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 2 

Abstract 40 

Systems biology approaches, leveraging multi-omics measurements, are needed to capture the 41 

complexity of biological networks while identifying the key molecular drivers of disease 42 

mechanisms. We present DIABLO, a novel integrative method to identify multi-omics 43 

biomarker panels that can discriminate between multiple phenotypic groups. In the multi-omics 44 

analyses of simulated and real-world datasets, DIABLO resulted in superior biological 45 

enrichment compared to other integrative methods, and achieved comparable predictive 46 

performance with existing multi-step classification schemes. DIABLO is a versatile approach 47 

that will benefit a diverse range of research areas, where multiple high dimensional datasets are 48 

available for the same set of specimens. DIABLO is implemented along with tools for model 49 

selection, and validation, as well as graphical outputs to assist in the interpretation of these 50 

integrative analyses (http://mixomics.org/). 51 

 52 

Keywords: Systems biology, biomarkers, data integration, data visualization, asthma, 53 

classification, breast cancer, multi-omics, network analysis 54 

 55 

 56 

  57 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2018. ; https://doi.org/10.1101/067611doi: bioRxiv preprint 

https://doi.org/10.1101/067611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Background 58 

Technological improvements have allowed for the collection of data from different molecular 59 

compartments (e.g., gene expression, methylation status, protein abundance) resulting in multiple 60 

omics (multi-omics) data from the same set of biospecimens (eg., transcriptomics, proteomics, 61 

metabolomics). The large number of omic variables compared to the limited number of available 62 

biological samples presents a computational challenge when identifying the key drivers of 63 

disease. Further, technological limitations differ with respect to different omic platforms (e.g., 64 

sequencing vs. mass spectrometry), and biological effect sizes differ with respect to different 65 

omic variable-types (e.g., methylation status vs. protein expression). Effective integrative 66 

strategies are needed, to extract common biological information spanning multiple molecular 67 

compartments that explains phenotypic variation. Already, systems biology approaches which 68 

incorporated data from multiple biological compartments, have shown improved biological 69 

insights compared to traditional single omics analyses [1–3]. This may be because single omics 70 

analyses cannot account for the interactions between omic layers and, consequently, are unable 71 

to reconstruct accurate molecular networks. These molecular networks are dynamic, changing 72 

under perturbed conditions such as disease, response to therapy, and environmental exposures. 73 

Therefore, adopting a holistic approach by integrating multi-omics data may bridge this 74 

information gap, and uncover networks that are representative of the underlying molecular 75 

mechanisms [4,5]. 76 

Preliminary approaches to data integration included multi-step approaches that leveraged 77 

existing single-omics methods: multi-omics data were concatenated, or ensembles of single 78 

omics models created [6]. These approaches can be biased towards certain omics data types, 79 

however, and do not account for interactions between omic layers [7,8]. Recently, more 80 
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sophisticated integrative approaches have been proposed (Supplementary Fig. 1) [4,9–12]. 81 

They can be broadly divided into unsupervised analyses, which identify coherent relationships 82 

across multi-omics datasets when samples are unlabeled, and supervised analyses, which identify 83 

multi-omics patterns that discriminate between known phenotypic sample groups. However these 84 

supervised strategies are unable to capture the shared information across multiple biological 85 

domains when identifying the key molecular drivers associated with a phenotype. Such methods 86 

are needed to capture the dynamic nature of molecular networks under various disease conditions 87 

and ultimately provide robust biomarkers that are both biologically and clinically relevant.  88 

To address these knowledge gaps, we introduce DIABLO, a method that incorporates 89 

information across high dimensional multi-omics data while discriminating phenotypic groups. 90 

DIABLO uncovers robust biomarkers of dysregulated disease processes that span multiple 91 

functional layers. We demonstrate the capabilities and versatility of DIABLO both in simulated 92 

and real-world data, integrating multi-omics datasets to identify relevant biomarkers of various 93 

diseases. DIABLO is available through the mixOmics data integration toolkit 94 

(www.mixomics.org [12]) which contains a wide range of multivariate methods for the 95 

exploration and integration of high dimensional biological datasets. 96 

 97 

Results 98 

DIABLO (Data Integration Analysis for Biomarker discovery using Latent cOmponents) 99 

maximizes the common or correlated information between multiple omics (multi-omics) datasets 100 

while identifying the key omics variables (mRNA, miRNA, CpGs, proteins, metabolites, etc.) 101 

and characterizing the disease sub-groups or phenotypes of interest. DIABLO uses Projection to 102 

Latent Structure models (PLS) [13], and extends both sparse PLS-Discriminant Analysis [14] to 103 
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multi-omics analyses and sparse Generalized Canonical Correlation Analysis [15] to a 104 

supervised analysis framework. In contrast to existing penalized matrix decomposition methods 105 

[16], DIABLO is a component-based method (or a dimension reduction technique) that 106 

transforms each omic dataset into latent components and maximizes the sum of pairwise 107 

correlations between latent components (user-defined) and a phenotype of interest [17]. 108 

DIABLO is, therefore, an integrative classification method that builds predictive multi-omics 109 

models that can be applied to multi-omics data from new samples to determine their phenotype. 110 

Users can specify the number of variables to select from each dataset and visualize the omics 111 

data and the multi-omics panel into a reduced data. The method is highly flexible in the type of 112 

experimental design it can handle, ranging from classical single time point to cross-over and 113 

repeated measures studies. Modular-based analysis can also be incorporated using pathway-114 

based module matrices [18] instead of the original omics matrices, as illustrated in one of our 115 

case studies. 116 

 117 

DIABLO selects correlated and discriminatory variables 118 

Briefly, three omic datasets consisting of 200 samples (split equally over two groups) and 260 119 

variables were generated by modifying the degree of correlation and discrimination, resulting in 120 

four types of variables: 30 correlated-discriminatory (corDis) variables, 30 uncorrelated-121 

discriminatory (unCorDis) variables, 100 correlated-nondiscriminatory (corNonDis) variables, 122 

and 100 uncorrelated-nondiscriminatory (unCorNonDis) variables (Supplementary Note, 123 

Supplementary Fig. 2). Three integrative classification methods were applied to generate multi-124 

omic biomarkers panels of 90 variables each (30 variables from each omic dataset): a DIABLO 125 

model with either a full design (where the correlation between all pairwise combinations of 126 
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datasets, as well as between each dataset and the phenotypic outcome, were maximised) or the 127 

null design (where only the correlation between each dataset and the phenotypic outcome was 128 

maximised, see Methods), a concatenation-based sPLSDA classifier which consists of naively 129 

combining all datasets into one, and an ensemble of sPLSDA classifiers where a separate 130 

sPLSDA classifier was fitted for each omics dataset and the consensus predictions were 131 

combined using a majority vote scheme (see Supplementary Fig. 3). The purpose of the 132 

simulation study was to compare DIABLO models with existing multi-step integrative classifiers 133 

with respect to the error rate and types of variables selected as part of the multi-omic biomarker 134 

panels. A secondary aim was to determine the effect of design matrix on the resulting multi-omic 135 

biomarker panels identified using DIABLO. 136 

The concatenation, ensemble and DIABLO_null classifiers performed similarly across 137 

the various noise and fold-change thresholds. At lower noise levels (simulated using a 138 

multivariate normal distribution with mean of zero and standard deviation of 0.2 or 0.5) the 139 

DIABLO_full classifier had a slightly higher error rate compared to the other approaches (Fig. 140 

1a), but consistently selected mostly correlated and discriminatory (corDis) variables, unlike the 141 

other integrative classifiers (Fig. 1b). All methods behaved similarly with respect to the error 142 

rate and types of variables selected at higher noise thresholds (simulated using a multivariate 143 

normal distribution with mean of zero and standard deviation of 1 or 2). This simulation 144 

highlights how the design (connection between datasets) affects the flexibility of the DIABLO 145 

model, resulting in a trade-off between discrimination or correlation. DIABLO_null focused on 146 

selecting discriminatory variables and disregarded most of the correlation between datasets (null 147 

design), whereas DIABLO_full selected highly correlated variables across all datasets. Since the 148 

variables selected by DIABLO_full reflect the correlation structure between biological 149 
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compartments, we hypothesized that they might provide a balance between prediction accuracy 150 

and biological insight. 151 

 152 

DIABLO identifies molecular networks with superior biological enrichment 153 

To assess this, we turn to real biological datasets. We applied various integrative approaches to 154 

cancer multi-omics datasets (mRNA, miRNA, and CpG) – colon, kidney, glioblastoma (gbm) 155 

and lung – and identified multi-omics biomarker panels that were predictive of high and low 156 

survival times (Table 1). We then compared the network properties and biological enrichment of 157 

the selected features across approaches. 158 

Multi-omics biomarker panels were developed using component-based integrative 159 

approaches that also performed variable selection: supervised methods included concatenation 160 

and ensemble schemes using the sPLSDA classifier [14], and DIABLO with either the null or 161 

full design (DIABLO_null, and DIABLO_full); unsupervised approaches included sparse 162 

generalized canonical correlation analysis [15] (sGCCA), Multi-Omics Factor Analysis 163 

(MOFA), and Joint and Individual Variation Explained (JIVE) [23] (see Supplementary Note 164 

for parameter settings). Both supervised and unsupervised approaches were considered in order 165 

to compare and contrast the types of omics-variables selected, network properties and biological 166 

enrichment results. A distinction was made between DIABLO models in which the correlation 167 

between omics datasets was not maximized (DIABLO_null) and those when the correlation 168 

between omics datasets was maximized (DIABLO_full). 169 

Each multi-omics biomarker panel included 180 features (60 features of each omics type 170 

across 2 components). Approaches generally identified distinct sets of features. Fig. 2a depicts 171 

the distinct and shared features between the seven multi-omics panels obtained from the 172 
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unsupervised (purple, sGCCA, MOFA and JIVE) and supervised (green, Concatenation, 173 

Ensemble, DIABLO_null and DIABLO_full) methods. Supervised methods selected many of the 174 

same features (blue), but DIABLO_full had greater feature overlap with unsupervised methods 175 

(orange). The level of connectivity of each of the seven multi-omics panels was assessed by 176 

generating networks from the feature adjacency matrix at various Pearson correlation coefficient 177 

cut-offs (Fig. 2b). At all cut-offs, unsupervised approaches produced networks with greater 178 

connectivity (number of edges) compared to supervised approaches. In addition, biomarker 179 

panels identified by DIABLO_full, were more similar to those identified by unsupervised 180 

approaches, including high graph density, low number of communities and large number of 181 

triads, indicating that DIABLO_full identified discriminative sets of features that were tightly 182 

correlated across biological compartments (Supplementary Fig. 4). For example, Fig. 2c (upper 183 

panel) depicts the networks of all multi-omics biomarker panels for the colon cancer dataset, 184 

which show higher modularity (a limited number of large clusters of variables; circled) for the 185 

DIABLO_full and the unsupervised approaches as compared to the supervised ones. The 186 

corresponding component plots show a clear separation between the high and low survival 187 

groups for the panels derived using supervised approaches, whereas the unsupervised approaches 188 

could not segregate the survival groups [Fig. 2c (lower panel), see Supplementary Fig. 5 and 6 189 

for other cancer datasets].  190 

Finally, we carried out gene set enrichment analysis on each multi-omics biomarker panel 191 

(using gene symbols of mRNAs and CpGs) against 10 gene set collections (see Methods) and 192 

tabulated the number of significant (FDR=5%) gene sets (Table 2). The DIABLO_full model 193 

identified the greatest number of significant gene sets across the 10 gene set collections and 194 

generally ranked higher than the other methods in the colon (7 collections), gbm (5 collections) 195 
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and lung (5 collections) cancer datasets, whereas JIVE outperformed all other methods in the 196 

kidney cancer datasets (6 collections). Unlike all other approaches considered, DIABLO_full, 197 

which aimed to explain both the correlation structure between multiple omics layers and a 198 

phenotype of interest, implicated the greatest number of known biological gene sets 199 

(pathways/functions/processes etc.).  200 

 201 

Case study 1: DIABLO identified known and novel multi-omics biomarkers of breast 202 

cancer subtypes 203 

We next demonstrate that DIABLO can identify novel biomarkers in addition to biomarkers with 204 

known biological associations using a case study of human breast cancer. We applied our 205 

biomarker analysis workflow to breast cancer datasets to characterize and predict PAM50 breast 206 

cancer subtypes (Supplementary Fig. 7). After preprocessing and normalization of each omics 207 

data-type, the samples were divided into training and test sets (Methods, Table 1). The training 208 

data consisted of four omics-datasets (mRNA, miRNA, CpGs and proteins) whereas the test data 209 

included all remaining samples for which the protein expression data were missing. The optimal 210 

multi-omics biomarker panel size was identified using a grid approach where, for any given 211 

combination of variables, we assessed the classification performance using a 5-fold cross-212 

validation repeated 5 times (Supplementary Fig. 8). The number of variables that resulted in the 213 

minimum balanced error rate were retained as previously described in [12]. The optimal multi-214 

omics panel consisted of 45 mRNA, 45 miRNAs, 25 CpGs and 55 proteins selected across three 215 

components with a balanced error rate of 17.9±1.9%. This panel identified many variables with 216 

previously known associations with breast cancer, as assessed by looking at the overlap between 217 

the panel features and gene sets related to breast cancer based on the Molecular Signature 218 
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database (MolSigDB) [23], miRCancer [24], Online Mendelian Inheritance in Man (OMIM) 219 

[25], and DriverDBv2 [26]. Figure 3a depicts the variable contributions of each omics-type 220 

indicated by their loading weight (variable importance). Variables not found in any database may 221 

represent novel biomarkers of breast cancer. Figure 3b shows the consensus and individual 222 

omics component plots based on this biomarker panel, along with 95% confidence ellipses 223 

obtained from the training data and superimposed with the samples from the test data. The 224 

majority of the samples were within the ellipses, suggesting a reproducible multi-omics 225 

biomarker panel from the training to the test set, that was predictive of breast cancer subtypes 226 

(balanced error rate = 22.9%). The consensus plot corresponded strongly with the mRNA 227 

component plot, depicting a strong separation of the Basal (error rate = 4.9%) and Her2 (error 228 

rate = 20%) subtypes. We observed a weak separation of Luminal A (LumA, error rate = 13.3%) 229 

and Luminal B (LumB, error rate = 53.3%) subtypes. Similarly, the heatmap showing the scaled 230 

expression of all features of the multi-omics biomarker panel, depicted a strong clustering of the 231 

Basal and Her2 samples whereas the Luminal A and B were mixed (Fig. 3c). Overall, the 232 

features of the multi-omics biomarker panel formed a densely connected network comprising of 233 

four communities where variables in each community (cluster) were densely connected with 234 

themselves and sparsely connected with other clusters (Fig. 3d). The largest cluster in Fig. 3d 235 

consisted of 72 variables; 20 mRNAs, 21 miRNAs, 15 CpGs and 16 proteins (red bubble) and 236 

was further investigated using gene set enrichment analysis. We identified many cancer-237 

associated pathways (e.g. FOXM1 pathway, p53 signaling pathway), DNA damage and repair 238 

pathways (e.g. E2F mediated regulation of DNA replication, G2M DNA damage checkpoint) 239 

and various cell-cycle pathways (e.g. G1S transition, mitotic G1/G1S phases), demonstrating the 240 

ability of DIABLO to identify a biologically plausible multi-omics biomarker panel. This panel 241 
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generalized to new breast cancer samples and implicated previously unknown molecular features 242 

in breast cancer, which could be further validated in experimental studies.  243 

 244 

Case study 2: DIABLO for repeated measures designs and module-based analyses  245 

Next, we demonstrate the flexibility of DIABLO by extending its use to a repeated measures 246 

cross-over study [27], as well as incorporating module-based analyses that incorporate prior 247 

biological knowledge [28–30]. We use a small multi-omics asthma dataset, including pre and 248 

post intervention timepoints, to compare a DIABLO model that can account for repeated 249 

measures (multilevel DIABLO) with the standard DIABLO model as described above [20,21]. 250 

An allergen inhalation challenge was performed as we previously described in [20,21] in 14 251 

subjects and blood samples were collected before (pre) and two hours after (post) challenge; cell-252 

type frequencies, leukocyte gene transcript expression and plasma metabolite abundances were 253 

determined for all samples (Table 1). We observed a net decline in lung function after allergen 254 

inhalation challenge (Supplementary Fig. 9), and the goal of this study was to identify 255 

perturbed molecular mechanisms in the blood in response to allergen inhalation challenge. A 256 

module based approach (also known as eigengene summarization [18], see Methods) was used 257 

to transform both the gene expression and metabolite datasets into pathway datasets. 258 

Consequently, each variable in those two datasets now represented the scaled pathway activity 259 

expression level for each sample instead of direct gene/metabolite expression. The mRNA 260 

dataset was transformed into a dataset of metabolic pathways (based on the Kyoto Encyclopedia 261 

of Genes and Genomes, KEGG) whereas the metabolite dataset was transformed into a 262 

metabolite pathway dataset based on annotations provided by Metabolon Inc. (Durham, North 263 

Carolina, USA) (Fig. 4a). To account for the repeated measures experimental design, a 264 
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multilevel approach [27] was first used to isolate the within-sample variation from each dataset 265 

(see Methods), and then DIABLO was applied to identify a multi-omics biomarker panel 266 

consisting of cells, gene and metabolite modules that discriminated pre- from post-challenge 267 

samples. We contrast the resulting ‘multilevel DIABLO’ (mDIABLO) with a standard DIABLO 268 

model that disregards the paired nature of this study by comparing their cross-validation 269 

classification performances (Fig. 4b). mDIABLO outperformed DIABLO (AUC=98.5% vs. 270 

AUC=62.2%, leave-one-out cross-validation, see Methods), and we observed a greater degree of 271 

separation between the pre- and post-challenge samples for mDIABLO compared to DIABLO 272 

(Fig. 4c). Common features (pathways) were identified across omics-types in the mDIABLO 273 

model, but not in the standard DIABLO model (Fig. 4d). Tryptophan metabolism and Valine, 274 

leucine and isoleucine metabolism pathways were identified in both the gene and metabolite 275 

module datasets using mDIABLO. The heatmap of pairwise associations of all features identified 276 

with mDIABLO demonstrated the ability of DIABLO to select groups of correlated features 277 

which were predictive of pre- and post-challenge samples. The Asthma pathway was also 278 

identified [even though individual gene members were not significantly altered post-challenge 279 

(Supplementary Fig. 10)] and was negatively associated with Butanoate metabolism and 280 

positively associated with basophils, a hallmark cell-type in asthma (Fig. 4e). These findings 281 

depict DIABLO’s flexibility and sensitivity to detect subtle differences between repeated 282 

designs, and its ability to identify common molecular processes spanning different biological 283 

layers. The biological pathways identified suggest a mechanistic link with response to allergen 284 

challenge.  285 

 286 

  287 
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Discussion 288 

DIABLO aims to identify coherent patterns between datasets that change with respect 289 

different phenotypes. This purely data-driven, holistic, and hypothesis-free tool can be used to 290 

derive robust biomarkers and, ultimately, improve our understanding of the molecular 291 

mechanisms that drive disease. 292 

We found that unsupervised methods identified features that formed strong 293 

interconnected multi-omics networks, but had poor discriminative ability. In contrast, features 294 

identified by supervised methods were discriminative, but formed sparsely connected networks. 295 

This trade-off between correlation and discrimination is a fundamental challenge when trying to 296 

identify biologically relevant biomarkers that are also clinically relevant [31]. DIABLO controls 297 

this trade-off by incorporating a priori relationships between different omic domains to 298 

adequately model dysregulated biological mechanisms between phenotypic conditions. This may 299 

explain the superior biological enrichment of the DIABLO_full models in our benchmarking 300 

experiments where the mRNA and miRNA expression as well as methylation activity were 301 

assumed to be correlated (Table 2). Since these omic domains are known to form real regulatory 302 

relationships in order to control complex biological processes, these multi-omic biomarker 303 

panels may be capturing this biological complexity. In contrast, these biomarkers were not 304 

uncovered when no association was assumed between omic datasets, as in the case of the 305 

DIABLO_null models and existing multi-step integrative strategies. Therefore, by controlling the 306 

trade-off between correlation and discrimination, DIABLO uncovered novel multi-omics 307 

biomarkers that have not previously been identified using existing integrative strategies. These 308 

novel biomarkers were part of densely connected clusters of omic variables which have prior 309 

known biological associations, further suggesting their potential biological plausibility. 310 
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 There are areas of improvement that DIABLO will benefit from in the near future. The 311 

assumption of linear relationship between the selected omics features to explain the phenotypic 312 

response may not apply in some biological research areas, for example when integrating 313 

distance-based metagenomics studies, where kernel approaches could be further explored [32]. 314 

Selecting the optimal number of variables requires repeated cross-validation to ensure unbiased 315 

classification error rate evaluation. A grid approach was deemed reasonable and provided very 316 

good performance results, but several iterations to refine the grid may be required depending on 317 

the complexity of the classification problem. The grid search algorithm was recently improved 318 

[12], but we advise using a broad filtering strategy to alleviate computational time when dealing 319 

with extremely large datasets (e.g. > 50,000 features each). DIABLO was primarily developed 320 

for omics-measurements on a continuous scale after normalization, and further developments are 321 

needed for categorical data types, such as genotype data, as mentioned in [12]. Finally, 322 

DIABLO, like other methods we benchmarked, will be affected by technical artifacts of the data, 323 

such as batch effects and presence of confounding variables that may affect downstream 324 

integrative analyses. Therefore, we recommend exploratory analyses be carried out in each single 325 

omics dataset to assess the effect, if any, of technical factors and use of batch removal methods 326 

prior to the integration analysis [33–35]. 327 

To summarize, DIABLO is a versatile, component-based method that can integrate 328 

multiple high dimensional datasets and identify key variables that discriminate between 329 

phenotypic groups. DIABLO identified more biologically relevant and tightly correlated features 330 

across datasets when compared to existing multi-step classification schemes and integrative 331 

methods. The framework is highly flexible, suitable for single point or repeated measures study 332 

designs, and can accommodate various data transformations, such as feature summarization at 333 
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the pathway level to enhance biological interpretability. DIABLO’s implementation includes 334 

intuitive graphical outputs to facilitate the interpretation of integrative analyses.  335 

 336 

  337 
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Online Methods 338 

Code availability and software tool requirements. The DIABLO framework is implemented in 339 

the mixOmics R package [12]. mixOmics currently includes 19 multivariate methodologies, for 340 

single-omics and integrative analyses. All scripts and tutorials are provided in our companion 341 

web-page http://www.mixomics.org/mixDIABLO. All analyses were performed using the R 342 

statistical computing program (version 3.4.1) and the mixOmics package (version 6.3.0). 343 

 344 

Statistical methods and analysis 345 

General multivariate framework to integrate multiple datasets measured on the same samples. 346 

DIABLO extends sparse generalized canonical correlation analysis (sGCCA) [15] to a 347 

classification (supervised) framework. sGCCA is a multivariate dimension reduction technique 348 

that uses singular value decomposition and selects co-expressed (correlated) variables from 349 

several omics datasets in a computationally and statistically efficient manner. sGCCA maximizes 350 

the covariance between linear combinations of variables (latent component scores) and projects 351 

the data into the smaller dimensional subspace spanned by the components. The selection of the 352 

correlated molecules across omics levels is performed internally in sGCCA with l1 –penalization 353 

on the variable coefficient vector defining the linear combinations. Note that since all latent 354 

components are scaled in the algorithm, sGCCA maximizes the correlation between components. 355 

However, we will retain the term ‘covariance’ instead of ‘correlation’ throughout this section to 356 

present the general sGCCA framework. 357 

 Denote K normalized, centered and scaled datasets X1 (n x p1), …, XK (n x pK), measuring the 358 

expression levels of p1, p2, …, pK omics variables on the same n samples, k = 1, …, K, sGCCA 359 

solves the optimization function: 360 
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 361 

 362 

 363 

where cjk indicates whether to maximize the covariance between the datasets 𝑋𝑘 and 𝑋𝑗 364 

according to the design matrix, with cjk values ranging from 0 (no relationship modelled between 365 

the datasets) to 1 otherwise, 𝒂𝑘 is the variable coefficient vector for each dataset 𝑋𝑘, λk is a non-366 

negative parameter that controls the amount of shrinkage and thus the number of non-zero 367 

coefficients in 𝒂𝑘. Similar to Lasso [36] and other l1 – penalized multivariate models developed  368 

for single omics analysis [14], the l1 penalization improves the interpretability of the component 369 

scores 𝑋𝑘𝒂𝑘 that is now only defined on a subset of variables with non-zero coefficients in 𝑋𝑘. 370 

The result is the identification of variables that are highly correlated between and within omics 371 

datasets.  372 

Equation (1) describes the sGCCA model for the first dimension. Once the first set of 373 

coefficient vectors 𝒂1
𝑘 and associated component scores 𝒕1

𝑘 =  𝑋𝑘𝒂1
𝑘 are obtained, residual 374 

matrices are calculated during the ‘deflation’ step for the second dimension, such that 𝑋𝑘
2 =375 

 𝑋𝑘
1 − 𝒕1

𝑘  𝒂1
𝑘, where 𝑋𝑘

1 is the original centered and scaled data matrix. The subsequent set of 376 

components scores and coefficient vectors are then obtained by substituting 𝑋𝑘 by 𝑋𝑘
2 in (1). This 377 

process is repeated until a sufficient number of dimensions (or set of components) is obtained. 378 

The underlying assumption of the sGCCA model is that the major source of common 379 

biological variation can be extracted via the first sets of component scores 𝑋𝑘𝒂𝑘, while any 380 

unwanted variation due to heterogeneity across the datasets XK does not impact the statistical 381 

model. The optimization problem (1) is solved using a monotonically convergent algorithm [15].  382 
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 383 

DIABLO for supervised analysis and prediction. To extend sGCCA for a classification 384 

framework, we substitute one omics dataset Xk in (1) with a dummy indicator matrix Y of size (n 385 

x G), where G is the number of phenotype groups that indicate the class membership of each 386 

sample. In addition, and for easier use of the method, we replaced the l1 penalty parameter λk by 387 

the number of variables to select in each dataset and each component, as there is a direct 388 

correspondence between both parameters. 389 

Denote a new sample i which is measured across the different types of omics datasets 𝒙𝑘
𝑖 , 390 

its class membership is predicted by the fitted sGCCA model with the estimated variable 391 

coefficients vectors 𝒂�̂� to obtain the predicted scores 𝒕𝑘,𝑖 = 𝒙𝑘
𝑖  𝒂�̂�, 𝑘 =  1, … , 𝐾. Therefore, to 392 

each dataset k corresponds a predicted continuous score 𝒕𝑘,𝑖. The predicted class of sample i for 393 

each dataset is obtained from the predicted score using one of the distances Maximum, Centroids 394 

or Mahalanobis [37] as described in [12]. The consensus class membership is determined using 395 

either a majority vote, or by averaging all 𝒕𝑘,𝑖 across all K datasets before using the prediction 396 

distance of choice (‘average prediction’ scheme ). In case of ties in the majority vote scheme, 397 

‘NA’ is allocated as a prediction but is counted as a misclassification error during the 398 

performance evaluation. As the class prediction relies on individual vote from each omics set, 399 

DIABLO allows for some missing datasets 𝑋𝑘 during the prediction step, as illustrated in the 400 

Breast Cancer case study. We used the centroid distance for the weighted majority vote scheme 401 

(breast cancer study) and the maximum distance for the average vote scheme (asthma study) as 402 

those led to best performance (see [12] for details about distance measures and voting schemes 403 

that can be used). 404 

 405 
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Design matrix in DIABLO. The design matrix C is a (𝐾 x 𝐾) matrix with values ranging from 0 406 

to 1 which specifies whether the covariance between two datasets should be maximized 407 

DIABLO (see equation (1)). In our simulation study, we evaluated two scenarios: a null design 408 

(DIABLO_null) when no omics datasets are connected, and a full design when all datasets are 409 

connected (DIABLO_full): 410 

 411 

However, every dataset is connected to the outcome Y internally in the method. For the two case 412 

studies (breast cancer and asthma) the design matrix was chosen based on our proposed method 413 

(see below Parameters tuning). Note that the design matrix is not restricted to 0 and 1 values 414 

only and a compromise between correlation and discrimination can also be modelled as 415 

described in [12]. 416 

 417 

Input data in DIABLO. While DIABLO does not assume particular data distributions, all 418 

datasets should be normalized appropriately according to each omics platform and preprocessed 419 

if necessary (see normalization steps described below for each case study). Samples should be 420 

represented in rows in the data matrices and match the same sample across omics datasets. The 421 

phenotype outcome Y is a factor indicating the class membership of each sample. The R function 422 

in mixOmics will internally center and scale each variable as is conventionally performed in 423 

PLS-based models and will create the dummy matrix outcome from Y. A multilevel variance 424 

decomposition option is available for repeated measures study designs (see below). 425 

 426 

Parameters tuning.  427 
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The first parameter to tune is the design matrix C, which can be determined using either prior 428 

biological knowledge, or a data-driven approach. The latter approach uses PLS method 429 

implemented in mixOmics that models pair-wise associations between omics datasets. If the 430 

correlation between the first component of each omics dataset is above a given threshold (e.g. 431 

0.8) then a connection between those datasets is included in the DIABLO design as a 1 value.  432 

The second parameter to tune is the total number of components. In several analyses we 433 

found that G − 1 components were sufficient to extract sufficient information to discriminate all 434 

phenotype groups [14], but this can be assessed by evaluating the model performance across all 435 

specified components (described below) as well as using graphical outputs such as sample plots 436 

to visualize the discriminatory ability of each component.  437 

Finally, the third set of parameters to tune is the number of variables to select per dataset 438 

and per component. Such tuning can rapidly become cumbersome, as there might be numerous 439 

combinations of selection sizes to evaluate across all K datasets. For the breast cancer study, we 440 

used 5-fold cross-validation repeated 50 times to evaluate the performance of the model over a 441 

grid of different possible values of variables to select (Supplementary Fig. 8). The performance 442 

of the model for a given set of parameters (including number of component and number of 443 

variables to select) was based on the balanced classification error rate using majority vote or 444 

average prediction schemes with centroids distance. The balanced classification error rate is 445 

useful in the case of imbalanced class sizes, where the majority classes can have strong influence 446 

on the overall error rate. The balanced error rate measure calculates the weighted average of the 447 

individual class error rates with respect to their class sample size. In our experience, the number 448 

of variables to select in each dataset provided less of an improvement on the error rate compared 449 

to tuning the number of components. Therefore, even a grid composed of a small number of 450 
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variables (<50 with steps of 5 or 10) may suffice as it does not substantially change the 451 

classification performance. This is because of the use of regularization constraints which reduces 452 

the variability in the variable coefficients and thus maintains the predictive ability of the model. 453 

Further, the variable selection size can also be guided according to the downstream biological 454 

interpretation to be performed. For example, a gene-set enrichment analysis may require a larger 455 

set of features than a literature-search interpretation. 456 

 457 

Visualization outputs with DIABLO. To facilitate the interpretation of the integrative analysis, 458 

several types of graphical outputs were implemented in mixOmics.  459 

Sample plots. The consensus plot which depicts the samples is computed by calculating the 460 

average of the components from each dataset. Omics specific samples plots can also be obtained 461 

by plotting components associated to each data set. The sample plot are useful to visualize the 462 

ability of the DIABLO model to extract common information at the sample level for each 463 

dataset, and the discriminatory power of each data type to separate the phenotypic groups. The 464 

scatterplot matrix represents the correlation between components for the same dimension but 465 

across all omics datasets. This plot assesses the model’s ability to maximize the correlation as 466 

indicated in the design matrix. Separation of subjects according to their phenotypic groups can 467 

be visualized. 468 

Variable plots. To visualize selected variables, we proposed circos plot to represent correlations 469 

between and within variables from each dataset at the variable level. The association between 470 

variables is computed using a similarity score that is analogous to a Pearson correlation 471 

coefficient, as previously described in [38]. For each omics dataset, DIABLO produces a 472 

variable coefficient matrix of size (𝑝𝑘x 𝐻), where H is the total number of components in the 473 
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model. The product of any two matrices approximates the association score between variables of 474 

the two omics datasets. The association between variables is displayed as a color-coded link 475 

inside the plot to represent a positive or negative correlation above a user-specified threshold. 476 

The selected variables are represented on the side of the circos plot, with side colors indicating 477 

each omics type, optional line plots represent the expression levels in each phenotypic group.  478 

Clustered Image Map (CIM). A clustered image map [38] based on the Euclidean distance and 479 

the complete linkage displays an unsupervised clustering between the selected variables 480 

(centered and scaled) and the samples. Color bars represent the sample phenotypic groups 481 

(columns) and the type of omics (rows) variables. 482 

 483 

Gene-set enrichment analyses 484 

Significance of enrichment was determined using a hypergeometric test of the overlap between 485 

the selected features (mapped to official HUGO gene symbols or official miRNA symbols) and 486 

the various gene sets contained in the collections. In order to carry out the comparison, each 487 

feature set was mapped back to official HUGO gene symbols. This was done as follows across 488 

the respective data types: mRNA, CpGs and proteins. The following collections were used as 489 

gene-sets for the enrichment analysis [39]: C1 - positional gene sets for each human chromosome 490 

and cytogenetic band. C2 – curated gene sets (Pathway Interaction DB [PID], Biocarta 491 

[BIOCARTA], Kyoto Encyclopedia of Genes and Genomes [KEGG], Reactome [REACTOME], 492 

and others), C3 - motif gene sets based on conserved cis-regulatory motifs from a comparative 493 

analysis of the human, mouse, rat, and dog genomes. C4 – computational gene sets (from the 494 

Cancer Gene Neighbourhoods [CGN] and Cancer Modules [CM] – citation available via the 495 

MolSigDB [23]. C5 - GO gene sets consist of genes annotated by the same GO terms. C6 – 496 
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ontologic gene sets (Gene sets represent signatures of cellular pathways which are often dis-497 

regulated in cancer). C7 - immunologic gene sets defined directly from microarray gene 498 

expression data from immunologic studies. H - hallmark gene sets are coherently expressed 499 

signatures derived by aggregating many MSigDB gene sets to represent well-defined biological 500 

states or processes. & A. BTM - Blood Transcriptional Modules [40]. B. TISSUES - cell-specific 501 

expression from Benita et al. [41].   502 

  503 

Modular analysis: Eigengene summarization is a common approach to decompose a n x p 504 

dataset (where n is the number of samples and p is the number of variables in a module), to a 505 

component (linear combination of all p variables) that represents the summarized expression of 506 

genes in the module [18]. For the asthma study, 15,683 genes were reduced to 229 KEGG 507 

pathways and 292 metabolites were reduced to 60 metabolic pathways using eigengene 508 

summarization. 509 

 510 

Multilevel transformation: For multivariate analyses, A multilevel approach separates the 511 

within subject variation matrix (Xw) and the between subject variation (Xb) for a given dataset (X) 512 

[42], ie. X = Xw + Xb. In the case of a two-repeated measured problem (e.g. pre vs post 513 

challenge), the within subject variation matrix is similar to calculating the net difference for each 514 

individual between the data obtained for pre and post challenge. For each omics dataset, the 515 

within-subject variation matrix was extracted prior to applying DIABLO. In the asthma study, 516 

the multilevel approach (called variance decomposition step) was applied to the cell-type, gene 517 

and metabolite module datasets. 518 

  519 
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Tables 549 

Table 1. Overview of multi-omics datasets analyzed for method benchmarking and in two 550 

case studies. The breast cancer case study includes training and test datasets for all omics types 551 

except proteins. 552 

Analysis Dataset Number 

of 

samples 

Sample size in each 

subtype 

Omics Number of 

variables 

Benchmark 

cancer 

datasets 

(Wang et al. 

[3]) 

Colon  

 

92 High (33) 

Low (59) 

mRNA 17,814 

miRNA 312 

CpGs 23,088 

Kidney  122 High (61) 

Low (61) 

mRNA 17,665 

miRNA 329 

CpGs 24,960 

Glioblastoma 

(gbm) 

213 High (105) 

Low (108) 

mRNA 12,042 

miRNA 534 

CpGs 1,305 

Lung  106 High (53) 

Low (53) 

mRNA 12,042 

miRNA 353 

CpGs 23,074 

Case study 1 

(The Cancer 

Genome Atlas ) 

[19] 

Breast cancer 989   Train Test mRNA 16,851 

Basal 76 102 miRNA 349 

Her2 38 40 CpGs 9,482 

LumA 

 

188 346 Proteins Train: 115  

Test: 0 

LumB 77 122 

Case study 2 

(Singh et al. 

[20,21]) 

Asthma 28 Pre (14) 

Post (14) 

Cell-types 9 

mRNA-

modules 

229 

metabolite-

modules 

60 

 553 

Table 2. Number of significant gene sets for each integrative method and benchmarking 554 

cancer dataset. Best performing method is indicated in the shaded cell. Each row represents a 555 

gene set collection (see Methods for details, FDR = 5%). 556 

  Unsupervised, integrative Supervised, non-integrative Supervised, 

integrative 

disease collection JIVE MOFA sGCCA Concatenation Ensemble DIABLO_null DIABLO_full 

 

 

 

 

Colon 

BTM 0 4 0 0 0 0 23 

C1 0 0 0 0 0 0 0 

C2 15 14 5 12 3 21 113 

C3 8 5 14 11 2 6 0 
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 C4 0 1 0 1 2 1 46 

C5 19 36 147 7 0 0 216 

C6 0 0 0 0 0 0 0 

C7 1 87 11 61 10 62 218 

H 0 0 0 0 0 2 7 
TISSUES 2 12 0 0 0 0 16 

TOTAL 45 159 177 92 17 92 639 

 

 

 

 

Gbm 

 

BTM 0 0 19 10 9 10 30 

C1 0 0 0 0 0 0 0 

C2 275 337 193 258 358 312 426 

C3 94 64 37 14 15 15 34 

C4 49 43 68 47 50 62 125 

C5 825 708 706 526 669 776 693 

C6 22 25 18 30 24 24 21 

C7 460 82 526 432 173 147 869 

H 12 8 8 19 23 20 19 
TISSUES 18 29 21 10 12 14 44 

TOTAL 1755 1296 1596 1346 1333 1380 2261 

 

 

 

 
Kidney 

 

BTM 1 0 0 0 0 0 0 

C1 0 0 1 0 0 0 1 

C2 42 33 7 10 5 15 4 

C3 8 80 1 4 35 23 1 

C4 17 6 0 7 1 3 0 

C5 157 110 1 55 27 46 0 

C6 0 0 0 0 0 0 0 

C7 0 74 15 93 13 10 18 

H 6 3 0 1 0 1 0 

TISSUE

S 
2 0 0 0 0 0 0 

TOTAL 233 306 25 170 81 98 24 

 

 

 

 

Lung 

 

BTM 0 0 0 0 0 2 0 

C1 0 0 0 1 0 0 1 

C2 4 17 2 0 0 1 33 

C3 48 20 57 50 26 21 19 

C4 17 0 47 0 0 18 13 

C5 35 127 42 0 25 22 193 

C6 1 0 1 3 2 5 7 

C7 18 13 78 0 7 72 100 

H 0 2 0 0 1 0 0 
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TISSUE

S 
0 0 0 0 0 9 20 

TOTAL 123 179 227 54 61 150 386 

 557 

  558 
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Figure captions 559 

 560 

Figure 1. Simulation study: performance assessment and benchmarking. Simulated datasets 561 

included different types of variables: correlated & discriminatory (corDis); uncorrelated & 562 

discriminatory (unCorDis); correlated & nondiscriminatory (corNonDis) and uncorrelated & 563 

nondiscriminatory (unCorNonDis) for different fold-changes between sample groups and 564 

different noise levels (see Supplementary Note). Integrative classifiers included DIABLO with 565 

either the full or null design, concatenation and ensemble-based sPLSDA classifiers and were all 566 

trained to select 90 variables across three multi-omics datasets. a) Classification error rates (10-567 

fold cross-validation averaged over 50 simulations). Dashed line indicates a random performance 568 

(error rate = 50%). All methods perform similarly with the exception of DIABLO_full which has 569 

a higher error rate. b) Number of variables selected according to their type. DIABLO_full 570 

selected mainly variables that were correlated & discriminatory (corDis, red), whereas the other 571 

methods selected an equal number of correlated or uncorrelated discriminatory variables (corDis 572 

and unCorDis, red and blue). 573 

 574 

Figure 2. Benchmarking integrative methods using multi-omics biomarker panels for 575 

different cancers. a) Overlap of selected features using both supervised (green) and 576 

unsupervised approaches (purple): a strong overlap was observed between the supervised 577 

approaches with the exception of DIABLO_full (blue bars) which showed more similarity to 578 

unsupervised methods (dark orange bars). b) Number of edges within each panel network at 579 

various Pearson correlation cut-offs: unsupervised approaches panels were more connected than 580 

those from supervised approaches, with the exception of DIABLO_full which led to a highly-581 

connected panel. An edge is present if the association between two omic variables is greater than 582 

a given correlation cut-off.  c) Upper panel: network modularity of each multi-omic biomarker 583 

panel for colon cancer showed that unsupervised approaches and DIABLO_full resulted in a few 584 

groups of highly connected features, whereas supervised approaches identified networks with 585 

many groups of sparsely connected features. Lower panel: component plots depicting the clear 586 

separation of subjects in the high and low survival groups for supervised methods as opposed to 587 

the unsupervised methods. 588 

 589 

Figure 3. Identification of a multi-omics biomarker panel predictive of breast cancer 590 

subtypes. a) Variable contributions of each omics-type biomarker that are important to 591 

discriminate breast cancer subtypes. b) DIABLO component plots and the derived biomarker 592 

panel: 95% confidence ellipses were calculated from the training data set and points depict 593 

samples from the test set. c) Heatmap of the scaled expression of variable from the biomarker 594 

panel. d) Network visualization of the biomarker panel highlights correlated variables (Pearson 595 

correlation > |0.4|) and four communities based on edge betweeness scores. e) A gene set 596 

enrichment analysis was conducted on the largest community from d (red cluster) where many 597 

cancer related pathways were identified. 598 

 599 

Figure 4. Asthma study: cross-over design and module-based analysis with DIABLO.  600 

a) DIABLO design includes a module-based decomposition approach to discriminate pre-and 601 

post-inhalation challenge samples. b) Receiver operating characteristic curves comparing the 602 

performance of the standard DIABLO and ‘multilevel DIABLO’ for repeated measures 603 
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(mDIABLO) using leave-one-out cross-validation. c) Component plots depicting the separation 604 

of the pre- and post-challenge samples based on DIABLO and mDIABLO. d) Overlapping 605 

features selected from either DIABLO or mDIABLO. e) Heatmap of the Pearson correlation 606 

values between the features selected with mDIABLO. f) Circos plot depicting the strongest 607 

correlations between different omics features from the mDIABLO panel. 608 

 609 

 610 

  611 
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