmissions in a wild-type outbreak can be used

(Rw/(1−Rw)). For an individual infected with a mixed infection, what will lead to emergence are18

the contacts for which only the mutant is transmitted. The number of such contacts is:

(A–9) β

∫ T

0

(bwVw + bmVm)
(bmVm)N

(bwVw + bmVm)N
dt.
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Figure Appendix-1. Approximation (A–12) (dashed lines) vs. numerical resolu-
tion of the generating maps (R code) (solid lines)

This can be re-written as:

(A–10) β

∫ T

0

bwVw
(exp(τ)Vm/Vw)N

(1 + exp(τ)Vm/Vw)N−1
dt.

As most cases of mixed infection will be cases started with a mix of one mutant and N − 12

wild-type viral particles, Vm/Vw = exp(st)/(N − 1). Thus previous expression is equal to:

(A–11) β

∫ T

0

bw min{K, (N − 1) exp(rwt)}
(exp(τ + st)/(N − 1))N

(1 + exp(τ + st)/N − 1)N−1
dt.

Last, an individual infected with mutant viruses alone has to lead to a successful outbreak, which

happens at approximately the same probability than in the case with no back mutations, with

probability pm. So overall, the approximation will be:

(A–12) pemergence =
Rw

1−Rw

µ exp(τ)rw
−s

pmβbw
N

N − 1

×
∫ T

0

min{K, (N − 1) exp(rwt)} exp(τ + st)

(
exp(τ + st)/(N − 1)

1 + exp(τ + st)/(N − 1)

)N−1
︸ ︷︷ ︸

=:f(t,N)

dt.
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Now we can ask, which parts of this expression depend on N? The mutant reproductive

number Rw = bw
∫ T
0

min{K,N exp(rwt)}dt is independent from N , because we have chosen bw to2

keep Rw the same for all N values. Thus bwN/(N − 1)
∫ T
0

min{K, (N − 1) exp(rwt)}dt is almost

independent from N . Therefore, most of the dependence of4

bwN/(N − 1)
∫ T
0

min{K, (N − 1) exp(rwt)}f(t, N)dt with N stems from the dependence of f(t, N)

with N . Since a 7→ a/(1 + a) is an increasing function bounded above by 1 for positive a, the6

expression

exp(τ + st)/(N − 1)/(1 + exp(τ + st)/(N − 1))

decreases when N increases. As N 7→ (a/(1 + a))N−1 is a decreasing function of N ≥ 1 for a > 0,8

we get that the probability of emergence decreases at least exponentially with the bottleneck size,

as claimed in the main text. Fig Appendix-1 illustrates that these approximations work especially10

when s is sufficiently negative.

Numerics with Nonlinear Transmission Functions12

To explore the robustness of our numerical results to the assumption of a linear transmission

function, we redid our numerical analysis with two non-linear transmission functions14

p(x) = 1− exp(−x) in Fig Appendix–2 and p(x) = log(1 + x) in Fig Appendix–4. Differences

between the emergence probabilities for the nonlinear and linear transmission functions are shown16

in Figs Appendix–3 through 4. As these figures demonstrate, we nearly get the same results.
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Figure Appendix–2. Emergence probabilities for the transmission function p(x) =
1− exp(−x) with all other parameters as indicated in Fig 2.
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Figure Appendix–3. Contour plots of 1, 000 × the absolute value of the difference
between the emergence probabilities for the transmission functions p(x) = 1−exp(−x)
and p(x) = x. Parameters as indicated in Fig 2.
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Figure Appendix–4. Emergence probabilities for the transmission function p(x) =
log(1 + x) with all other parameters as indicated in Fig 2.
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Figure Appendix–5. Contour plots of 1, 000 × the absolute value of the difference
between the emergence probabilities for the transmission functions p(x) = log(1 + x)
and p(x) = x. Parameters as indicated in Fig 2.
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Figure Appendix–6. The analytic approximation based on (4) for the exact com-
putations of the emergence probabilities in Fig 2 in the main text.
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Figure Appendix–7. Contour plots of 1, 000 × the absolute value in the difference
between the analytic approximation from (4) and the exact computations for the
emergence probabilities. Parameters as in Fig 2 in the main text.
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