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Abstract		

Recent	genome	wide	association	studies	have	identified	a	number	of	single	nucleotide	

polymorphisms	associated	with	late	onset	Alzheimer’s	disease.	Here	we	examine	the	

associations	of	24	LOAD	risk	loci,	individually	and	collectively	as	a	genetic	risk	score,	

with	cognitive	function.	We	used	data	from	1,626	non-demented	older	Australians	of	

European	ancestry	who	were	examined	up	to	four	times	over	12	years	on	tests	

assessing	episodic	memory,	working	memory,	vocabulary	and	information	processing	

speed.	Linear	mixed	models	were	generated	to	examine	associations	between	genetic	

factors	and	cognitive	performance.	Twelve	SNPs	were	significantly	associated	with	

baseline	cognitive	performance	(ABCA7,	MS4A4E,	SORL1),	linear	rate	of	change	(APOE,	

ABCA7,	INPP5D,	ZCWPW1,	CELF1)	or	quadratic	rate	of	change	(APOE,	CLU,	EPHA1,	HLA,	

INPP5D,	FERMT2).	In	addition,	a	weighted	GRS	was	associated	with	linear	rate	of	change	

in	episodic	memory	and	information	processing	speed.	Our	results	suggest	that	a	

minority	of	AD	related	SNPs	may	be	associated	with	non-clinical	cognitive	decline.	

Further	research	is	required	to	verify	these	results	and	to	examine	the	effect	of	

preclinical	AD	in	genetic	association	studies	of	cognitive	decline.	The	identification	of	

LOAD	risk	loci	associated	with	non-clinical	cognitive	performance	may	help	in	screening	

for	individuals	at	greater	risk	of	cognitive	decline.	
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Introduction	

Late	onset	Alzheimer’s	disease	(LOAD),	in	which	patients	show	clinical	symptoms	>65	

years	of	age,	is	the	most	common	form	of	dementia	and	the	number	of	individuals	with	

LOAD	is	expected	to	triple	by	2050	[1].	LOAD	has	a	long	preclinical	phase	that	

commences	decades	before	the	onset	of	clinical	symptoms,	which	are	characterised	by	

progressive	degeneration	of	brain	structure	and	chemistry	resulting	in	gradual	

cognitive	and	functional	decline	[2].	The	neuropathological	hallmarks	of	LOAD	are	

aggregation	and	accumulation	of	extracellular	Amyloid-b	peptides	into	amyloid	plaques	

and	accumulation	of	intraneuronal	hyperphosphorylated	and	misfolded	tau	into	

neurofibrillary	tangles.	Accumulation	of	amyloid	plaques	and	neurofibrillary	tangles	

prompt	the	pathogenesis	of	AD	by	promoting	alterations	in	lipid	metabolism,	neuro-

inflammation,	endocytosis	and	synaptic	dysfunction	and	loss	that	ultimately	leads	to	

neuronal	cell	death	[3,4].		

LOAD	has	a	large	genetic	component,	with	the	heritability	estimated	to	be	60-80%	[5].	

Apolipoprotein	(APOE)	epsilon	4	(*ε4)	was	the	first	common	genetic	variant	to	be	

identified	[6]	and	remains	the	strongest	genetic	predictor	of	LOAD.	Beyond	APOE,	

recent	genome-wide	association	studies	(GWAS)	and	a	meta-analysis	by	the	

International	Genomics	of	Alzheimer’s	Project	(IGAP)	have	identified	single	nucleotide	

polymorphisms	(SNPs)	at	23	loci	associated	with	LOAD	(ABCA7,	BIN1,	CD2AP,	CD33,	

CLU,	CR1,	EPHA1,	MS4A4A,	MS4A4E,	MS4A6A,	PICALM,	HLA-DRB5,	PTK2B,	SORL1,	

SLC24A4-RIN3,	DSG2,	INPP5D,	MEF2C,	NME8,	ZCWPW1,	CELF1,	FERMT2	and	CASS4;	[7-

12]).		

The	identified	LOAD	risk	loci	are	clustered	in	biological	pathways	that	play	an	

important	role	in	disease	onset	and	progression	[13]	and	are	involved	in	the	

accumulation	of	the	pathological	features	of	LOAD	[14].	Furthermore,	post-mortem	
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analysis	suggests	that	the	neuropathological	hallmarks	of	LOAD	progress	to	varying	

degrees	in	individuals	without	dementia	and	are	associated	with	cognitive	status	and	

nonclinical	cognitive	decline	[15,16].		LOAD	risk	genes	are,	therefore,	good	candidates	

for	investigating	potential	genetic	associations	with	cognitive	performance	and	decline.	

How	these	loci	affect	normal	cognitive	function	may	inform	how	they	influence	LOAD	

onset	and	progression.	

This	cross-over	effect	is	exemplified	by	APOE,	which	is	associated	with	LOAD	and	has	

effects	on	episodic	memory,	perceptual	speed,	executive	functioning	and	global	

cognitive	ability	[17,18]	mediated	predominantly	by	amyloid-β	plaques	[19].	

Association	with	cognitive	decline	of	the	first	11	LOAD	risk	loci	identified	by	genome-

wide	association	studies	(GWAS)	are	inconsistent	[20-27].	Whether	the	new	risk	loci	

identified	by	IGAP	are	associated	with	cognitive	decline	has	yet	to	be	extensively	

investigated	[28-30].	

Here,	we	report	associations	of	the	24	most	significant	LOAD	risk	loci	with	longitudinal	

change	in	cognitive	performance	(based	on	four	neuropsychological	outcomes)	over	12	

years	in	1,626	community	dwelling	older	adults.	We	investigate	whether	these	loci	are	

associated,	either	individually,	or	collectively	as	genetic	risk	scores	(GRS),	with:	average	

differences	in	cognitive	performance;	rate	of	cognitive	decline;	and	acceleration	of	the	

rate	of	decline	over	time.		

Methods	

Participants	

Participants	of	this	study	are	community	dwelling	older	adults	who	were	recruited	into	

the	Personality	and	Total	Health	(PATH)	through	life	project,	a	longitudinal	study	of	

health	and	wellbeing.	Participants	in	PATH	were	sampled	randomly	from	the	electoral	
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rolls	of	Canberra	and	the	neighbouring	town	of	Queanbeyan	into	one	of	three	cohorts	

based	on	age	at	baseline,	the	20+	(20-24),	40+	(40-44)	and	60+	(60-64)	cohorts.	

Participants	are	assessed	at	4-year	intervals,	and	data	from	4	waves	of	assessment	are	

available.	The	background	and	test	procedures	for	PATH	have	been	described	in	detail	

elsewhere	[31].	Written	informed	consent	for	participation	in	the	PATH	project	was	

obtained	from	all	participants	according	to	the	‘National	Statement’	guidelines	of	the	

National	Health	and	Medical	Research	Council	of	Australia	and	following	a	protocol	

approved	by	the	Human	Research	Ethics	Committee	of	The	Australian	National	

University.	

In	this	study,	data	for	the	60+	cohort	were	used,	with	interviews	conducted	in	2001-

2002	(n	=	2,551),	2005-2006	(n	=	2,222),	2009-2010	(n	=	1,973),	and	2014-2015	(n	=	

1645),	for	a	total	of	12	years	of	follow-up.	Individuals	were	excluded	from	analysis	

based	on	the	following	criteria:	attendance	at	only	1	wave	(n=309);	no	available	

genomic	DNA	(n=60);	APOE	ε2/ε4	genotype	(n=60,	to	avoid	conflation	of	the	ε2	

protective	and	ε4	risk	affect);	non-European	ancestry	(n=110);	probable	dementia	at	

any	wave	(MMSE	<	24;	n=82);	self-reported	medical	history	of	epilepsy,	brain	tumours	

or	infections,	stroke	and	transient	ischemic	attacks	(n=	450).	Missing	values	in	

“Education”	(total	number	of	years	of	education,	n	=	128)	were	imputed	using	the	

‘missForest’	package	in	R	[32].		This	left	a	final	sample	of	1,626	individuals	at	baseline.		

	

Cognitive	Assessment		

All	participants	were	assessed	at	baseline	and	at	each	subsequent	interview	for	the 

following	four	cognitive	abilities:	perceptual	speed	was	assessed	using	the	Symbol	Digit	

Modalities	Test,	which	asks	the	participant	to	substitute	as	many	digits	for	symbols	as	

possible	in	90	seconds	[33];	episodic	memory	was	assessed	using	the	Immediate	Recall	
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of	the	first	trial	of	the	California	Verbal	Learning	Test,	which	involves	recalling	a	list	of	

16	nouns	[34];	working	memory	was	assessed	using	the	Digit	Span	Backward	from	the	

Wechsler	Memory	Scale,	which	presents	participants	with	series	of	digits	increasing	in	

length	at	the	rate	of	one	digit	per	second	and	asks	them	to	repeat	the	digits	backwards	

[35];	and	vocabulary	was	assessed	with	the	Spot-the-Word	Test,	which	asks	

participants	to	choose	the	real	words	from	60	pairs	of	words	and	nonsense	words	[36]	

Raw	cognitive	test	scores	at	each	wave	and	Pearson’s	correlation	between	test	scores	

are	presented	in	Supplementary	Tables	1	&	2.		

	

Genotyping		

For	this	study,	we	used	genotype	data	for	25	SNPs	that	have	been	associated	with	LOAD	

(Table	1).	Genotyping	of	11	GWAS	LOAD	risk	SNPs	(in	the	following	loci:	ABCA7,	BIN1,	

CD2AP,	CD33,	CLU,	CR1,	EPHA1,	MS4A4A,	MS4A4E,	MS4A6A	and	PICALM)	using	TaqMan	

OpenArray	assays	has	been	reported	previously	[20].	In	this	study	16	SNPs	were	

selected	for	genotyping.	These	included	the	12	LOAD	GWAS	SNPs,	which	were	identified	

in	a	meta-analysis	of	the	previous	GWAS	studies	performed	by	IGAP	(in	the	following	

loci:	HLA-DRB5,	PTK2B,	SORL1,	SLC24A4-RIN3,	DSG2,	INPP5D,	MEF2C,	NME8,	ZCWPW1,	

CELF1,	FERMT2	and	CASS4;	[12]).	Three	were	associated	with	general	cognitive	function	

(MIR2113-rs10457441,	AKAP6-rs17522122,	TOMM40-rs10119;	[28].	One	was	

associated	as	a	haplotype	with	LOAD	(FRMD4A-rs2446581;	[37]).	We	used	proxy	SNPs	

that	were	in	LD	with	four	(HLA-DRB5/HLA-DRB1-rs9271192	[r2	=	1],	MEF2C-rs190982	

[r2	=	0.89],	CELF1-rs10838725	[r2	=	0.99]	and	CASS4-rs7274581	[r2	=	0.99])	of	the	SNPs	

reported	by	IGAP,	as	Taqman	assays	were	unavailable	[12].		

Genomic	DNA	was	extracted	from	cheek	swabs	(n	=	2,192)	using	Qiagen	DNA	kits	or	

from	peripheral	blood	leukocytes	(n	=	101)	using	QIAamp	96	DNA	blood	kits.	Pre-
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amplification	of	the	targeted	loci	was	performed	using	the	TaqMan	PreAmp	Master	Mix	

Kit	(Life	Technologies).	Each	reaction	included	2.5µl TaqMan	PreAmp	Master	Mix	(2x),	

1.25µl Pre-amplification	Assay	Pool,	0.5µl H20	and	1.2µl genomic	DNA.	These	reactions	

were	incubated	in	a	Biorad	thermocycler	for	10	min	at	95°C,	followed	by	12	cycles	of	

95°C	for	15	sec	and	60°C	for	4	min,	and	then	incubated	at	99.9°C	for	10	minutes.	The	

PreAmplified	products	were	then	held	at	4°C	until	they	were	diluted	1:20	in	1x	TE	

buffer	and	then	stored	at	-20°C	until	use.		

Post-PreAmplification,	samples	were	genotyped	using	the	TaqMan	OpenArray	System.	

2μl diluted	pre-amplified	product	was	mixed	with	2µl TaqMan	OpenArray	Master	Mix.	

The	resulting	samples	were	dispensed	using	the	OpenArray® AccuFillTM System	onto	

Format	32	OpenArray	plates	with	each	plate	containing	96	samples	and	16	SNP	assays	

per	sample.	The	QuantStudioTM 12K	Flex	instrument	(Applied	Biosystems,	Carlsbad,	

California)	was	used	to	perform	the	real-time	PCR	reactions	on	the	loaded	OpenArray	

plates.	The	fluorescence	emission	results	were	read	using	the	OpenArray®	SNP	

Genotyping	Analysis	software	v1	(Applied	Biosystems)	and	the	genotyping	analysis	was	

performed	using	TaqMan®	Genotyper	v1.3,	using	the	autocalling	feature.	Manual	calls	

were	made	on	selected	genotype	calls	based	on	the	proximity	to	the	nearest	cluster	and	

HapMap	positive	controls.	

Participant-specific	quality	controls	included	filters	for	genotype	success	rate	(>	90%)	

and	sample	provenance	error	assessed	via	pairwise	comparisons	of	genotype	calls	

between	all	samples	to	identify	samples	with	>	90%	similarity.	Analysis	of	samples	that	

were	flagged	in	the	initial	quality	control	checks	were	repeated.	Those	samples	that	still	

failed	quality	control	were	excluded.	SNP-specific	filters	included	genotype	call	rate	(>	

90%)	and	Hardy-Weinberg	equilibrium	(p	>	0.05)	assessed	using	an	exact	test.	
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The	two	SNPs	defining	the	APOE	alleles	were	genotyped	separately	using	TaqMan	

assays	as	previously	described	[38].	All	SNPs	were	in	Hardy-Weinberg	equilibrium	and	

genotype	frequencies	are	reported	in	Supplementary	Table	3.	

	

Data	Preparation	&	Statistical	Analysis		

All	analyses	were	performed	in	the	R	3.2.3	Statistical	computing	environment	[39].	

Cognitive	tests	at	all	4	waves	were	transformed	into	z-scores	(Mean	=	0,	SD	=	1)	using	

the	means	and	SD	at	baseline	to	facilitate	comparisons	between	cognitive	tests.	A	higher	

score	on	all	tests	indicates	better	cognitive	performance.		

	

Genetic	dominance	was	assumed	for	the	previously	reported	risk	allele	for	all	SNPs,	

except	SORL1,	DSG2	and	CASS4	where	a	recessive	model	of	inheritance	was	assumed	

due	to	the	low	frequencies	of	the	non-risk	allele.	The	APOE	*ε2	and	APOE	*ε4	alleles	

were	assumed	to	be	dominant	to	the	APOE	*ε3	allele.	APOE	alleles	were	coded	as	APOE	

*ε2+	(APOE	*ε2/ε3	+	APOE	*ε2/ε2),	APOE*ε4+	(APOE	*ε4/ε3	+	APOE	*ε4/ε4)	or	APOE	

*ε3/ε3.	Participants	with	the	APOE	*ε2/ε4	allele	were	excluded	to	avoid	conflation	

between	the	APOE	*ε2	protective	and	APOE	*ε4	risk	effects.	

	

Three	genetic	risk	scores	were	constructed	[40]:	(1)	a	simple	count	genetic	risk	score	

(SC-GRS)	of	the	number	of	risk	alleles	where	SC_GRS = 𝐺!"!
!!! ;	(2)	an	odds	ratio	

weighted	genetic	risk	score	(OR-GRS)	where	OR_GRS = log(𝑂𝑅!")× 𝐺!"!
!!! ;	and	(3)	an	

explained	variance	genetic	risk	score	(EV-GRS)		weighted	by	minor	allele	frequency	and	

odds	ratios	where	EV_GRS = log(𝑂𝑅!") 2𝑀𝐴𝐹!"(1−𝑀𝐴𝐹!")  × 𝐺!"!
!!! .	For	the	above	

formulae,	risk	scores	are	calculated	for	the	ith	patient,	where	log(𝑂𝑅!)	=	the	odds	ratio	
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for	the	jth	SNP;	𝑀𝐴𝐹!" 	=	the	minor	allele	frequency	for	the	jth	SNP;	and	𝐺!" 	=	the	number	

of	risk	alleles	for	jth	SNP.	SNPs	were	weighted	by	their	previously	reported	OR	for	LOAD	

and	by	the	minor	allele	frequency	(MAF)	reported	by	the	International	HapMap	project	

for	the	CEU	reference	population	(Table	1).	Participants	missing	genetic	data	for	any	

SNP	were	excluded	from	GRS	analysis	(n	=	121).	All	three	GRS	were	transformed	into	z-

scores	to	facilitate	comparison	between	them.	A	higher	score	indicates	greater	genetic	

risk.	

	

Linear	mixed	effects	models	(LMMs)	with	maximum	likelihood	estimation	and	subject-

specific	random	intercepts	and	slopes	were	used	to	evaluate	the	effect	of	individual	

SNPs	or	GRS	on	longitudinal	cognitive	performance.	Longitudinal	change	was	modelled	

as	a	quadratic	growth	curve,	where	age	centred	on	baseline	was	used	as	an	indicator	of	

time;	linear	rate	of	change	(age)	is	estimated	from	the	slope	of	the	line	tangential	to	the	

curve	at	the	intercept	and	quadratic	rate	of	change	(age2)	is	estimated	from	the	

acceleration/deceleration	in	the	curve	over	time.	Quadratic	growth	curves	were	

represented	as	orthogonal	polynomials	to	avoid	collinearity	problems	and	facilitate	

estimation	of	the	models	[41].	Covariates	included	in	the	models	were	sex,	total	years	of	

education	and,	for	individual	SNP	models,	APOE	genotype.	LMMs	were	estimated	using	

the	R	package	‘lme4’	[42].	Statistical	significance	of	the	fixed	effects	was	determined	

using	a	Kenward-Roger	approximation	for	F-tests,	where	a	full	model,	containing	all	

fixed	effects,	is	compared	to	a	reduced	model	that	excludes	an	individual	fixed	effect	(R	

package	‘afex’	[43]).	A	p-value	<	0.05	was	considered	statistically	significant. We	did	not	

adjust	for	multiple	testing	as	there	is	strong	a	priori	evidence	for	all	our	hypotheses	

based	on	previous	findings	for	validated	LOAD	susceptibility	loci. Conditional	R2	(𝑅!!),	

the	variance	explained	by	fixed	and	random	effects	(i.e.	the	entire	model),	and	marginal	
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R2	(𝑅!! ),	the	variance	explained	by	the	fixed	effects	were	calculated	using	the	R	package	

‘MuMIn’	[44-46]	by	comparing	a	full	model	containing	the	predictor	of	interest	to	a	

reduced	model	excluding	the	predictor.		

	

Results		

Population	characteristics	of	the	PATH	cohort	

Demographic	characteristics	of	the	PATH	cohort	are	presented	in	Table	2.	LMMs	

(Supplementary	Table	4)	showed	that	all	the	cognitive	tests	were	associated	with	

significant	linear	and	quadratic	rates	of	change	except	for	the	Digits	Span	Backwards	

test.	Immediate	Recall	was	associated	with	linear	(β =	-22.82;	SE	=	0.7;	P	=	<0.0001)	and	

quadratic	rate	of	change	(β =	-7.85;	SE	=	0.69;	P	=	<0.0001),	with	Immediate	Recall	

scores	declining	with	age,	and	with	the	decline	accelerating	over	time.	Digits	Span	

Backwards	Test	was	associated	with	linear	(β =	1.76;	SE	=	0.71;	P	=	.01)	but	not	

quadratic	(β =	-0.36;	SE	=	0.66;	P	=	.58)	rate	of	change,	with	Digits	Span	Backwards	test	

scores	increasing	with	age.	Spot-the-Word	was	associated	with	linear	(β =	4.18;	SE	=	

0.37;	P	=	<0.0001)	and	quadratic	(β =	-1.84;	SE	=	0.32;	P	=	<0.0001)	rate	of	change,	with	

Spot-the-Word	scores	increasing	with	age,	and	with	the	rate	of	change	decelerating	over	

time.	Symbol	Digits	Modalities	Test	was	associated	with	linear	(β =	-15.36;	SE	=	0.57;	P	

=	<0.0001)	and	quadratic	(β =	-2.00;	SE	=	0.51;	P	=	<0.0001)	rate	of	change,	with	Symbol	

Digits	Modalities	Test	scores	declining	with	age,	and	with	the	decline	accelerating	over	

time.		

Linear	rate	of	change	explained	59%	-	90%	of	outcome	variation	for	the	entire	model,	

with	quadratic	rate	of	change	explaining	an	additional	0.98%	-	3.67%	of	outcome	
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variation.	Introducing	the	covariates	into	the	models	explained	an	additional	8%	-	20%	

of	the	variation	in	the	fixed	effects	(Supplementary	Table	5).		

	

Main	effects	of	LOAD	GWAS	SNPs	

Introduction	of	the	24	LOAD	GWAS	risk	loci	into	the	LMMs	(Table	3;	for	full	models	

including	fixed	and	random	effects	see	Supplementary	Tables	6-29)	identified	11	SNPs	

(APOE,	ABCA7,	CLU,	EPHA1,	MS4A4E,	HLA,	SORL1,	INPP5D,	ZCWPW1,	CELF1,	FERMT2)	

significantly	associated	with	cognitive	performance.	The	remaining	12	SNPs	(BIN1,	

CD2AP,	CD33,	CR1,	MS4A4A,	MS4A6A,	PICALM,	PTK2B,	SLC24A4-RIN3,	DSG2,	MEF2C,	

NME8	and	CASS4)	were	not	significantly	associated	with	cognitive	performance.			

APOE	ε4+	was	associated	with	a	greater	rate	of	decline	in	Immediate	Recall	and	Symbol	

Digit	Modalities	Tests	scores.	APOE	ε4+	and	APOE	ε2+	were	both	associated	with	

quadratic	rate	of	change	in	Digits	Span	Backwards	test	scores	showing	a	decelerating	

positive	slope.	ABCA7-rs3764650-G	was	associated	with	a	lower	initial	status	at	

baseline	in	Immediate	Recall	Test	scores	and	a	reduced	rate	of	decline	in	Symbol	Digit	

Modalities	Test	scores.	CLU-rs11136000-C	was	associated	with	quadratic	rate	of	change	

in	Digits	Span	Backwards	test	scores	showing	an	accelerating	positive	slope.	EPHA1-

rs11767557-T	and	HLA-rs9271100-T	were	both	associated	with	a	reduced	rate	of	

growth	in	Digits	Span	Backwards	test	scores.	MS4A4E-rs670139-T	was	associated	with	

increased	initial	status	at	baseline	in	Spot-the-word	test	scores.	SORL1-rs11218343-T	

was	associated	with	a	lower	initial	status	at	baseline	in	Symbol	Digits	Modalities	Test	

scores.	INPP5D-rs35349669-T	was	associated	with	a	reduced	rate	of	decline	in	

Immediate	Recall	Test	scores,	a	reduced	rate	of	growth	in	Spot-the-word	test	scores,	a	

greater	rate	of	decline	Symbol	Digits	Modalities	Test	scores,	and	with	quadratic	rate	of	

change	in	Digits	Span	Backwards	test	scores	showing	a	decelerating	positive	slope.	
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ZCWPW1-rs1476679-T	and	CELF1-rs7933019-C	were	both	associated	with	an	

increased	rate	of	growth	in	Spot-the-word	test	scores.	FERMT2-rs17125944-C	was	

associated	with	a	reduced	rate	of	decline	in	Symbol	Digits	Modalities	Test	scores.		

Comparisons	in	the	R2	statistics	between	covariate	only	models	and	the	SNPs	showed	

that	there	was	a	negligible	increase	in	marginal	R2	statistics	and	no	increase	in	

conditional	R2	statistics	(Supplementary	Tables	6-29).		

	

Main	effects	of	LOAD	GRS		

We	evaluated	the	association	of	three	weighted	genetic	risk	scores	with	cognitive	

performance	(Table	3;	Supplementary	Tables	30-32).	Mean	and	SD	for	the	raw	GRS	at	

baseline	are	presented	in	Table	1.	The	SC-GRS	was	not	associated	with	cognitive	

performance.	Higher	OR-	and	EV-GRS	were	associated	with	a	greater	rate	of	decline	in	

Immediate	Recall	and	Symbol	Digit	Modalities	Test	scores.		

Comparisons	in	the	R2	statistics	between	covariates-only	models	and	the	GRS	models	

showed	that	there	was	a	negligible	increase	in	marginal	R2	statistics	and	no	increase	in	

conditional	R2	statistics	(Supplementary	Tables	30-32).	OR-	and	EV-GRS	were	not	

associated	with	cognitive	performance	when	APOE	was	excluded	from	the	GRS	

(Supplementary	Tables	33-35).		

	

Discussion		

In	this	study	we	investigated	the	association	of	the	24	most	significant	LOAD	GWAS	risk	

loci	with	cognitive	performance	in	episodic	memory,	vocabulary,	working	memory	and	

processing	speed.	We	identified	11	SNPs	as	associated	with	baseline	cognitive	

performance	(ABCA7,	MS4A4E,	SORL1),	linear	rate	of	change	(APOE,	ABCA7,	EPHA1,	HLA,	
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INPP5D,	ZCWPW1,	CELF1)	or	quadratic	rate	of	change	(APOE,	CLU,	INPP5D,	FERMT2).	

GRS,	weighted	by	odds	ratio	and	by	odds	ratio	plus	minor	allele	frequency	were	both	

associated	with	a	linear	rate	of	change	in	episodic	memory	and	processing	speed.	When	

APOE	was	excluded	from	these	scores	neither	GRS	were	significantly	associated	with	

cognitive	performance	indicating	that	the	association	was	driven	by	the	dominant	effect	

of	the	APOE	*ε4	allele.	It	should	be	noted,	however,	that	the	effect	sizes	for	the	observed	

associations	are	small,	with	an	increase	in	marginal	R2	statistics	ranging	from	0.1-0.4%	

after	inclusion	of	the	genetic	predictors.	In	comparison,	inclusion	of	the	covariate	

education	in	the	model	increases	the	marginal	R2	statistic	around	4.3-19.8%.	

	

Previous	studies	of	association	between	the	initial	GWAS	LOAD	risk	loci	and	cognitive	

performance	are	characterized	by	a	lack	of	consistent	findings.	The	limited	number	of	

studies	that	have	examined	the	role	of	the	IGAP	LOAD	risk	loci	in	cognitive	performance	

also	produced	mixed	results	[21-30,47-55].		

	

In	univariate	analysis,	SNPs	from	7	of	the	23	non-APOE	GWAS	loci	have	been	associated	

with	cognitive	performance.	ABCA7	has	been	associated	with	declines	in	the	MMSE	

score	in	women	[30].	BIN1	has	been	associated	with	decline	in	MMSE	score	in	one	study	

[26].	CD2AP	has	been	associated	with	a	composite	episodic	memory	in	one	study	[48].	

CD33	has	been	associated	with	a	composite	executive	function	score	[48]	and	decline	in	

MMSE	in	women	[30].	CLU	has	been	associated	with	cognitive	performance	in	four	

studies,	with	baseline	episodic	memory	[21],	baseline	and	decline	in	a	composite	

cognitive	score	[27,53]	and	decline	in	3MS	[56].	CR1	has	been	associated	with	declines	

in	verbal	fluency	[26],	global	cognition	[25,52],	episodic	memory,	perceptual	speed,	

semantic	memory	[54]	and	attention	[56].	PICALM	has	been	associated	with	a	
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composite	cognitive	score	[53]	and	decline	in	global	cognition	[24].	NME8	was	

associated	with	declines	in	Clinical	Dementia	Rating	Scale	Sum	of	Boxes	Scores	[55].		

	

In	contrast	to	a	univariate	approach,	aggregating	SNP	variation	across	genomic	regions	

in	a	‘gene	based’	approach,	has	identified	further	AD	risk	loci	as	associated	with	

cognitive	performance.	In	a	meta-analysis	of	31	studies	(n	=	53,949),	PICALM,	MEF2C	

and	SLC24A4-RIN3	gene	regions	were	associated	with	general	cognitive	function	(p	

≤0.05).	In	single	sex	cohorts,	BIN1,	CD33,	CELF1,	CR1,	HLA	cluster,	and	MEF2C	gene	

regions	were	associated	with	decline	in	MMSE	in	a	all	female	cohort	and	ABCA7,	HLA	

cluster,	MS4A6E,	PICALM,	PTK2B,	SLC24A4,	and	SORL1	gene	regions	were	associated	

with	decline	in	3MS	in	a	all-male	cohort.		

	

Genetic	risk	scores	can	have	greater	predictive	power	than	individual	variants	because	

they	are	based	on	the	cumulative	effect	of	many	variants	that	individually	may	have	

effects	that	are	too	small	to	be	reliably	detected	in	a	univariate	analysis.	GRS	composed	

of	genome	wide	significant	LOAD	SNPs	identified	in	the	initial	LOAD	GWAS	have	been	

associated	with	baseline	general	cognition	[48],	episodic	memory	[21],	visual	memory	

and	MMSE	[26]	and	with	decline	in	episodic	memory	[21],	verbal	fluency,	visual	

memory	and	MMSE	[26].	However	these	associations	were	no	longer	statistically	

significant	when	APOE	was	excluded	from	the	GRS.		

	

Two	studies	have	investigated	a	GRS	composed	of	the	IGAP	LOAD	SNPs,	one	of	which	

showed	that	a	GRS	with	APOE	excluded	was	associated	with	decline	in	MMSE	in	

participants	with	MCI	[29].	The	second	study	showed	that	a	GRS	with	APOE	included	

was	associated	with	memory	performance	at	baseline	and	with	a	faster	rate	of	decline	
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that	accelerated	with	age.	However,	after	excluding	APOE	only	linear	rate	of	change	

remained	significant	[57].		

	

Genome-wide	significant	IGAP	LOAD	risk	loci	do	not	reflect	the	full	spectrum	of	genetic	

susceptibility	to	LOAD	risk	loci,	explaining	only	30.62%	of	the	genetic	variance	of	LOAD	

[58].	Thus,	an	alternative	approach	is	to	construct	a	genome-wide	polygenic	score	(GPS)	

which	is	calculated	based	not	solely	on	genome-wide	significant	SNPs,	but	on	all	

nominally	associated	variants	at	a	given	significance	level.	The	first	study	to	use	this	

method	did	not	find	an	association	with	cognitive	ability	or	cognitive	change	[59].	A	

more	recent	study	using	data	collected	from	the	UK	Biobank	(n	=	112	151)	found	that	

an	AD	GRS	constructed	from	20,437	SNPs	that	were	associated	with	AD	at	a	threshold	of	

p	<	0.05	in	the	IGAP	study	was	significantly	associated	with	lower	verbal-numerical	

reasoning,	memory	and	educational	attainment	[60].		

	

As	noted	above,	the	association	of	LOAD	risk	loci	with	cognitive	performance	is	mixed.	

Several	factors	may	explain	the	discrepancies	between	studies.	First,	the	failure	to	

replicate	positive	results	between	studies	could	result	from	differences	in	participant	

characteristics	(e.g.,	baseline	education,	mean	age,	gender,	and	ethnicity)	and	

methodologies	(e.g.,	sample	size,	duration	of	the	study,	number	of	follow-ups,	non-

linear	time,	population	stratification,	variation	in	classification,	and	cognitive	measures	

[61].	In	particular,	studies	that	did	not	exclude	cognitively	impaired	individuals	from	

the	analysis	could	bias	the	observed	results	in	favour	of	a	positive	association	[28,62].		

	

Selectively	removing	from	the	analysis	individuals	who	develop	cognitive	impairment	

during	the	study,	as	in	this	study,	may	not	resolve	the	issue	because	of	inadvertent	
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inclusion	of	participants	with	preclinical	dementia.	This	issue	was	highlighted	in	the	

study	by	Hassenstab	et	al,	which	reported	that	inclusion	of	individuals	who	were	

cognitively	normal,	but	had	biomarker	and	neuroimaging	evidence	of	preclinical	AD,	

greatly	exaggerated	age-related	cognitive	decline	across	multiple	cognitive	domains	

[63].	This	finding	suggests	that	AD-related	genes	may	be	associated	with	cognitive	

decline	in	participants	who	are	in	the	preclinical	stages	of	AD,	and	who	if	followed	for	

long	enough	would	develop	AD.	This	has	been	observed	in	cognitively	normal	

participants	who	had	low	levels	of	PET	Aβ	but	were	APOE	*ε4+.	This	group	remained	

cognitively	stable,	in	comparison	to	an	APOE	*ε4+	group	with	high	PET	Aβ	who	

experienced	faster	rates	of	cognitive,	decline,	suggesting	that	declines	in	cognitive	

function	observed	in	APOE	*ε4	carriers	reflects	the	effect	of	APOE	exacerbating	Ab	

related	cognitive	decline	rather	then	an	independent	APOE	effect[64].	This	effect	is	

further	indicated	by	previous	studies	showing	that	ABCA7,	EPAH1	and	CLU	were	

associated	with	cognitive	decline	in	participants	classified	as	cognitively	impaired	or	

demented,	but	not	in	those	who	remained	cognitively	normal	[20,21,51].	

	

Second,	the	rationale	for	including	LOAD	risk	loci	in	the	analysis	is	that	they	may	be	

associated	with	biological	processes,	such	as	neurotic	plaque	or	neurofibrillary	tangle	

burden,	that	affect	both	LOAD	and	general	cognitive	performance.	Only	some	LOAD	risk	

loci	are	known	to	be	associated	with	these	pathological	features.	There	may	be	a	lack	of	

association	with	cognitive	performance	because	some	loci	are	associated	with	LOAD	for	

other	reasons	that	do	not	affect	general	cognitive	function.		

	

Notably,	of	the	23	loci	identified	in	the	IGAP	study,	only	11	have	been	associated	with	

neurotic	plaque	(ABCA7,	BIN1,	CASS4,	MEF2C,	PICALM,	MS4A6A,	CD33	and	CR1)	or	
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neurofibrillary	tangle	(ABCA7,	BIN1,	CASS4,	MEF2C,	PICALM,	CLU,	SORL1	and	ZCWPW1)	

burdens	in	AD	case/control	autopsies	[52,65].	In	a	longitudinal	study,	only	BIN1	and	

CASS4	were	associated	with	amyloid	accumulation	[66].	In	contrast,	in	subjects	with	

MCI,	none	of	the	LOAD	risk	loci	were	associated	with	levels	of	Aβ in	the	cerebrospinal	

fluid	(CSF)	and	only	SORL1	was	associated	with	levels	of	tau	and	phosphorylated	tau	

(components	of	neurofibrillary	tangles)	in	the	CSF.		

	

Furthermore,	neurotic	plaques	and	neurofibrillary	tangles	only	explain	30%	of	the	

variation	in	cognitive	decline,	with	cerebrovascular	and	Lewy	body	disease	

neuropatholgies	explaining	an	additional	10%	of	variation	[67].	Given	that	LOAD	

neuropathology	explains	only	a	small	portion	of	the	variation	in	cognitive	decline,	the	

effect	sizes	of	individual	LOAD	risk	loci	that	influence	cognitive	decline	via	amyloid	and	

tau	pathways,	are	expected	to	be	small.	This	highlights	that	while	LOAD	pathology	is	an	

important	factor	in	cognitive	decline,	it	occurs	in	conjunction	with	other	pathological	

features.		

	

Genetic	and	environmental	factors	do	not	act	independently	of	each	other	but	are	likely	

to	interact	with	each	other	such	that	environmental	exposures	may	have	differential	

effects	that	depend	on	individual	genetic	risks	and	vice	versa.	Investigating	interactions	

between	genetic	and	environmental	and	lifestyle	risk	factors	may	provide	promising	

results.	Interactions	between	the	non-APOE	risk	loci	and	environmental	factors	have	yet	

to	be	extensively	investigated,	although	associations	have	been	observed	between	AD	

risk	loci	and	physical	activity,	diabetes,	and	Mediterranean	diet	[68-71].	
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Finally,	the	pathogenesis	of	LOAD	spans	decades,	clinically	progressing	through	the	

preclinical,	MCI	and	dementia	stages.	The	underlying	pathological	process	has	been	

modelled	as	a	cascade	that	starts	with	amyloidosis	followed	by	hyperphosphorylated	

tau	accumulation	and	subsequent	structural,	functional	and	cognitive	declines	[2].	As	

such,	where	and	when	a	risk	locus	is	involved	in	the	LOAD	pathogenesis	cascade	may	

influence	whether	it	is	associated	with	processes	that	predispose,	initiate	or	propagate	

cognitive	decline.	Therefore,	the	lack	of	associations	with	cognitive	performance	with	

the	majority	of	the	LOAD	risk	loci	in	this	study	could	indicate	that	they	exert	their	

pathological	effects	at	latter	stages.	Associations	have	been	reported	between	LOAD	risk	

loci	CD2AP,	CLU,	MS4A6A	and	INPP5D	and	progression	from	normal	cognition	to	

dementia	[72];	between	CLU,	CR1,	and	NME8	and	progression	from	MCI	to	dementia	

[72-74];	between	INPP5D,	MEFC2,	EPHA1,	PT2KB,	FERMT2,	CASS4	and	rate	of	

progression	in	AD	[75];	and	between	PICALM	and	MS4A6A	and	progression	to	

MCI/Dementia	from	normal	cognition	normal	[21].	

	

In	the	context	of	atypical	AD,	which	is	characterized	by	the	development	of	non-

amnestic	cognitive	deficits	[76],	some	LOAD	SNPs	may	be	associated	with	non-amnestic	

cognitive	domains.	As	such,	the	lack	of	consensus	across	studies	could	result	from	

participants	being	at	different	stages	in	the	pathogenesis	of	AD	and	from	assessment	of	

different	cognitive	domains	between	studies.	

	

The	present	findings	need	to	be	interpreted	with	an	understanding	of	their	limitations.	

First,	the	PATH	cohort	is	better	educated	then	the	population	it	was	drawn	from.	As	

higher	education	is	associated	with	a	reduced	risk	of	cognitive	decline	and	incident	

dementia,	this	may	limit	our	ability	to	detect	an	association	between	genetic	factors	and	
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cognitive	performance.	Second,	the	subjects	in	this	study	were	of	European	ancestry,	

and	thus	the	results	presented	may	not	be	generalizable	to	other	populations.	Third,	

even	after	retrospectively	removing	participants	with	cognitive	impairment,	this	cohort	

may	still	contain	individuals	who	are	in	the	preclinical	stages	of	AD	and	thus	potentially	

biasing	our	results.	Fourth,	there	may	have	been	differential	attrition	from	the	PATH	

study	of	individuals	who	later	became	severely	impaired	and	demented,	which	may	

have	biased	results	because	these	individuals	would	not	be	excluded	from	our	analysis	

and	are	more	likely	to	experience	faster	rates	of	cognitive	decline	[77].	Finally,	we	had	a	

prior	expectation	that	each	of	the	SNPs	we	analysed	would	be	associated	with	cognitive	

decline	because	of	its	association	with	LOAD.	We,	therefore,	did	not	correct	for	the	

effect	of	multiple	comparisons.	If	we	had	applied	a	Bonferroni	correction	none	of	the	

observed	associations	would	remain	significant.	

	

Despite	these	limitations,	this	study	has	a	number	of	strengths.	It	was	performed	in	a	

large	community-based	cohort	that	has	been	followed	for	a	period	of	12	years	with	four	

waves	of	data	assessing	four	separate	cognitive	domains.	This	allows	for	robust	

statistical	modelling	of	the	association	of	genetic	factors	with	non-linear	declines	across	

a	broad	spectrum	of	cognition	functions.	Additionally,	the	narrow	age	range	of	this	

cohort	reduces	the	influence	of	age	differences	on	the	results.	

	

In	conclusion,	our	results	suggest	that	a	subset	of	AD-risk	loci	are	associated	with	non-

clinical	cognitive	decline,	although	the	effect	size	of	each	locus	is	small.	Further,	when	

demographic	and	lifestyle	factors	are	taken	into	account,	neither	individual	SNPs	nor	

GRS	explain	a	significant	proportion	of	the	variance	in	cognitive	decline	in	our	sample.	

Further	investigation	of	the	association	of	LOAD	risk	loci	with	cognitive	function	needs	
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to	account	for	the	inclusion	of	participants	with	preclinical	AD.	The	use	of	neuroimaging	

and	cerebrospinal	fluid	biomarkers	to	determine	preclinical	AD	status	will	allow	for	a	

more	robust	analysis	of	the	role	of	LOAD	risk	loci	in	cognitive	aging.	
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Tables	and	Figures		

Table	1:	LOAD	risk	SNPs	used	in	this	study	

Gene	 SNP	 Chromosome	 Alleles*	 MAF†	 OR‡	

APOE	e4	 rs429358/rs7412	 19	 e2/e3/e4	 0.8/0.14	 0.54/3.81	

ABCA7	 rs3764650	 19	 T/G	 0.11	 1.23	

BIN1	 rs744373	 2	 A/G	 0.31	 1.17	

CD2AP	 rs9296559	 6	 T/C	 0.27	 1.11	

CD33	 rs34813869	 19	 A/G	 0.3	 0.89	

CLU	 rs11136000	 8	 C/T	 0.35	 0.88	

CR1	 rs3818361	 1	 G/A	 0.26	 1.17	

EPHA1	 rs11767557	 7	 T/C	 0.2	 0.89	

MS4A4A	 rs4938933	 11	 T/C	 0.5	 0.88	

MS4A4E	 rs670139	 11	 G/T	 0.34	 1.08	

MS4A6A	 rs610932	 11	 T/G	 0.45	 0.90	

PICALM	 rs3851179	 11	 C/T	 0.41	 0.88	

HLA-

DRB5		
rs9271100	 6	 C/T	 0.31	 1.11	

PTK2B	 rs28834970	 8	 T/C	 0.32	 1.10	

SORL1	 rs11218343	 11	 T/C	 0.03	 0.77	

SLC24A4-

RIN3	
rs10498633	 14	 G/T	 0.19	 0.91	

DSG2	 rs8093731	 18	 C/T	 0.01	 0.73	

INPP5D	 rs35349669	 2	 C/T	 0.44	 1.08	

MEF2C	 rs304132		 5	 G/A	 0.46	 0.93	
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NME8	 rs2718058	 7	 A/G	 0.36	 0.93	

ZCWPW1	 rs1476679	 7	 T/C	 0.32	 0.91	

CELF1	 rs7933019	 11	 G/C	 0.34	 1.08	

FERMT2	 rs17125944	 14	 T/C	 0.08	 1.14	

CASS4	 rs7274581	 20	 T/C	 0.11	 0.88	

*Major/Minor	Allele;	†Minor	Allele	Frequency:	HapMap-CEU;	‡OR	for	minor	allele	

reported	by	Alzegene	or	IGAP	[12] 
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Table	2:	PATH	cohort	demographics	

Variable	 Excluded	

(n	=	924)	

Included	

(n	=	1,626)	

t/χ2	 Degrees	of	

Freedom	

P	

Age†	 62.52	±	1.51	 62.49	±	1.49	 0.6	 1938.25	 0.55	

Male‡	 831	(51.11)	 485	(52.49)	 0.4	 1	 0.53	

Education†	 14.03	±	2.57	 13.31	±	3.08	 6.06	 1649.76	 <0.0001	

MMSE†	 29.37	±	0.91	 28.63	±	2.08	 10.23	 1106.58	 <0.0001	

SC-GRS†	 24.68	±	3.21	 24.6	±	3.22	 0.57	 1322.95	 0.57	

OR-GRS†	 3.45	±	0.81	 3.46	±	0.85	 -0.3	 1256.61	 0.76	

EV-GRS†	 1.63	±	0.41	 1.64	±	0.43	 -0.31	 1260.32	 0.75	

†unpaired	2-tailed	t-test;	‡Pearson’s	χ2	2-tailed	test	
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Table	3:	Parameter	estimates	for	the	association	of	LOAD	GWAS	risk	loci	with	cognitive	performance		

SNP	 Coefficient	
Immediate	Recall	

Estimate	(SE)	

Digits	Backwards	

Estimate	(SE)	

Spot-the-Word	

Estimate	(SE)	

SDMT	

Estimate	(SE)	

SC-GRS	 Intercept	 -0.0058	(0.0055)	 -0.00044	(0.0063)	 -0.0031	(0.0059)	 0.0051	(0.0064)	

	 Age	 -0.23	(0.22)	 0.014	(0.22)	 -0.0077	(0.11)	 -0.21	(0.18)	

	 Age2	 0.074	(0.21)	 -0.26	(0.2)	 -0.026	(0.095)	 -0.091	(0.16)	

OR-GRS	 Intercept	 -0.021	(0.018)	 -0.0011	(0.02)	 -0.017	(0.019)	 -0.02	(0.02)	

	 Age	 -2	(0.7)**	 -0.12	(0.71)	 -0.21	(0.34)	 -1.4	(0.57)*	

	 Age2	 0.7	(0.67)	 -0.98	(0.65)	 -0.18	(0.3)	 -0.55	(0.5)	

EV-GRS	 Intercept	 -0.022	(0.018)	 -0.00046	(0.02)	 -0.014	(0.019)	 -0.013	(0.02)	

	 Age	 -1.9	(0.69)**	 -0.1	(0.7)	 -0.26	(0.34)	 -1.4	(0.57)*	

	 Age2	 0.65	(0.67)	 -1	(0.64)	 -0.12	(0.3)	 -0.61	(0.5)	

APOE	ε2	 Intercept	 -0.031	(0.053)	 0.055	(0.061)	 0.053	(0.056)	 -0.022	(0.061)	

	 Age	 -0.84	(1.8)	 1.4	(1.9)	 0.16	(0.9)	 -0.54	(1.5)	
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	 Age2	 -1.4	(1.8)	 -3.8	(1.8)*	 0.43	(0.8)	 -0.94	(1.4)	

APOE	ε4	 Intercept	 -0.041	(0.04)	 0.042	(0.046)	 0.0042	(0.044)	 -0.067	(0.047)	

	 Age	 -5.3	(1.7)**	 0.51	(1.6)	 -0.2	(0.83)	 -3.6	(1.3)**	

	 Age2	 1.3	(1.6)	 -3.2	(1.5)*	 -0.59	(0.73)	 -2	(1.1)	

ABCA7	 Intercept	 -0.1	(0.045)*	 0.027	(0.052)	 -0.048	(0.048)	 0.017	(0.052)	

	 Age	 -2.5	(1.8)	 -0.18	(1.9)	 0.8	(0.97)	 4.6	(1.5)**	

	 Age2	 -1.5	(1.8)	 -2.4	(1.7)	 0.75	(0.83)	 1.4	(1.3)	

BIN1	 Intercept	 -0.058	(0.034)	 0.062	(0.039)	 -0.0092	(0.037)	 0.029	(0.04)	

	 Age	 -1.4	(1.4)	 -0.87	(1.4)	 -0.12	(0.74)	 -1.5	(1.1)	

	 Age2	 1.2	(1.4)	 0.05	(1.3)	 0.58	(0.65)	 -1	(1)	

CD2AP	 Intercept	 2e-04	(0.034)	 -0.0063	(0.039)	 -0.041	(0.037)	 -0.012	(0.04)	

	 Age	 -1.5	(1.4)	 -2.6	(1.4)	 -0.79	(0.74)	 -0.12	(1.1)	

	 Age2	 0.55	(1.4)	 -1.2	(1.3)	 0.69	(0.65)	 -0.17	(1)	

CD33	 Intercept	 0.0079	(0.054)	 -0.042	(0.062)	 -0.056	(0.058)	 0.04	(0.063)	
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	 Age	 0.84	(2.2)	 1.8	(2.2)	 -0.15	(1.2)	 -0.095	(1.8)	

	 Age2	 0.72	(2.2)	 2.9	(2.1)	 -0.47	(1)	 0.79	(1.6)	

CLU	 Intercept	 0.029	(0.046)	 0.093	(0.053)	 0.006	(0.05)	 0.074	(0.054)	

	 Age	 -0.95	(1.9)	 0.91	(1.9)	 -0.57	(0.91)	 0.33	(1.5)	

	 Age2	 0.48	(1.9)	 3.7	(1.8)*	 -1.2	(0.82)	 0.52	(1.4)	

CR1	 Intercept	 -0.054	(0.037)	 -0.0087	(0.042)	 -0.068	(0.04)	 -0.038	(0.043)	

	 Age	 -1.3	(1.5)	 -0.14	(1.5)	 0.46	(0.8)	 -1.4	(1.2)	

	 Age2	 2	(1.5)	 -0.38	(1.4)	 -0.29	(0.71)	 0.24	(1.1)	

EPHA1	 Intercept	 -0.042	(0.094)	 -0.081	(0.11)	 -0.11	(0.1)	 -0.19	(0.11)	

	 Age	 -2.8	(3.9)	 -9.7	(3.8)*	 -0.21	(2.1)	 1.2	(3.2)	

	 Age2	 2.1	(3.8)	 1.6	(3.6)	 0.15	(1.9)	 -0.98	(2.9)	

MS4A4A	 Intercept	 -0.018	(0.046)	 -0.021	(0.053)	 0.096	(0.049)	 0.045	(0.053)	

	 Age	 1.3	(1.9)	 1.3	(1.9)	 0.29	(0.99)	 0.32	(1.5)	

	 Age2	 -1.4	(1.8)	 -2.7	(1.8)	 0.94	(0.87)	 0.5	(1.4)	
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MS4A4E	 Intercept	 0.007	(0.036)	 -0.017	(0.041)	 0.11	(0.039)**	 0.078	(0.042)	

	 Age	 2.7	(1.5)	 1.7	(1.5)	 -0.066	(0.77)	 0.5	(1.2)	

	 Age2	 0.0057	(1.4)	 -0.74	(1.4)	 -0.12	(0.68)	 0.85	(1.1)	

MS4A6A	 Intercept	 -0.031	(0.044)	 -0.0054	(0.051)	 0.058	(0.048)	 0.016	(0.051)	

	 Age	 1.4	(1.8)	 1.1	(1.8)	 1.4	(0.95)	 0.31	(1.5)	

	 Age2	 -0.29	(1.8)	 -2.5	(1.7)	 0.27	(0.84)	 -0.017	(1.3)	

PICALM	 Intercept	 -0.016	(0.049)	 0.0028	(0.056)	 -0.0012	(0.053)	 0.033	(0.057)	

	 Age	 0.89	(2)	 2.9	(2)	 0.27	(1.1)	 -0.82	(1.6)	

	 Age2	 -0.82	(1.9)	 -0.84	(1.9)	 -0.068	(0.93)	 -2.6	(1.4)	

HLA-DRB5	 Intercept	 -0.015	(0.035)	 -0.023	(0.04)	 -0.0016	(0.037)	 0.022	(0.04)	

	 Age	 -0.69	(1.4)	 -3	(1.4)*	 -0.59	(0.75)	 -1.1	(1.1)	

	 Age2	 0.23	(1.4)	 -0.78	(1.3)	 -0.48	(0.66)	 -0.19	(1)	

PTK2B	 Intercept	 0.015	(0.036)	 0.021	(0.041)	 0.021	(0.038)	 -0.054	(0.041)	

	 Age	 0.096	(1.5)	 -0.4	(1.5)	 -0.023	(0.78)	 0.86	(1.2)	
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	 Age2	 0.18	(1.4)	 1	(1.4)	 -0.15	(0.68)	 -1.5	(1.1)	

SORL1	 Intercept	 -0.033	(0.064)	 0.053	(0.073)	 0.0066	(0.069)	 -0.15	(0.074)*	

	 Age	 1.5	(2.6)	 -0.15	(2.6)	 0.012	(1.4)	 -0.95	(2.1)	

	 Age2	 2.9	(2.5)	 -1.6	(2.4)	 -0.97	(1.2)	 -0.87	(1.8)	

SLC24A4-RIN3	 Intercept	 -0.015	(0.082)	 0.024	(0.094)	 -0.11	(0.088)	 -0.12	(0.095)	

	 Age	 -3.7	(3.3)	 3.2	(3.4)	 -1.6	(1.6)	 0.66	(2.8)	

	 Age2	 0.024	(3.4)	 -1.3	(3.3)	 -1.9	(1.6)	 2.9	(2.5)	

DSG2	 Intercept	 0.0092	(0.12)	 -0.095	(0.14)	 -0.21	(0.13)	 -0.18	(0.14)	

	 Age	 1.4	(5.1)	 -1.2	(5.1)	 5	(2.8)	 1.4	(4.3)	

	 Age2	 0.28	(5)	 -3.8	(4.9)	 -2.5	(2.4)	 1.9	(3.8)	

INPP5D	 Intercept	 -0.051	(0.039)	 0.041	(0.045)	 0.0026	(0.042)	 -0.028	(0.045)	

	 Age	 3.6	(1.6)*	 0.31	(1.6)	 -1.8	(0.83)*	 -3.1	(1.3)*	

	 Age2	 0.56	(1.5)	 -3.1	(1.5)*	 -0.2	(0.72)	 -1.1	(1.1)	

MEF2C	 Intercept	 0.0088	(0.046)	 0.021	(0.052)	 -0.086	(0.049)	 -0.03	(0.053)	
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	 Age	 1.2	(1.8)	 1.4	(1.9)	 -0.95	(0.98)	 0.47	(1.5)	

	 Age2	 -3.1	(1.8)	 0.9	(1.7)	 1.2	(0.86)	 0.88	(1.3)	

NME8	 Intercept	 0.042	(0.051)	 -0.00013	(0.058)	 0.02	(0.055)	 0.01	(0.059)	

	 Age	 2.3	(2.1)	 3.7	(2.1)	 0.19	(1.1)	 -0.082	(1.7)	

	 Age2	 -3	(2)	 0.064	(2)	 -0.15	(0.98)	 -2.9	(1.5)	

ZCWPW1	 Intercept	 -0.00046	(0.058)	 0.0034	(0.067)	 0.061	(0.062)	 -0.029	(0.067)	

	 Age	 -1.6	(2.4)	 1	(2.4)	 2.8	(1.3)*	 0.47	(2)	

	 Age2	 3.2	(2.3)	 3.4	(2.2)	 -0.82	(1.1)	 0.83	(1.7)	

CELF1	 Intercept	 0.0085	(0.035)	 -0.016	(0.04)	 -0.019	(0.037)	 -0.0049	(0.04)	

	 Age	 2.3	(1.4)	 0.19	(1.4)	 1.5	(0.74)*	 -0.085	(1.1)	

	 Age2	 -0.92	(1.4)	 0.94	(1.3)	 -0.053	(0.65)	 1.4	(1)	

FERMT2	 Intercept	 0.0061	(0.046)	 -0.093	(0.052)	 -0.029	(0.049)	 0.073	(0.053)	

	 Age	 -2.4	(1.9)	 1.5	(1.9)	 1.1	(0.99)	 0.42	(1.5)	

	 Age2	 -0.49	(1.8)	 -1.5	(1.8)	 -0.47	(0.89)	 2.8	(1.4)*	
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CASS4	 Intercept	 0.0098	(0.047)	 0.011	(0.055)	 0.037	(0.051)	 0.017	(0.055)	

	 Age	 0.8	(1.9)	 -0.37	(1.9)	 -0.039	(1)	 -2.7	(1.6)	

	 Age2	 0.85	(1.8)	 1.2	(1.8)	 -0.39	(0.89)	 0.13	(1.4)	
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